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Abstract

the fitness costs of this plasmid for the bacterium.

effective growth rate of the transconjugants.

in new medium.

indicating no or very small fitness costs.

host, and persists without antimicrobial usage.

model

Background: Commensal bacteria are a reservoir for antimicrobial-resistance genes. In the Netherlands, bacteria
producing Extended Spectrum Beta-Lactamases (ESBL) are found on chicken-meat and in the gut of broilers at a
high prevalence and the predominant ESBL-gene is the blacry w1 located on Incl1 plasmids. We aim to determine

We investigated the conjugation dynamics of Incl1 plasmids carrying the blacry w1 gene in a batch culture and its
impact on the population dynamics of three E. coli populations: donors, recipients and transconjugants. The
intrinsic growth rate (), maximum density (K) and lag-phase (A) of the populations were estimated as well as the
conjugation coefficient. Loss of the plasmid by transconjugants was either assumed constant or depended on the

Parameters were estimated from experiments with pure culture of donors, recipients and transconjugants and with

mixed culture of donors and recipients with a duration of 24 or 48 hours. Extrapolation of the results was
compared to a 3-months experiment in which a mixed culture of recipient and transconjugant was regularly diluted

Results: No differences in estimated growth parameters (i, K or A) were found between donor, recipient and
transconjugant, and plasmid loss was not observed. The conjugation coefficient of transconjugants was 10 times
larger than that of the donor. In the 3-months experiment, the proportion of transconjugants did not decrease,

Conclusions: /n vitro the Incl1 plasmid carrying the blacry. gene imposes no or negligible fitness costs on its £. coli

Keywords: ESBL, Antibiotic, Antimicrobial, Resistance, Poultry, Chicken, Livestock, Persistence, £. coli, Mathematical

Background

Due to the resistance against a wide range of antimicro-
bials including important ones such as penicillins and all
cephalosporins [1], Extended Spectrum Beta-Lactamase
(ESBL) producing bacteria are considered a vast threat to
public health. Carriership of bacteria producing ESBLs in
humans is increasing in the community and health care.
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In Enterobacteriaceae ESBL-genes are mostly plasmid
mediated and may be located on various plasmid types. In
Dutch poultry blactx. a1 is the predominant ESBL-gene,
located on Incll plasmids [2] and these ESBL-genes seem
to play an important role in humans as well [3]. The
prevalence of ESBLs in poultry in the Netherlands is very
high, 100% of investigated farms were positive for ESBL-
producing Escherichia coli and on 85% of these farms,
80% (95% CI: 71-99%) or more of the animals carried
ESBL-producers in their faeces [4]. Surveillance data show
that among all broiler E. coli in the Netherlands, 15% carry
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plasmids with ESBL-genes [2]. The occurrence of the
IncI1/CTX-M-1 combination in broilers as well as in
humans indicates that the bacterium populations in
poultry may play a role as a reservoir for ESBL-genes
found in human bacteria [5].

Although in general a high selective pressure by use of
antimicrobials exists in broiler chickens, the reservoir
role is unexpected in this particular case. Mass treat-
ment of broiler chickens with cephalosporins is forbid-
den in the Netherlands. Cephalosporins are, however,
used in one-day old reproduction animals in the poultry
sector [6], selecting for bacteria producing ESBLs that can
then successfully colonize broilers. To explain the wide-
spread occurrence of the IncIl and CTX-M-1 positive iso-
lates, we wish to understand under what circumstances
this gene-plasmid combination can be successful.

The IncIl plasmid is conjugative, and conjugation
could explain the high abundance of bacteria carrying
this plasmid in the microbiota of broilers. Within the
microbiota, plasmids might act as infectious agents,
which are able to persist by transfer to new bacterial
hosts. Maintenance of a population of plasmids is deter-
mined by the balance between increase of bacteria carry-
ing plasmids due to conjugation and a decrease by loss
of the plasmid from bacteria and selective disadvantage
of bacteria by carrying a plasmid [7]. This balance can
tip either way. For some plasmids, it is impossible to be
maintained solely by conjugation [7] and so they require
different mechanisms of maintenance [8]. For other plas-
mids and systems the disadvantages of plasmid carriage,
however, does not outweigh the spread by conjugation
[9], which enables maintenance of the plasmid by conju-
gation. Addiction systems, of which IncIl plasmids have
several present [10,11], can prevent the loss of the plas-
mid, but cannot prevent selective disadvantages of the
carriage of a plasmid.

We aim to determine the fitness costs of this plasmid
for the bacterium. Here, we used in vitro experiments,
analysed by use of a mathematical model, to assess
whether a combination of plasmid IncIl and ESBL-gene
blactx.m.1 can persist in vitro in a population of a
broiler field isolate of E. coli. The mathematical model
described combines a growth model with conjugation
and plasmid loss processes. The growth was modelled
with three growth parameters: a lag-phase, an intrinsic
growth rate, and a maximum density. The intrinsic
growth rate is the maximum growth rate of the popula-
tion, which is inhibited during the lag-phase and at high
bacterial densities. The maximum density is the max-
imum bacterial density in the medium.

First, we estimated the bacterial growth parameters,
conjugation coefficients and plasmid loss rate from experi-
ments with a short duration (i.e. 24 or 48 hours). Then,
we compared single and mixed cultures to determine
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selective disadvantage and a difference in conjugation co-
efficients between the donor and the newly acquired
transconjugant strain [9,12]. Finally we compared long-
term predictions of our model to a 3-months experiment
in which a mixed culture was regularly transplanted to
fresh medium.

Methods

Bacterial isolates and plasmids

All isolates used in the in vitro experiments were derived
from the Dutch national monitoring program for anti-
microbial resistance and antimicrobial usage in food-
producing animals in 2006 [13] and 2010 [14]. The
isolates used in this study were isolated from broiler fae-
ces collected at slaughterhouses in the Netherlands. The
bacterial isolates and plasmids used in the study are
listed in Additional file 1. E38.27 was used as plasmid
donor (D) in the experiments. E38.27 carries blactyx_n.1
on an IncIl plasmid of sequence type 7, and is therefore
resistant to cefotaxime. Isolate E75.01 was used as re-
cipient (R). This isolate is resistant to ciprofloxacin, due
to mutations in the bacterial chromosome. Both isolates
were analysed for plasmid content as described earlier
[5,15]. E. coli sequence types were determined by Multi
Locus Sequence Typing [16]. The transconjugant (7),
called T38.27, consisted of E75.01 that acquired the
IncIl plasmid with blactyx p.; from E38.27, and is resist-
ant to ciprofloxacin due to the presence of mutations in
the chromosome (present in strain E75.01) and to cefo-
taxime due to the presence of blactx.m.; on the ob-
tained incIl plasmid. Before use, transconjugants were
kept in buffered pepton containing 30% glycerol at -80°C.
The donor E38.27 contained a second plasmid IncHI1,
which was not transferred to the transconjugant T38.27.
Resistance phenotypes of D, R and T were used in the ex-
periments to select for D, R or T on selective plates, for
quantification purpose.

The IncIl plasmid of E38.27 contains two addiction fac-
tors pndAC and yacAC coding for Class II toxin-antitoxin
(TA) systems (Dr Hilde Smith, personal communication).
The antitoxins bind to toxins by protein-protein complex
formation [17]. The antitoxins are less stable than the
toxins, hence plasmid-free daughter cells will be killed
after cell division.

Experimental set up

Three experiments were carried out. Firstly D, R and T
were grown as single populations from which growth pa-
rameters were determined. From the growth experiment
with 7, we also estimated plasmid loss. Secondly, experi-
ments were done to estimate the conjugation coefficient
and growth parameters in the presence of other bacterial
populations. Thirdly, long-term dynamics were studied
during a 3-months experiment. All experiments were



Fischer et al. BMC Microbiology 2014, 14:77
http://www.biomedcentral.com/1471-2180/14/77

conducted in static liquid cultures. Experiment 1 was
conducted in 100 ml Erlenmeyer flasks and Experiments
2 and 3 in glass culture tubes. Start concentrations were
determined by taking a sample directly after adding and
mixing the inoculum in the medium. Below we describe
the experiment and an overview is listed in Additional
file 2.

Experiment 1 Single population experiments

In experiment 1 growth curves of single populations of
D, R and T were constructed from liquid cultures with
two different start concentrations: 10> and 10° cfu/ml
made in 25 ml Luria Bertani (LB) broth. Start concentra-
tions were determined directly at the start of incubation
by a colony count. The flasks were incubated at 37°C.
Enumerations of D (experiment 12bed) R (experiment
1°%8) and T (experiment 1") were done by serial dilu-
tions on selective plates. For the experiments with start
concentration 10* cfu/ml this was done at 0, 2, 4, 6, 8,
24, 30 and 48 h after the start of the experiment,
whereas for the experiments with start concentration
10° cfu/ml at 0, 1, 2, 3, 4, 6, 8, 24, 30 and 48 h after the
start of the experiment. The growth rate, maximum
density and lag-phase parameters were estimated from
these data as described below in the section on the par-
ameter estimation.

Plasmid loss was determined along with the growth
experiment of T (experiment li). At 4, 8 and 24 h, 94
colonies taken from the colony count plates of 7, were
each suspended in a single well of a 96 well microtitre
plate (one colony per well) in LB broth. In the two
remaining wells control isolates were suspended (7 and
D). Two agar plates (Plate 1: selecting for R + T by con-
taining 2 mg/Liter ciprofloxacin and Plate 2: selecting
for T containing 2 mg/Liter ciprofloxacin together with
1 mg/Liter cefotaxime) were spotted with 10 pLiter of
each well. After overnight incubation at 37°C, every spot
was marked as ‘growth’ or ‘no growth’, indicating pres-
ence or absence of the plasmid, respectively. Due to the
presence of addiction systems on the plasmid, plasmid
loss is thought unlikely to occur. The power to observe
plasmid loss with only 94 samples is small, but will
provide us with an upper limit for the plasmid loss
probability.

Experiment 2 Short term mixed culture experiments

Two experiments were carried out with mixed popula-
tions of D and R. In both experiments, 100 ul of a 0.5
10® cfu/ml suspension of D was mixed with 100 pl of a
0.5 10% cfu/ml suspension of R and this was incubated
for 24 h in 10 ml LB broth at 37°C. Start concentrations
were determined directly at the start of incubation. In
experiment 2% samples were taken for colony counts by
serial dilution at 0, 3, 6, 16, 19 and 24 h after the start of

Page 3 of 9

the experiment. In experiment 2°, two parallel series
were conducted. In the first series samples for colony
counts by serial dilution were taken at 0, 2, 4, 6, 8, 24,
30 and 48 h and in the second series at 0, 16 and 24 h;
because of logistic reasons these sampling times were
not the same. D, R and T were enumerated on LB agar
containing either 1 mg/Liter cefotaxime (selects for D
and T), 1 mg/Liter ciprofloxacin (selects for R and T)
and 1 mg/Liter cefotaxime together with 1 mg/Liter cip-
rofloxacin (selects only for 7). Growth rate, maximum
density and lag-phase parameters were estimated for the
total population of bacteria (D + R+ T) assuming equal
growth rate and maximum density. The conjugation co-
efficient was estimated from the increase of the fraction
of transconjugants as described in section “Parameter
estimation and model selection”.

Experiment 3 Long term mixed culture experiments

In experiment 3, 10° cfu/ml T and 10* cfu/ml R were
cultured in 10 ml LB broth. Cultures were passaged ei-
ther every 24 hours (three replicates) or every 48 h
(three replicates) except in weekends and on public holi-
days, by diluting the culture 1:100 (v/v) in 0.9% NaCl so-
lution and diluting this suspension 1:100 (v/v) in LB
broth resulting in a 1:10 000 diluted culture. The cul-
tures were passaged for a period of 3 months resulting
in a total of 49 (every 24 h) and 29 (every 48 h) passages.
Every week enumeration of the cultures was done by
serial dilution and inoculation of 100 pl of the dilutions
on either LB agar containing 2 mg/Liter ciprofloxacin
(selects for R and T) or on LB-agar containing 2 mg/
Liter ciprofloxacin and 1 mg/Liter cefotaxime (selects
only for T). Growth curves of R+ T and T alone were
compared to simulations with the mathematical model.

Mathematical model

The populations of bacteria growing in isolation (R, D or
T) are described by the model of Baranyi and Roberts
[18], which we reparameterized for our purposes
(Additional file 3). The model describes the population
sizes by a logistic growth curve with intrinsic growth
rate y (per hour) and maximum density K (bacteria) in
which growth rate is adjusted to account for a lag-phase
of A (hours). For an overview of model parameters see
Additional file 3.

The model to analyze the conjugation experiments
contains three bacterial populations: Donor D, Recipient
R, and Transconjugant T (Figure 1). Three processes
take place: bacterial growth (modelled as described
above), conjugation and plasmid loss. Conjugation is the
plasmid transfer from D or T to R, by which R turns into
T. Plasmid loss from T turns T into R. The process of
conjugation is modelled by mass action with a conjuga-
tion coefficient yp for the donor-recipient conjugation
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Figure 1 Flow diagram of the model with plasmid donor D,
recipient R and transconjugant T. Parameters yp, wp and w7 are
the intrinsic growth rates of D, R and T. The plasmid is lost by T with
rate € and the conjugation coefficient is denoted by .

and yr for the transconjugant-recipient conjugation. A
simpler model was also investigated in which both con-
jugation coefficients were assumed to be equal (y = yp = y7).
The conjugation coefficient is defined as the number of
conjugation events per bacterium per hour.

Plasmid loss occurs at a probability ¢ during cell division.
Plasmid loss occurs when during cell division one daughter
cell is without the plasmid, so the rate should be propor-
tional to the rate of cell division. In the model, the net bac-
terial growth rate is density-dependent, which is probably
the result of a lower cell division rate and a higher cell
death at high concentrations. For the process of plasmid
loss, we considered two models representing two extremes:
(1) the rate of cell division is constant and cell death is
density-dependent. This means that loss of the plasmid oc-
curs at a constant rate i ocs. We will refer to this model as
the Constant Segregation model (CS model),and (2) the
rate of cell death is zero, and the rate of cell division is
density-dependent. That means that the plasmid loss oc-
curs at a rate Yops(1-254E) . This model will be referred
as the Density-dependent Segregation model (DS model).

Long term behaviour of this system of batch cultures
which were regularly diluted, was studied by applying
the conjugation model for each round of the batch cul-
ture. We excluded the presence of a donor (D =0), be-
cause the long term experiment 3 was done without a
donor strain. The initial values of each round were the
final results of the previous round divided by 10 000
(the dilution of the culture). When the population dens-
ity of either one of the populations R and 7T dropped
below 1 cfu/ml, the population was deemed extinct.

Parameter estimation and model selection
All estimations were done by least-squares fitting of the
data (log-scaled) to the numerically solved model

Page 4 of 9

equations, in Mathematica (version 9, www.wolfram.
com). The best fitting model was selected on the basis of
the adjusted Akaike Information Criterium value (AICc).
The AICc penalizes the use of parameters to avoid over-
fitting, which was a serious concern with at least six pa-
rameters and a maximum of 100 data points.

We estimated the parameter values of y, K, A, yp, vz
and o in three steps.

The first step of the parameter estimation process was
estimation of the intrinsic growth rates y, maximum
densities K and lag-phase A. They were estimated from
single culture experiments 1°7 and separately for mixed
culture experiments 2°”. The estimates of the growth
parameters from experiments 2* > were used for the esti-
mation of the conjugation coefficients (yp and yr) and
in the simulation of the long term experiment (see sec-
tion Long term behaviour), because these experiments
were also mixed culture experiments.

We fitted the model with separate ¥ and K for each
population D, R, and T (across all experiments 1 or 2),
with only separate y for each population, with only sep-
arate K for each population, or with no separate parame-
ters for each population. The initial concentration N
and the lag-phase parameter 1 were estimated separately
for each experiment, or for each initial concentration.

The second step was estimation of the rate of plasmid
loss from experiment 1'. From this culture 94 colonies
were selected and tested for the presence of the plasmid
at 4, 8, and 24 h. The number of 94 colonies was chosen
for practical reasons. To estimate the plasmid loss pa-
rameters we assumed that the rate of conjugation is neg-
ligible when the population without plasmid is very
small. Furthermore based on the results of experiments
1°7 (Table 1), we assumed equal growth rates and max-
imum densities for recipient R and transconjugant 7.

The sensitivity of the estimated plasmid loss parameter
ops of the DS model for the estimates of the intrinsic
growth rate ¥ and the maximum density K was deter-
mined for ten-fold smaller and ten-fold larger values of
¥ and K

The third and final step was estimation of the conjuga-
tion coefficient from experiments 2%,

We estimated either two separate conjugation coeffi-
cients yp and yr for the donor and for the transconjugant,
or a single conjugation coefficient for both (y = yp = y7).

Long term behaviour

For the long term behaviour of the system, we simulated
the outcomes of the population dynamics for a situation
in which the populations are regularly diluted 10 000
times and transplanted to new medium. This was done
for either 24 h intervals or 48 h intervals. The initial
concentration of the first round was T, =10° and R, =
10% We used the parameter estimates from the mixed
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Table 1 Estimates from single population experiments
(experiment 1) of the intrinsic growth rate (), maximum
density (K), lag-phase (A) and initial concentration (Ny)
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Table 2 Estimates of the intrinsic growth rate (), maximum
density (K), lag-phase (A) and initial concentration (N,) from
experiment 2a and 2b (with mixed populations of R and T)

Parameter  Value 95% confidence interval ~ AlCc* Parameter Value 95% confidence interval
Best fitting model -1936 ¢ 186 h™! (149 - 2.33)
" 204 h™! (195 - 2.14) K 933 10° cfu/ml (7.7910% =112 109
K 9110°  cfu/ml (80 10° - 104 10%) A 117 h 070 -1 64)
A107" 071 h (041 - 1.08) No 251 10° cfu/ml (1.75 10° - 360 10°
21057 130 h (090 - 1.72)
No 10°” 0810°  cfu/ml  (0510°-12107) Additional file 4, Table A1-A3). No differences in growth
Np 105 0910°  cfu/ml (0.510°-16109 rate i, maximum density K or length of lag phase A were
Full model _1513 found between the donor D, recipient R and the trans-
Ve 204 ot (195 — 2.14) conjugant T in experiment 1, where single populations
. were grown. Also from mixed populations in experiment
vr 209 " (200 =219 2, no difference was found between the overall growth
Yo 209 h" (200 - 2.19) rate of the donor D and the combined populations of re-
Ke 10710°  cfu/ml (8210° - 586 10%) cipient R and transconjugant T (see Additional file 4,
Kr 10010%  cfu/ml (701 O8 143 10% Table A4). The estimated values of the growth parame-
Ky 76105 cfu/ml (53 10° = 109 109 ters from experiments 2°® (Table 2) were used in the
3107 071 h (041 - 1.08) simulations of the long term experiment.
oo All 94 samples from experiment 1' at each of the
A 10 1.28 h (0.89 -1.70) . . .
" three times points (4, 8 and 24 h) contained the plas-
No 107 0810°  cfwml  (0510°-1210% mid. For both the CS model and the DS model the esti-
No 107 0910°  cfu/ml (0510°-1610°) mates of the plasmid loss parameters are 0.00 with

*AlCc = Akaike’s Information Criterion (AIC) corrected for a finite sample size n.
AlCc = AIC+ 2 k (k+ 1)/(n-k-1), in which k is the number of parameters in the
model.

**Estimate for experiments with a start culture of 10? cfu/ml.

***Estimate for experiments with a start culture of 10° cfu/ml.

The full model estimates different parameters ¢ and K for each population

(D, R or T) and different parameters A and N, based on the concentration of the
start culture. The best fitting model was the one with different parameters for the
initial concentration and lag-phase based on the concentration of the start
culture, but with equal parameters for the other parameters of D, R and T.

culture experiment 2 only, because the simulation also
concerned a mix of R and T.

The results of the simulations were compared to those
of the long term experiment (experiment 3). We simu-
lated five scenarios: no fitness costs (basic model), a lower
growth rate of 7, a lower maximum density of 7, plasmid
loss with constant rate (the CS model), and plasmid loss
with density-dependent rate (the DS model).

For the two scenarios with a lower growth rate or a
lower maximum density of 7, we used values that were
0.80, 0.90, and 0.95 times the value of the recipient R.
These values are within the confidence intervals of the
estimated parameters values (Table 2). For the CS model
and DS model, we used 80%, 90% and 95% of the upper
limits of the estimate of the plasmid loss parameters
(Table 2).

Results

Parameter estimates

In Table 1 the estimates of the best model based on the
AICc and the full model are given (for all other fits see

one-sided 95% upper limit for the CS model probability
ocs of 0.0003 per cell division, and a one-sided 95%
upper limit for the DS model probability ops of 0.0012
per cell division.

The estimate of the upper limit for the plasmid loss
probability opg in the DS model depends on the intrinsic
growth rate and maximum density. Sensitivity analysis
showed that this upper limit differed between 0.0008
and 0.0036 per cell division when both the intrinsic
growth rate and maximum density were either a tenfold
larger or tenfold smaller.

From experiments 2* and 2P, conjugation coefficient
yp was estimated at 2.4 10" bacterium ' h™* (1.0 107 -
6.0 107'*) and conjugation coefficient y; was estimated at
44 1071° bacterium™ h™! (3.1 1071° - 6.3 107%°). These
estimates had a better fit to the data compared to a model
with the same conjugation coefficient for donor and re-
cipient (Table 3). The observed data (with 95% confidence
intervals based on the log-transform of the data) and the
best fitting models are shown in Figure 2.

Long term behaviour

Of the five simulation scenarios, a decline of the fraction
of transconjugants was found only for the scenario with
a large difference in maximum density K (Figure 3). The
maximum density of T was a fraction 0.80 of that of R
For small differences in maximum density, however, no
decline in the fraction of transconjugants was found as
well. All other scenarios with a difference in growth rate
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Table 3 Estimates of the conjugation coefficients y, and
yr (bacterium™ h™") by the model with a single estimate
for both donor and transconjugant (y =yp =yz), and by
the model with separate conjugation coefficients for
donor and transconjugant (yp #y7)

Parameter Value 95% confidence interval  AlCcc*
Y=VYp=Vr 368

y 221071 66107 -7610"")

YoFyr 234
Vo 2410744107 (1010 -6010""

VT (31107°-631079

*AlCc = Akaike’s Information Criterion corrected for a finite sample size n.
AlCc = AIC+ 2 k (k+ 1)/(n-k-1), in which k is the number of parameters in
the model.

or loss of the plasmid did not show a decline of the frac-
tion of 7.

Also, the experimental results of the long term experi-
ment 3 did not show a decrease in the proportion of T'
in comparison to 7'+ R (Figure 3). This means that the
population of T did not decline more than 10 fold com-
pared to T+ R, which would have been visible. Because
the experiment did not allow distinction between T
alone and R + T together, we cannot determine if R was
replaced or if R and T coexisted with R at low numbers.

Discussion

Fitness costs resulting in a lower bacterial growth rate or
a lower maximum density due to the presence of the
plasmid InclI1 carrying the blactx .1 gene were not ob-
served here. No differences were found between donor
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D, recipient R and transconjugant 7 in growth rate y,
maximum density K or lag-phase A in single population
experiments 1%7, Fitness costs might have arisen in a
competition setting with mixed populations of D and R
[19] due to competition for resources or inhibition by
the competitor. However, also in the mixed populations
of the conjugation experiments 2*®, we could not find a
difference in growth parameters between the recipient R
and donor D.

San Millan et al. [20] neither found a difference in per-
centage of plasmid free and plasmid carrying bacteria for
their pB1000 plasmid in the first 12 hours. However,
starting at day 2 they observed a clear decrease in the
fraction of plasmid carrying bacteria. Also in our experi-
ments, the fitness costs of the plasmid carrying bacteria
were not evident in the early phase. Small fitness costs
may not be observable at all in experiments with a short
duration, but when the experiments are maintained lon-
ger, fitness costs other than costs related to the growth
rate can play a role. In 12 or 24 hours experiments,
these differences might be too small to measure. This is
why we conducted the long term experiment 3 both
with intervals of 24 and 48 hours, as the duration of our
experiments 1 and 2 (up to 24 hours) may have been too
short to observe fitness costs. We showed by simulation
(illustrated in Figure 3) that only for large fitness costs
resulting in a 20% smaller maximum density K by carry-
ing the IncIl plasmid, a distinct decrease in population
size would have been observed within the time-frame of
experiment 3. This was, however, not observed in ex-
periment 3, underlining the conclusion that this plasmid
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Figure 2 Experimental data on log-scale with 95% confidence intervals from experiments 2° ~ ® with mixed cultures of donor D,
recipient R and transconjugant T. The best fitting model (see Table 1) is plotted with solid lines. This is the model without differences in
growth parameters between D, R and T and without plasmid loss by the transconjugant T.
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Figure 3 Observed fraction of transconjugants in the bacterial population (T/(T +R) ) from long term experiments 3* and 3 diluting
10,000 times every 24 h (left) or 48 h (right). The dashed black line and coinciding dashed gray line describe the prediction of the simulation
model for maximum density K7 being a fraction of 0.90 and 0.95 of the maximum density Kz The solid gray line describes the prediction for
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does not infer sufficient fitness costs to its host bacter-
ium to let it go extinct in the absence of antimicrobials.
Thus, our results suggest that reduction of the use of an-
timicrobials might not result in a decrease, let alone ex-
tinction, of such a plasmid. This is in accordance with
the conclusions of Poole et al. [21].

The extrapolation of in vitro experiments to in vivo
dynamics might show to be invalid, due to the presence
of other bacterial species and a different environment.
Furthermore, our study focussed on only one plasmid
and host (E. coli) combination. Although this combin-
ation is relevant, because of its high prevalence in Dutch
broilers, other plasmid — host combination might exhibit
different behaviour.

Plasmid loss was not observed as expected because of
the presence of two addiction systems, which account
for stable inheritance of the plasmid to daughter cells
[22]. The presence of these addiction systems is common
in IncIl plasmids [10]. The reduction of the ESBL-gene
carrying plasmid shall thus depend on fitness costs involv-
ing reduced growth or maximum density of its host.

Conjugation was modelled as a mass action process,
which is often used to describe the spread of infectious
diseases among host individuals [23]. This mass action
assumption is commonly used for modelling the conju-
gation process, as it explains mechanistically that at
higher concentrations of bacteria, conjugation is more
efficient because cells make more frequent contacts
[12,24]. With mass action we assume that the time taken
by the actual conjugation process is much smaller than
the time between contacts of bacteria, which seems a
valid assumption, because much higher conjugation co-
efficients are found with similar conjugation systems
[25]. Furthermore, assuming mass action means that we
assume homogeneous mixing, this is thought to occur in
our in vitro experiments, but might not be the case
under natural conditions. When under natural condi-
tions in the gut mixing is not homogeneous, the conju-
gation will be less efficient because fewer contacts are

made. This might lead to a decrease of bacteria carrying
the plasmid when small fitness costs exist, which cannot
be measured in our in vitro experiments.

For our analyses, we used a logistic growth model by
Barany and Roberts [18] for which we separated the
population into three subpopulations (D, R and 7) and
added conjugation and plasmid loss dynamics. The
model does not describe a death phase in which the bac-
terial population dies out. A death phase occurs when the
medium in which the populations are grown is depleted of
nutrients. Such a death phase was not observed in the ex-
periments. Therefore, the model was appropriate to de-
scribe the population dynamics in our experiments.

The conjugation coefficient y7 of the transconjugant
was found to be much higher than that of the donor.
This might be due to repression of conjugation [9,26].
By such a mechanism conjugation becomes repressed
after a certain period since acquiring the plasmid. Newly
formed transconjugants have a transient period in which
conjugation is de-repressed and the conjugation coeffi-
cient is higher. The population of donors might be in a
repressed state such that the increase of transconjugants
is slower in the beginning of the experiment, and the ac-
cumulation of new transconjugants increases the overall
conjugation coefficient. Such a repression-depression
system is, however, to our knowledge not described for
Incl1 plasmids.

The results of this study, although obtained in vitro, in-
dicate that the IncIl plasmid carrying the blactx a1 gene
does not impose or only imposes small fitness costs in the
absence of antimicrobials. Apart from abandoning the use
of antimicrobials, additional measures might be required
to reduce the occurrence of this plasmid, such as competi-
tive exclusion with other bacteria carrying incompatible
plasmids [6,16]. If the IncIl plasmid shows the same ab-
sence of fitness costs in vivo as in our in vitro experiments
and additional control measures cannot be found, it is ex-
pected that this plasmid remains present in poultry even
without the use of antimicrobials.
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Conclusions

Fitness costs in the absence of antimicrobials for E. coli
with the Incll plasmid carrying the blactx.a.1 gene
were not found. The plasmid persisted in an in vitro cul-
ture system without antimicrobial selection pressure, in-
dicating that it might persist in other biological systems
outside the laboratory even without antimicrobial selec-
tion pressure. This implicates that reduction of antibiotic
usage only might not be effective to control the occur-
rence of such a gene-plasmid combination in broilers. In
vivo studies should provide evidence for this hypothesis.
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