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Abstract

time points (60 min, 90 min, and 24 h).

Background: Candida albicans can form biofilms on intravenous catheters; this process plays a key role in the
pathogenesis of catheter infections. This study evaluated the effect of human serum (HS) on C. albicans biofilm
formation and the expression of adhesion-related genes in vitro. A C. albicans laboratory strain (ATCC90028) and
three clinical strains were grown for 24 h in RPMI 1640 supplemented with HS or RPMI 1640 alone (as a control).
The growth of biofilm cells of four strains was monitored by a Live Cell Movie Analyzer, and by XTT reduction assay.
The expression of the adhesion-related genes BCRT, ALST, ALS3, HWP1 and ECET was analyzed by RT-PCR at three

Results: In the adhesion phase, C. albicans cells kept a Brownian movement in RPMI medium containing HS until a
large number of germ tubes were formed. In the control group, C. albicans cells quickly adhered to the bottom of the
reaction plate. Compared with RPMI 1640, medium supplemented with 3-50% HS caused a significant decrease in
biofilm development (all p < 0.001). However, the presence of HS had no significant inhibitory effect on the pre-adhered
biofilms (all p > 0.05). Biofilm formation was also inhibited by heat-inactivated and proteinase K pre-treated HS. The
presence of 50% HS did not significantly affect the planktonic growth of C. albicans (p > 0.05). At three time points,

component is protease-resistant and heat stable.

HS inhibited expression of the ALST and ALS3 genes and promoted expression of the HWPT and ECET genes.
Significant up-regulation of BCRT was observed only at the 90-min point.

Conclusions: Human serum reduces biofilm formation by inhibiting the adhesion of C. albicans cells. This response
may be associated with the down-regulation of adhesion-related genes ALST, ALS3 and BCRI. The inhibitory serum
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Background

Candida spp. are the fourth most common cause of
nosocomial bloodstream infections [1], and Candida
albicans accounts for approximately 50% of cases of
candidemia [2]. Frequently, candidemia is associated with
C. albicans colonization of indwelling devices, such as
catheters, endotracheal tubes, and pacemakers [3-6]. In
fact, C. albicans is the most common fungus in biofilms
formed on medical devices [7]. Biofilm formation is a
complex, multicellular process, consisting of cell adhesion,
growth, morphogenic switching between yeast and fila-
mentous states, and quorum sensing [8,9]. Adhesion of C.
albicans cells to materials or host cells is a prerequisite
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for biofilm formation, and cell-cell interactions may be
important in the hierarchical organization of cells within
the biofilm [6]. Moreover, biofilm formation of C. albicans
is governed by a tightly woven gene network composed of
six transcription regulators and their target genes [10].
The zinc finger transcription factor BCRI and its target
genes, ALS1, ALS3, HWPI, and ECEI, play an important
role, especially in the process of adhesion [11-13].

Human serum (HS) is a complex medium composed
of proteins, lipids, and small molecules. The interaction of
C. albicans with serum has been of long-standing interest
in the field of fungal pathogenesis. Because Candida spp.
can form biofilms on intravenous catheters and other
inserted medical devices that may come into contact with
blood, serum is regarded as an external cue to trigger
biofilm formation. Yuthika et al. [14] reported that 3%
human serum can promote the formation of C. albicans
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biofilms. However, other researches revealed that serum
can inhibit biofilm formation in some bacteria. Another
study showed that human serum and fetal bovine serum
(FBS) inhibit biofilm formation in Staphylococcus aureus
[15], and Hammond et al. [16] found that adult bovine
serum (ABS) or adult human serum (AHS) also inhibits P.
aeruginosa biofilm formation on plastic surfaces, including
intravenous catheters. Some studies revealed the ability of
serum components to prevent the formation of bacterial
biofilms. It was reported that bovine serum albumin (BSA)
caused a significant decrease in biofilm development
[16]. Abraham et al. indicated that a low molecular weight
component of human serum inhibits biofilm formation
in Staphylococcus aureus [15]. In addition, one compo-
nent of innate immunity also prevents bacterial biofilm
development [17].

Therefore, our hypothesis is that the positive effect of
human serum on Candida albicans biofilm formation
may be due to many factors, so it is necessary to study
the related molecular mechanism.

Results

The C. albicans adhesion process

To directly observe the adhesion process of C. albicans,
the Live Cell Movie Analyzer was used. For the first 2 or
3 h of biofilm formation, we took photos once per minute
by means of continuous photographic techniques. When
those pictures were played back in rapid succession, we
got dynamic images of biofilm growth. Movie 1 shows
that cells of C. albicans quickly adhered to the surface of
polypropylene microtiter plates, formed germ tubes, and
gradually extended in RPMI 1640 without HS (Additional
file 1: Movie 1). However, in the RPMI 1640 with 50% HS,
the cells of the same strain kept a Brownian motion at the
beginning and could not quickly clung to the bottom of
the plate. The Brownian motion lasted as long as about
2 h. The motion did not stop until the formation of a large
number of germ tubes (Additional file 1: Movie 2). In the
next hour (120-180 min), almost no C. albicans cells
kept a Brownian motion, but the hyphae grew longer
(Additional file 1: Movie 3). Movie 3 further shows that
Brownian motion stops after 2 h (Additional file 1: Movie 1,
Movie 2, and Movie 3).

Effect of human serum on germ tube formation of

C. albicans

C. albicans cells were cultured in RPMI 1640 with and
without 50% HS, and germ tube formation was continu-
ously observed at 30, 60, 90, 120, and 180-min time points
by Live Cell Movie Analyzer. For the first 90 min of culture,
the germ tube formation rate of C. albicans cells in the
experimental group (RPMI 1640 containing 50% human
serum) was significantly lower than that in the control
group. Over 2 h of incubation, there was no significant
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difference in the rate of germ tube formation between the
two groups. With the further extension of incubation
time (from 2 h to 3 h), the amount of hyphae gradually
increased in the experimental group, just as in the control
group (Additional file 2).

Effect of human serum on C. albicans biofilms

Data comparing biofilm growth of C. albicans strains in
the absence or presence of different concentrations of HS
were obtained using a XTT reduction assay. Initially, the
tests were performed using cells of strain ATCC90028
in RPMI 1640 containing different concentrations of HS
(3%, 5%, 10%, and 50%).

It was found that HS inhibited the biofilm formation
of C. albicans in a dose-dependent manner (from 3% to
50%). More specifically, 3% HS was sufficient to inhibit
biofilm formation (p < 0.001), and this anti-biofilm effect
increased with increasing HS concentrations (Figure 1A).
However, HS had no significant inhibitory effect on
pre-adhered C. albicans biofilms in vitro (all p > 0.05), even
when the concentrations were as high as 50% (Figure 1B).

To confirm the hypothesis that this effect was not
specific to strain ATCC90028, we tested three unrelated
clinical strains and found that HS also had the same
effect on all three clinical strains (data not shown).

Characterization of the inhibitory components

To further investigate the component(s) of serum that
affect the adhesion of C. albicans, we heated the serum
at 56°C for 30 min. This heat treatment did not abrogate
the inhibitory activity. Heat-inactivated serum still inhibited
biofilms in a dose-dependent manner (Figure 2A). At a
concentration of 3%, heat-inactivated HS significantly
inhibited biofilm formation (p < 0.001), and with increasing
HS concentrations, the effect of HS on biofilm formation
became more pronounced. To eliminate the possibility that
a heat stable protein was responsible for the biofilm inhib-
ition, proteinase K was used to degrade proteins in the HS,
but this also did not affect the ability of serum to inhibit
biofilm formation (Figure 2B). Biofilm formation was sig-
nificantly reduced in proteinase K-treated serum compared
with the control group (all p <0.001). At a concentration of
3%, proteinase K-treated HS significantly inhibited biofilm
formation (p <0.001), and with increasing HS concen-
trations, the effect of HS on biofilm formation became
more pronounced. The results were similar in all four
C. albicans strains (data not shown).

Effect of human serum on planktonic growth of C. albicans

To confirm that inhibition of biofilm formation was not
due solely to growth inhibition, the effect of HS on the
planktonic growth of C. albicans was investigated. Time-
growth curves indicated that the presence of 50% HS
(fresh HS, heat-inactivated HS, or proteinase K-treated
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Figure 1 Effect of human serum on C. albicans biofilms. A) Analysis of biofilm formation in the presence of normal human serum (HS).
ATCC90028 was grown in polypropylene microtiter plates at 37°C for 24 h in the presence of different concentrations of HS. a. Scanned image of
the XTT reduction assay for quantitation of biofilms. b. Quantitation of biofilms by XTT reduction assay. B) Different concentrations of HS were
added to pre-adhered biofilms of ATCC90028 and incubated in RPMI 1640 medium for an additional 24 h at 37°C. a. Scanned image of the XTT
reduction assay for quantitation of biofilms. b. Quantitation of biofilms by XTT reduction assay. All experiments were done in triplicate with three

technical repeats on separate days with similar results and shown as a representative image. RPMI 1640/HS vs. RPMI 1640, **p < 0.01.

HS) did not significantly affect the growth of C. albicans
(all p>0.05) (Figure 3). To confirm the hypothesis that
this effect was not specific to strain ATCC90028, we
tested three unrelated clinical strains and found that HS
had the same effect on all three clinical strains as well
(data not shown).

Effect of human serum on expression of adhesion-related
genes

To elucidate the potential molecular mechanism behind
the ability of HS to prevent growth of C. albicans biofilms,
total RNA was isolated from biofilms of four C. albicans
strains grown in RPMI 1640 medium with or without 50%
HS at three time points (60 min, 90 min and 24 h). The
expression levels of specific genes that were previously
implicated in mediating the adhesion of C. albicans cells
were determined by real-time RT-PCR. HS had varying
effects on different genes in different tested strains (data
not shown), but the general trend of these genes was
consistent. HS down-regulated the expression of the

adhesion-related genes ALSI (1.1 to 3.0-fold) and ALS3
(1.5 to 3.8-fold), but up-regulated the expression of the
hypha-related genes HWPI (1.1 to 2.4-fold) and ECEI
(1.1 to 4.2-fold) at all three time points (Figure 4). Particu-
larly, expression levels of ALSI (2.5 and 3.0-fold) and
ALS3 (3.7 and 3.8-fold) showed significant differences at
both 90 min and 24 h (p < 0.05 or p < 0.01) (Figure 4B,C).
Only at the 90-min time point were the transcription
levels of HWP1 (2.4-fold) and ECE1 (4.2-fold) significantly
higher (p < 0.05 or p <0.01) (Figure 4B). The transcription
level of BCR1 was significantly higher at 90 min (3.3-fold,
p<0.01) (Figure 4B), but BCRI levels were significantly
lower at both 60 min (2.8-fold, p < 0.05) and 24 h (5.6-fold,
p <0.01) (Figure 4A,C).

Discussion

To make the transition from a commensal organism to a
systemic pathogen, C. albicans must first enter the blood-
stream. It can do so by taking advantage of medical devices,
such as intravenous catheters, to enter the bloodstream
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Figure 2 The component(s) of serum inhibit C. albicans biofilm formation. A) Biofilm formation of C. albicans ATCC90028 was examined in
the presence of different concentrations of heat-inactivated human serum for 24 h at 37°C. a. Scanned image of the XTT reduction assay for
quantitation of biofilms. b. Quantitation of biofilms by XTT reduction assay. B) Biofilm formation of C. albicans ATCC90028 was examined in the
presence of different concentrations of proteinase K-treated human serum for 24 h at 37°C. (a. Scanned image of the XTT reduction assay for
quantitation of biofilms. b. Quantitation of biofilms by XTT reduction assay.) All experiments were done in triplicate with three technical repeats
on separate days with similar results. RPMI 1640/HS vs. RPMI 1640, **p < 0.01.
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Figure 3 Effect of human serum on planktonic growth of C. albicans. Twenty-four-hour growth curves showing 50% HS, 50% heat-inactivated
HS, and 50% proteinase K-treated HS against C. albicans ATCC90028 in RPMI 1
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directly, or it can cross intact or damaged gastrointestinal
mucosa and enter into the bloodstream [5,18]. In the
bloodstream, C. albicans is exposed to the innate immune
defenses. As a part of human innate immune system,
serum and its components show different degrees of
protection against systemic candidiasis.

In this study, the natural proliferation condition of C.
albicans was monitored continuously by a Live Cell Movie

Analyzer. C. albicans cells in HS moved with Brownian
motion in the initial stage of culture, then failed adhere to
the surface of polystyrene plates. This indicates that C.
albicans may remain in a suspended status at the early
period of entering the blood stream. Previous studies
showed that free-flowing C. albicans can be rapidly
cleared from the blood [19]. We determined that human
serum facilitates the removal of C. albicans by inhibiting

Figure 4 Expression of C. albicans adhesion-related genes. Candida albicans cells were incubated in the absence or presence of HS (50%)
and the expression of target genes was determined by RT-PCR. Housekeeping gene ACTT was used as an internal control. Each gene was assessed in
triplicate, and the experiment itself was performed in biologic duplicate. The data shown here are a representative graph of strain ATCC90028. A)
Expression of genes ALS1, ALS3, HWPT, ECET, and BCR1 following the treatment with HS for 60 min. B) Different expression of the target genes
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the adhesion of C. albicans on the surface of the endo-
thelial cells. C. albicans possesses virulence factors that
are needed to establish candidiasis that are involved in
the many steps of this complicated process, such as
adhesion, phenotypic switching, morphogenesis, and
biofilm formation [20]. Some factors in the bloodstream,
such as temperature and serum, facilitate the filamentation
of C. albicans [21-23]. It is reported that filamentation is
favorable for C. albicans adhesion and biofilm formation
[24,25]. However, filamentation failed to offset the biofilm
formation inhibition caused by the HS-induced adhesion
defect, as demonstrated in our study.

We also investigated the effect of serum on germ tube
formation in C. albicans. Our results showed that the
rate of germ tube formation is high in HS medium, but
compared with the control group, germ tube formation in
the experimental group was delayed in the initial stage of
culture (within 90 min). This may be one of the reasons
for HS-induced adhesion inhibition. Based on these results,
we also think that RPMI 1640 medium may be a more
suitable medium than human serum to conduct germ
tube testing in C. albicans.

In the initial stage of biofilm culture (the adhesion
period), low serum concentrations suppressed C. albicans
biofilm formation. However, the serum had no effect on
pre-adhered biofilms (90 min), even if the serum was in a
very high concentration. Thus, we concluded that serum
may inhibit biofilm formation by preventing the adhesion
of C. albicans, in consensus with previous studies [15,16].
Recent studies showed that addition of as little as 3%
human serum to media can promote C. albicans biofilm
formation [14], contrary to our results. This may be ex-
plained by the use of different materials, such as serum,
culture medium, strains, adhesive medium, and so on.

It has been reported that IgG, LL-37, transferrin and
lactoferrin, at concentrations close to those found in vivo,
can reduce the capacity of C. albicans and bacteria to
adhere to polystyrene [17,26-28]. Thus, we initially hy-
pothesized that some protein or antimicrobial peptide
in human serum may inhibit the adhesion of C. albicans,
and as a consequence, reduce biofilm formation. However,
our results suggest that the compound in serum that
inhibits C. albicans biofilm formation is not protein-
aceous. Abraham et al. [15] found that a low molecular
weight component of human serum inhibits biofilm
formation in Staphylococcus aureus, and the component
was protease-resistant and heat stable. We conclude here
that human serum may also contain non-protein compo-
nent(s) that can inhibit the adhesion and biofilm forma-
tion of fungi and bacteria. To confirm this hypothesis,
future studies are needed to identify this component of
human serum.

In this study, planktonic growth of C. albicans was
not inhibited by human serum, indicating that inhibition
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of biofilm formation was not due solely to growth
inhibition.

Biofilm formation of C. albicans, a process that depends
upon both cell-cell and cell-substrate adherence, is con-
trolled by a tightly woven network of genes [10]. Among
this gene network, BCRI is one of the best-characterized
biofilm regulators [11-13,29]. Through its adhesin targets
ALSI, ALS3, HWP1 and ECE1, BCRI mediates cell-
substrate and cell-cell interactions in biofilms [30,31].
In this study, at the adhesion stage of biofilm formation
(60 min, 90 min), the expression of BCRI went from less
than to significantly higher than that of the control group.
This may be due to the promoting effect of serum on
hypha growth, as BCRI RNA accumulation depends on
the hyphal developmental activator TECI [32]. ALSI and
ALS3 are members of the agglutinin-like sequence (ALS)
gene family that encodes cell-wall glycoproteins [33]. Most
Als proteins have adhesin functions [34,35]. Mutational
analysis indicates that strains lacking all functional ALSI
and ALS3 alleles (alsiA/als1A als3A/als3A) failed to pro-
duce any detectable adherent cells in biofilm models both
in vivo and in vitro [30], or in actual biofilm formation.
The alsiA/als1A mutants produced substantial biofilms,
but the biofilms often sloughed off the substrate, while the
als3A/als3A mutant only produced scant, disorganized
biofilms on catheter material iz vitro [12]. Our data on
transcript analysis showed that the expression of ALSI
and ALS3 were reduced at different time points in the
biofilm adhesion stage. Therefore, we supposed that the
anti-adhesion effect of human serum might occur via in-
hibition of the expression of ALSI and ALS3, and there-
fore affect biofilm formation. Previous studies have shown
that a ber1A/ berlA mutant, which has reduced expression
of ALS1, ALS3, and other adhesins, has defective biofilm
formation in both an in vitro and in vivo catheter model
[12]. In this study, at 90 min of growth, the change in the
levels of BCRI level was different from ALS1 and ALS3,
indicating that ALSI and ALS3 are also affected by other
factors [8,36].

Interestingly, human serum promotes the expression
of HWPI and ECEI. HWPI is a well-characterized hypha-
specific gene that can mediate C. albicans cell-cell interac-
tions and improve biofilm formation [37,38]. Nobile et al.
[30] found that the expression of Hwpl in Saccharomyces
cerevisiae permits adherence to wild-type C. albicans but
not an alsIA/als1A als3A/als3A double mutant. In addition,
a TDH3-HWP1 hybrid gene could not promote biofilm
formation in the alsiA/als1A als3A/als3A background
in vitro or in vivo. Our study revealed that human
serum decreased the expression level of ALSI and ALS3,
so overexpression of HWPI failed to save the adhesion
and biofilm formation of C. albicans. ECEI was regarded
as a hyphal-induced gene, although its mechanism of
action is uncertain. Our study showed that hyphae were
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significantly greater in the presence of serum than in
the control group, especially in the mature biofilm stage
(data not shown). This may be due to the increase of
ECEI and HWPI [23].

In this study, we also tested the expression of
adhesion-related genes in biofilms grown for 24 h and
found that the expression trend of related genes at this
time was similar to the adhesion phase, both in the
reduction of ALSI and ALS3 and the up-regulation of
HWPI and ECEI. The expression of the BCRI gene,
however, was significantly inhibited. Its level was far
lower than that of the control group. All in all, the serum
reduces BCRI gene expression, and that might be a reason
for biofilm inhibition.

Conclusion

In summary, our study demonstrated that human serum
may reduce the biofilm formation of C. albicans by inhi-
biting adhesion. This inhibition is partly due to the down-
regulation of adhesion-related genes, including ALSI, ALS3
and BCRI. Meanwhile, the inhibitory effect of human
serum is caused by non-protein components in the serum.
Therefore, biofilm formation iz vivo may be “selected for”
(possibly by immune pressure and sheer forces) rather
than “induced” by serum at the level of transcription.

Methods

Ethics Statement

This study was approved by the Medical Ethics Committee
of Beijing Friendship Hospital, Capital Medical University,
Beijing, China (approval #BJFH-EC/2013-014), and indi-
vidual informed consent was waived.

Organisms

Four Candida albicans strains (laboratory strain ATCC
90028 and three clinical isolates of C. albicans: 9079,
y2991, 31448) were tested in this study. The three C.
albicans bloodstream isolates were collected from three
different intensive care patients admitted to the Beijing
Friendship Hospital and were confirmed according to
standard mycological methods, such as the germ tube
test in serum, growth on CHROMagar Candida medium,
and API testing methods. All isolates were stored in skim
milk at —80°C until use.

Medium and growth conditions

Prior to each experiment, C. albicans strains were subcul-
tured on Sabouraud's Agar (SDA) at 35°C for 24 h. To
prepare the yeast inocula for biofilm growth, a loopful of
the SDA culture was transferred into 25 ml of liquid yeast
extract-peptone-dextrose (YPD) medium (1% yeast ex-
tract, 2% peptone, 2% glucose) and incubated at 30°C
for 18 h in an orbital shaker (75 rpm). Then, the cells
were harvested by centrifugation, washed twice in PBS
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(pH 7.2), re-suspended in RPMI 1640 medium (buffered to
a pH of 7.0 with 0.165 M morpholinepropanesulfonic acid),
and counted after serial dilution by a hemocytometer.

Human serum

Human serum (HS) was pooled from healthy blood do-
nors, and heat-inactivated serum was prepared by heating
at 56°C for 30 min. Proteinase K-treated serum was pre-
pared by incubating with 50 mg/mL proteinase K at 58°C
for 1 h followed by incubation at 85°C for 1 h to inactivate
the protease. All fractions were filter-sterilized (0.22-mm
pore size filter).

Biofilm formation

Fungal biofilms were prepared as described on commer-
cially available, pre-sterilized, flat-bottomed 96-well poly-
styrene microtiter plates (Corning) [39]. Briefly, a cell
suspension of 1.0 x 10° cells/ml was prepared in RPMI
1640 and RPMI 1640 + 50%, 10%, 5% or 3% HS. From
those suspensions, 100 ul was introduced into wells
and incubated at 37°C for 24 h without agitation, which
allowed the cells to attach to the surface of the plate
and form the biofilm structure.

To investigate the effect of HS on pre-adhered biofilms,
C. albicans biofilms were prepared for 90 min (the adhe-
sion phase) at 37°C as described above. The wells were
washed twice with PBS to remove loosely adherent cells.
Then, fresh RPMI 1640 (100 pl), containing different
concentrations (3-50%) of HS were added and the plate
was further incubated for 24 h at 37°C. RPMI 1640 medium
without HS was included in control wells. The metabolic
activity of the C. albicans biofilms was determined quanti-
tatively using XTT reduction assay.

Dynamic monitoring of the adhesion process

Standard cell suspension of C. albicans was prepared in
RPMI1640 or RPMI1640 containing different concentra-
tions (3% to 50%) of HS, and 100 pl of those suspensions
was introduced into 96-well polystyrene microtiter plates.
After standing for 3 min, the plates were placed on Live
Cell Movie Analyzer (JuLI Br., NanoEnTek Inc., Seoul,
Korea) and incubated at 37°C. The instrument was set to
continuous photographing mode with exposure 5%, bright-
ness 13%, zoom level 4, interval 1 min, and total time 2 h
(the experimental group was prolonged to 3 h). When it
was finished, a total of 121 or 181 photos were obtained for
the control and experimental groups, respectively. Then,
those pictures were played back in rapid succession to
observe the dynamic changes of the fungal cells (playing
at a speed of 10 frames/s).

Quantitation of biofilms
At the end of the incubation, the supernatant was aspirated
and the wells washed twice with PBS. The quantitation of
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biofilms was determined using 2,3-bis (2-methoxy-4-
nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide
(XTT) reduction assay that measures the activity of mito-
chondrial dehydrogenase [40]. XTT solution (1 mg/ml)
was prepared by dissolving XTT powder (Sigma, Shanghai,
China) in PBS, and the solution was filter-sterilized
(0.22-mm pore size filter). XTT solution (40 pl) was mixed
with freshly prepared menadione solution (0.4 mM; 2 ul)
(Sigma, Shanghai, China) at 20:1 (v/v) immediately prior
to the assay. Thereafter, PBS (158 pl) was mixed with
XTT-menadione solution (42 pl), transferred to each
well containing pre-washed biofilms, and incubated in
the dark for 3 h at 37°C. After the incubation, the col-
ored supernatant (100 pl) was transferred to new micro-
titer plates, and the optical density of the supernatant
was measured at 490 nm with a microplate reader (BIO-
RAD, CA, USA) and imaged by a flatbed scanner (EPSON
PERFECTION V700 PHOTO, Beijing, China). All assays
were carried out in at least three replicates on different
days.

Effect of human serum on planktonic growth of C. albicans
A cell suspension of 10° cells/ml was prepared in RPMI
1640, RPMI 1640 + 50% fresh HS, 50% heat-inactivated
HS and 50% proteinase K-treated HS. At predetermined
time points (0, 2, 4, 6, 12 and 24 h after incubation with
agitation at 30°C), 100 pl aliquot was removed from every
solution and serially diluted 10-fold in sterile water. A
100 pl aliquot from each dilution was streaked on the
Sabouraud dextrose agar plate. Colony counts were de-
termined after incubation at 30°C for 48 h. Three inde-
pendent experiments were performed. Effect of human
serum on growth of C. albicans was determined by ana-
lyzing the time-growth curve.

RT-PCR analysis of C. albicans adhesion-related genes
Quantitative real-time reverse transcription PCR (RT-PCR)
was used to compare mRNA abundances of the genes of
interest. A standard cell suspension of C. albicans (1 ml)
was transferred into the wells of a pre-sterilized, flat-
bottomed 24-well polystyrene microtiter plate (Corning,
NY, USA). After incubation for 60 min, 90 min or 24 h at
37°C with or without HS, the supernatant was aspirated
and the wells were washed twice with PBS. Total RNA
was extracted from C. albicans biofilms using FastPure™
RNA kit (TaKaRa Biotechnology Co. Ltd, Dalian, China),
according to the manufacturer’s manual. RNA concentra-
tions and RNA purity were determined using a BioPho-
tometer spectrophotometer (Eppendorf, Germany). An
equal amount of RNA was subjected to cDNA synthesis
using the PrimeScript RT reagent kit (TaKaRa Biotechnol-
ogy Co. Ltd, Dalian, China).

Real-time PCR primers were designed for the target
genes ALS1, ALS3, ECE1, HWPI, and BCRI using Primer
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Express 3.0 software (Applied Biosystems, CA, USA). The
B-actin gene (ACTI) was used as an endogenous reference
gene. The sequences of forward and reverse primers are
shown in Table 1. Real-time RT-PCR was performed with
a StepOnePlus™ real-time PCR system (Applied Biosys-
tems, CA, USA), and SYBR® Premix Ex Taq™ II was used
as a reagent specifically designed for intercalator-based
real-time PCR using SYBR Green I. All PCR reaction mix-
tures contained: 10 ul SYBR® Premix Ex TaqTM II (2X),
2 ul first strand ¢cDNA, 0.5 pl each primer, 0.4 pl ROX
Reference Dye (50X) and dH,O to the final volume of
20 pl. The program for amplification was 95°C for 30 s as
an initial denaturation step, followed by 40 cycles of PCR
consisting of 95°C for 5 s and 60°C for 30 s. Negative con-
trols (water as template) were included in each run. After
amplification, a melting curve was analyzed to confirm the
specificity of the primers. Expression of each investigated
gene was normalized to the housekeeping ACT1 gene and
analyzed using comparative Ct method (AACt). Expres-
sion of ALS1, ALS3, ECE1, HWPI1, and BCRI genes from
cells grown under serum-treatment condition was indicated
as relative expression to that of genes from untreated yeast
cells. Each experimental condition was performed in
duplicate and each experiment was repeated twice on
two different days for reproducibility.

Statistical analysis

Data were described as mean + SD. All statistical ana-
lyses were performed by statistical analysis computer
software package SPSS 17.0 (SPSS Inc., IL, USA). Stu-
dent’s ¢-test or one-way ANOVA were used to compare
the biofilm formation, planktonic growth, and the gene
expression of C. albicans strains in the presence or absence
of HS. Results with a p-value less than 0.05 were considered
statistically significant.

Table 1 Primers used for RT-PCR experiments

Primer Sequence Tm (°C)
ALST-F 5-CCTATCTGACTAAGACTGCACC-3' 57.69
ALST-R 5-ACAGTTGGATTTGGCAGTGGA-3' 60.13
ALS3-F 5-ACCTGACTAAAACTGCACCAA-3' 57.71
ALS3-R 5-GCAGTGGAACTTGCACAACG-3' 60.59
HWPI1-F 5-CTCCAGCCACTGAAACACCA-3' 60.18
HWPI-R 5-GGTGGAATGGAAGCTTCTGGA-3' 60.00
ECEI-F 5-CCCTCAACTTGCTCCTTCACC3 59.96
ECET-R 5-GATCACTTGTGGGATGTTGGTAA-3' 59.82
Berl-F 5-GCATTGGTAGTGTGGGAAGTTTGAT-3' 57.64
Berl-R 5-AGAGGCAGAATCACCCACTGTTGTA-3' 59.96
ACTI-F 5-CGTTGTTCCAATTTACGCTGGT-3' 60.03
ACTI-R 5-TGTTCGAAATCCAAAGCAACG-3' 58.01
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Additional files

Additional file 1: C. albicans ATCC90028 was incubated in
polypropylene microtiter plates at 37°C in the absence or presence
of HS (50%) and the plates were placed on Live Cell Movie
Analyzer. The instrument was set to continuous photographing mode
with exposure 5%, brightness 13%, zoom level 4, interval 1 min, and total
time 2 h (the experimental group was prolonged to 3 h). Movie 1 Video
of C. albicans biofilm grown in the RPMI 1640 without HS during the first
2 h (0-120 min). Movie 2 Video of C. albicans biofilm grown in the RPMI
1640 with HS during the first 2 h (0-120 min). Movie 3 Video of C.
albicans biofilm grown in the RPMI 1640 with HS in 120-180 min.

Additional file 2: Light microscopy images of C. albicans
ATCC90028 biofilms in RPMI and RPMI + HS media. The different
panels show photomicrographs taken at various time points during germ

tube formulation, as indicated.
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