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Abstract

mangotoxin biosynthesis.

Background: The antimetabolite mangotoxin is a key factor in virulence of Pseudomonas syringae pv. syringae
strains which cause apical necrosis of mango trees. Previous studies showed that mangotoxin biosynthesis is
governed by the mbo operon. Random mutagenesis led to the identification of two other gene clusters that affect
mangotoxin biosynthesis. These are the gacS/gacA genes and mgo operon which harbors the four genes mgoBCAD.

Results: The current study shows that disruption of the nonribosomal peptide synthetase (NRPS) gene mgoA
resulted in loss of mangotoxin production and reduced virulence on tomato leaves. Transcriptional analyses by
gPCR and promoter reporter fusions revealed that mbo expression is regulated by both gacS/gacA and mgo genes.
Also, expression of the mgo operon was shown to be regulated by gacS/gacA. Heterologous expression under the
native promoter of the mbo operon resulted in mangotoxin production in non-producing P. syringae strains, but
not in other Pseudomonas species. Also introduction of the mbo and mgo operons in nonproducing P. protegens
Pf-5 did not confer mangotoxin production but did enhance transcription of the mbo promoter.

Conclusions: From the data obtained in this study, we conclude that both mbo and mgo operons are under the
control of the gacS/gacA two-component system and that the MgoA product acts as a positive regulator of
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Background

Pseudomonas syringae is one of the most ubiquitous plant
pathogens, causing various economically important diseases
[1]. The present study focuses on P. syringae pv. syringae
UMAF0158 (CECT 7752) which causes apical necrosis of
mango [2,3]. The antimetabolite mangotoxin is a key viru-
lence factor of strain UMAFO0158 [4,5]. This toxin is pro-
duced in the early exponential growth phase and inhibits
ornithine N-acetyl transferase, a key enzyme belonging to
the ornithine/arginine biosynthetic pathway [2].

Random mini-Tn5 mutagenesis followed by cloning, se-
quencing and heterologous expression recently led to the
identification of the gene cluster that governs mangotoxin
biosynthesis [6]. The mbo operon (mangotoxin biosynthetic
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operon) is composed of six genes, mboABCDEF. Disruption
of each of these genes resulted in mangotoxin deficient mu-
tants and constitutive expression of the mbo operon in
non-mangotoxin producing P. syringae strains conferred
mangotoxin production [6]. Screening of the random mu-
tant library also led to the identification of several other
genes that may be involved in the regulation of mangotoxin
biosynthesis [4]. These included the gacS/gacA genes and
the so-called mangotoxin generating operon mgo [6,7].

The GacS/GacA two-component regulatory system is
highly conserved in Gram-negative bacteria and is in-
volved in a variety of functions, including pathogenicity
[8], quorum sensing [9,10], secondary metabolite pro-
duction [11-14] and biofilm formation [15-17]. In
Pseudomonas syringae, the GacS/GacA two-component
system regulates the production of the phytotoxins syr-
ingomycin and syringopeptin [18-20], tabtoxin [21,22]
and phaseolotoxin [23]. In P. syringae pv. tomato
DC3000, GacS/GacA regulate the hrpR, hrpS, and hrpL
genes, which are required for the activation of the Hrp
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type III secretion and effector genes [24,25]. However, in
P. syringae pv. syringae B728a, GacA appears not to be
required for /rp gene expression [25].

The mgo operon is composed of four genes, mgoBCAD
[4,7]. Mutants in each gene belonging to the mgo operon
showed an alteration (mgoB mutant) or lack of mango-
toxin production (mgoC, mgoA and mgoD mutants).
These genes encode for different hypothetical proteins
with predicted domains for a haem oxygenase (MgoB), a
p-aminobenzoate N-oxygenase (MgoC), a nonribosomal
peptide synthetase (MgoA), and a polyketide cyclase/
dehydrase or lipid transporter (MgoD) [4,7]. The pre-
dicted amino acid sequence of MgoA suggests only one
amino acid activation module and 14 conserved do-
mains, including aminoacyl adenylation, condensation,
thiolation, and additional reduction domains [4]. Genes
homologous to the mgo operon have been found in the
genomes of most Pseudomonas spp., with the exception
of P. protegens Pf-5 and CHAO [26,27]. Recent studies
on the pvf gene cluster in P. entomophila, a homologue
of the mgo operon, suggested that it affects virulence
[28]. Almost all the fluorescent Pseudomonas spp. lack
the mbo operon [29,30], but the mgo operon is con-
served in all of them (except P. protegens Pf-5)
[4,7,26-28]. To date, however, the functions of mgo op-
eron are yet unknown.

The overall objective of this study was to get insight
into the role of the mgo operon in regulation of mango-
toxin production in P. syringae pv. syringae UMAF0158
and unravel the interplay between mgo, mbo and the
gacS/gacA two-component regulatory system.

Methods

Bacterial strains and culture conditions

The wild type strain P. syringae pv. syringae UMAF0158
(CECT 7752) and the collection of selected derivative
mutants used in this study (Table 1) were grown on
Pseudomonas agar F (Difco) plates, in liquid King’s
medium B (KMB) [31] or in Pseudomonas minimal
medium (PMS) [32] at 28°C. Escherichia coli strain
DHb5a was used as a host for plasmid complementation
experiments. It was routinely grown on Luria-Bertani
(LB) plates or in LB broth at 37°C. Antibiotics for selec-
tion of P. syringae pv. syringae UMAF0158 and E. coli
derivatives were ampicillin (100 mg L), kanamycin
(50 mg L), gentamycin (30 mg L™) or tetracycline
(25 mg L™).

Mangotoxin production assay

Antimetabolite toxin production was assayed by the indica-
tor technique previously described [32]. Briefly, a double
layer of the indicator microorganism E. coli CECT 831 was
prepared; after solidification, the P. syringae pv. syringae
strains to be tested were stab-inoculated. The plates were
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initially incubated at 22°C for 24 h, and then at 37°C for an
additional 24 h [2]. To evaluate mangotoxin activity, the
same plate bioassay was carried out with the addition of
100 pl of a 6 mM solution of N-acetyl-ornithine or
L-ornithine to the double layer of E. coli [2]. To deter-
mine growth characteristics of representative strains, the
wild type mangotoxin-producing P. syringae pv. syringae
UMAF0158 and derivatives mutants in mboA, mgoA and
gacA genes were used to obtain initial cultures in 10 ml of
LB broth. The bacterial strains were grown during 24 h at
28°C to prepare an optimal bacterial inoculum with an op-
tical density of 0.8 at 600 nm (approximately 10° cfu ml™).
One ml from these bacterial inocula was used to inoculate
100 ml of PMS broth. The cultures were incubated at 22°C
under orbital shaking at 150 rpm until the stationary phase.
Samples were collected every 6 or 12 h to monitor the bac-
terial growth. Bacterial cfu per sample were determined by
10-fold serial dilutions on KMB plates. At the same time,
the mangotoxin production assessment was performed by a
cell-free filtrate dilution sequence at 50%. The mangotoxin
production is measured using arbitrary units, which can be
defined as the relative toxic volume of cell free filtrates of li-
quid cultures, which produces an inhibition halo of 18 mm
in diameter under standard assay conditions [2]. The meth-
odology presented a detection threshold of 0.5 toxic units,
due to the diameter of the wells where the cell-free filtrate
were deposited (9 mm).

Complementation experiments

DNA fragments of approximately 7 kb containing the mgo
and mbo operons, including the promoter and terminator
regions, were obtained by PCR using specific primers
(Additional file 1: Table S1) and high fidelity polymerase
(Phusion DNA polymerase, Finnzymes). The PCR amplifi-
cation products were cloned in pGEM-T Easy (Promega),
and the plasmids obtained were digested with Xbal for the
mgo operon and with EcoRI and PstI for the mbo operon.
After the digestion, both operons fragment were obtained
from gel with the NucleoSpin kit (GE Healthcare) and
cloned into the correspondent shuttle vectors, pPBBRIMCS-
5 [36] for the mgo operon and pMP220 [37] for the mbo
operon, which were digested, dephosphorylated (shrimp al-
kaline phosphatase; Promega), and purified with the
NucleoSpin kit according to the manufacturer’s instruc-
tions. E. coli DH5« was transformed with the plasmids ob-
tained, by heat shock transformation [38], and transformed
colonies were selected on LB agar plates supplemented with
gentamicin (30 mg L) in the case of pBBRIMCS-5 and
tetracycline (25 mg L™) for pMP220. Plasmids with the
mgo and mbo operon cloned were obtained (Table 1). Cor-
rect integration and orientation of the fragments was veri-
fied by PCR and restriction analysis of isolated plasmids
(data not shown). The pLac-mgoBCAD construct was sub-
sequently electroporated into the mboA, mgoA and gacA
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Table 1 Bacterial strains and plasmids used in this study
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Strain or Relevant characteristics Reference/
plasmid source
Strains
E. coli
DH5a E. coli [F ®80lacZ MM 15 AlacZYA-argF)U169 deoR recA endAl hsdR17 (rK-mK+)phoA supE44 lambda- thi-1] [33]
CECT831 Indicator strain for mangotoxin production CECT®
P. syringae pv. syringae
B728a Complete genome, non-mangotoxin producer [34]
UMAF0158 Wild type, isolated from mango, mangotoxin producer, Nf' 2]
mboA” Derivative mutant of UMAF0158 by insertion in mboA, Km', Nf* (named mboA") (6]
AmgoA Derivative mutant of UMAF0158 by deletion of mgoA, Nf' (named AmgoA) 7
23B7 miniTn5 mutant of UMAFO0158 in gacA defective in mangotoxin, Km', Nf* (named gacA") [4]
3aE10 miniTn5 mutant of UMAF0158 in gacS defective in mangotoxin, Km', Nf'(named gacS) [2]
3yH1 miniTn5 mutant of UMAF0158, defective in mangotoxin production, Km', Nf 2]
4B3A2 miniTn5 mutant of UMAFO0158, defective in mangotoxin production, Km', Nff [2]
5aC5 miniTn5 mutant of UMAFO0158, defective in mangotoxin production, Km', Nff [2]
6YF6 miniTn5 mutant of UMAF0158, defective in mangotoxin production, Km', Nf 2]
g,fproregens Non mangotoxin producer, mbo and mgo operon absent [35]

-5
Plasmids
PBBRTMCS-5 4.7 kb broad-host-range cloning vector, Gm' [36]
pGEM-T 3.0 kb cloning vector, Ap' Invitrogen
PGEM-TBCAD  mgoBCAD cloned in pGEM-T, Ap' This study
plac- mgoBCAD cloned in pBBRTMCS-5 downstream the lacZ promoter in the vector, mgo operon expression under its own  This study
mgoBCAD and P ¢ promoter, Gm'
plac- mboABCDEF cloned in pBBRTMCS-5 downstream the lacZ promoter in the vector, mbo operon expression under its own  [6]
mboABCDEF  and P 4 promoter, Gm'
plac- mboABCDEF cloned in pBBRTMCS-5 in the opposite direction than the lacZ promoter in the vector, mbo operon expres-  [6]
mboFEDCBA sion under its own promoter, Gm'
pMP220 Promoter-probe vector containing a promoterless LacZ gene, Tet' [37]
pMP- mboABCDEF cloned in promoter-probe vector containing a promoterless LacZ gene, mbo operon expression under its  This study
mboABCDEF ~ own promoter, Tet"
PMP:P b0 pMP220 vector containing the mbo operon promoter, Tet" [6]

2CECT: Spanish Type Culture Collection, Spain.

mutants, and the wild-type strains P. syringae pv. syringae
UMAF0158 and P. protegens Pf-5. The pMP-mboABCDEF
construct was transformed in P. protegens Pf-5 which previ-
ously contain the pLac-mgoBCAD, therefore this bacteria fi-
nally harbored both operons, the mgo and mbo operon.
Transformed cells were selected on KMB agar supple-
mented with correspondent antibiotics. The presence of the
different plasmids was confirmed by PCR analysis with spe-
cific primers for pPBBRIMCS-5 and pMP220 and plasmid
profiling.

Virulence evaluation

The virulence of different mangotoxin producing or
non-producing P. syringae pv. syringae strains were ana-
lyzed in detached tomato leaflets (Solanum lycopersicum

Mill.) cv. Hellfrucht Frithstamm maintained in vitro
using Murashige and Skoog medium (MS, Sigma-
Aldrich) [4,5]. Bacterial suspensions from exponentially
growing cultures were adjusted to 10° cfu ml™". The leaf-
lets were inoculated by placing six 10 pl drops of the
bacterial suspension on six different points on the same
leaflet. Inoculations were then carried out by piercing
through the droplets with a sterile entomological pin.
The leaflets were maintained in MS media at 22°C and a
16:8-h light: dark photoperiod. Six tomato leaflets were
used to evaluate each strain. Detached leaflets only inoc-
ulated with sterile distilled water were included in all
experiments as a control. These experiments were
repeated three times. The development of necrotic
symptoms at the inoculation points (n =108) was
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determined after 10-day. The severity symptoms were
evaluated by the analysis of the total necrotic area per
leaflet induced by the inoculated strains after 10 days of
incubation. For severity measurement, the necrotic areas
of the inoculation points were digitally analyzed on the
six leaflets, using the computer image software VISILOG
5.0 (Noesis Vision Inc.). At the same time, two inocu-
lated leaflets were used to estimate the daily develop-
ment of the total bacterial population. For that purpose,
whole tomato leaflets were homogenized in sterile water
and bacterial counts were determined plating by 10-fold
serial dilutions on KMB plates. Bacterial growth inside
the plant tissue was recorded after H,O, leaf surface dis-
infection. Colony counts growth based on the typical
morphology of P. syringae pv. syringae UMAF0158 were
recorded after incubation at 28°C for 48 h.

Transcriptional analysis

From PMS cultures described above, cells from 2 ml
cultures were collected and spun down at 12,000 rpm
(1 min) from the wild type strain and the derivative
mutants in gacA and mgoA. The cells were frozen in
liquid N, and stored at -80°C. For the RNA isolations
and cDNA synthesis, three biological replicates were
used for each time point. For the transcriptional ana-
lyses, RNA was isolated from the frozen bacterial cells
with Trizol reagent (Invitrogen), followed by DNase I
(GE Healthcare) treatment. One pg of RNA was used
for ¢cDNA synthesis with Superscript III (Invitrogen)
according to the manufacturer’s protocol. For the
real-time quantitative PCR (Q-PCR), conducted with
the 7300SDS system from Applied Biosystems, the
SYBR Green Core kit (Eurogentec) with a final con-
centration of 3.5 mM MgCl, was used according to
the manufacturer’s protocol. The concentration of the
primers was optimized (400 nM final concentration
for all of them), and a dissociation curve was per-
formed to check the specificity of the primers. The
primers used for the Q-PCR are listed in Additional
file 1: Table S1. To correct for small differences in
template concentration, rpoD was used as the refer-
ence housekeeping gene. The cycle in which the
SYBR green fluorescence crossed a manually set cycle
threshold (C7) was used to determine transcript
levels. For each gene, the threshold was fixed based
on the exponential segment of the PCR curve. The
Cr value of mboA was corrected for the housekee-
ping gene rpoD as follows: ACr =Cr (mboA)-Cr
(rpoD); the same formula was used for the other
genes studied. The relative quantification (RQ) values
were calculated by the following formula: RQ =
o~ [AcT(mutant) ~ACT(wild type)] 139 40], Q-PCR analysis was
performed in duplicate (technical replicates) on three
independent RNA isolations (biological replicates).
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B-galactosidase assays

To study the mbo operon expression in different genetic
backgrounds, the mbo operon promoter (P,,,;) cloned
into pMP220 [19] as previously described [6] was used.
The derivative mutants in mgoA, gacA and gacS genes
were transformed with plasmid pMP::P,,;,; which con-
tains the P,,;,;. The plasmid pLac-mgoBCAD (harboring
the mgo operon) was also used to complement the
mgoA, gacA and gacS mutants and finally the pB-
galactosidase activity of P,,;,; was measured. In order to
evaluate the effect of the mgo operon on the activity of
P,.pop P. protegens Pf-5 was used due to the absence of
the two operons in its genome. First, P. protegens Pf-5
was transformed with the pMP::P,,,,; and the promoter
activity was measured, and secondly to measure the ef-
fect on the mbo operon transcription, this strain con-
taining the plasmid pMP:P,,;,;, was also transformed
with the plasmid pLac-mgoBCAD (mgo operon under
pLac regulation). As a negative control the f-
galactosidase activity was measured for the wild type
strain P. syringae pv. syringae UMAF0158 and each
strain used in this assay, transformed with empty vector
pMP220. p-galactosidase activities were quantified by
the Miller method [41]. Briefly, an overnight culture ob-
tained as previously described in growth curve and
toxins assay section were prepared. The samples were
collected at 18 h, and the cells were harvested and sus-
pended in assay buffer to eliminate any error in the de-
tection of P-galactosidase activity due to the effects of
different carbon sources present in the growth medium.
The results presented are from three separate experi-
ments, each conducted in triplicate.

Phylogeny of the mgoA gene

In order to identify the presence of the mgoA gene in the
different genomes of Pseudomonas strains, the mgoA gene
from P. syringae pv. syringae UMAF0158 was used in
BLASTP [42] comparisons with whole genome sequences
of Pseudomonas spp. available in the databases. Once the
amino acid sequences of all the orthologous mgoA genes
were obtained, the putative adenylation domains were iden-
tified using the PKS/NRPS Analysis Web-site (http://nrps.
igs.umaryland.edu/nrps) [43]. Other adenylation domains
of which the activated amino acid is already known were
obtained from the database and from De Bruijn met al.
[44]. Two phylogenetic analyses were done, the first was
using the adenylation domain of all the NRPSs (328 resi-
dues) and the second was using the almost entire sequence
of MgoA (1015 residues). Amino acid sequences were
aligned with Muscle (MEGAS5 software) and determination
of the optimal amino acid substitution model and phylo-
genetic tree construction were done using MEGA5 soft-
ware [45]. Neighbor-joining, maximum parsimony and
maximum-likelihood phylogenetic trees of the individual
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gene sequences were generated in MEGAS5 by using the op-
timal model parameters and the option of complete dele-
tion to eliminate positions containing gaps. Confidence
levels for the branching points were determined using
1,000 bootstrap replicates.

Bioinformatics and statistical analysis

Searches for sequence similarity in the NCBI databases
were carried out using BLAST algorithms [42]. Genome
and nucleotide sequences were visualized and manipu-
lated using the Artemis genome browser [46] and com-
pared using ACT [47] in combination with WebACT
[48]. The statistical analysis of incidence was performed
by SAS9.2 software (SAS Institute Inc.) by Enterprise
Guide 4.2 using generalized linear model analysis. The
[-galactosidase and the necrotic area data were statisti-
cally analyzed using an analysis of variance, followed by
Fisher’s least significant difference test (p = 0.05), and for
[-galactosidase activity on P. protegens Pf5, a Student’s
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t-test was carried out (p = 0.05), using the IBM.SSPS 19
software (IBM® Company).

Results

Involvement of mbo genes in mangotoxin production and
virulence in P. syringae pv. syringae UMAF0158

Six mangotoxin deficient mutants of P. syringae pv. syrin-
gae UMAF0158, were previously obtained and character-
ized for mangotoxin production (Table 1 and Figure 1).
Mangotoxin characterization showed that although these
mutants did not show mangotoxin production, a slight pro-
duction of a yet unknown antimicrobial compound was ob-
served for mutants 4PA2 (mboB) and 5aC5 (mboD)
(Figure 1). For two mutants (3yH1 and 6yF6), the Tn5 in-
sertion was located in mgoC and mgoA respectively. Two
other non-mangotoxin producing mutants were disrupted
in the genes encoding the GacS/GacA two-component
regulatory system (30E10 and 2BB7 respectively). Growth
of the mgoA mutant was shown to be similar to that of the

Wild type

Non-producer

UMAF0158 B728a

-0rn

+0rn

GacS/GacA regulatory system

-0rn

Figure 1 Mangotoxin production by random miniTn5 insertional mutants. Three pairs of mutants in different genes of the mbo and mgo
operon, and in the gacS/gacA two-component regulatory system, obtained in previous works and tested for mangotoxin production. The
corresponding disrupted gene is detailed in brackets. The P. syringae pv. syringae strains UMAF0158 (mangoxin-producing wilt-type strain) and
B728a (nonproducing) were used as references. Mangotoxin production was evaluated using PMS minimal medium supplemented or not with
ornithine. The results are indicated as follows: - absence of inhibition halo, + presence of inhibition halo, -* slight toxicity which was not reverted
by addition of ornithine. Toxic activity reverted in presence of ornithine denotes the production of mangotoxin.

mgo operon
3yH1 (mgoB)

6yF6 (mgoA)

mbo operon
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Figure 2 Transcriptional analysis and mbo operon promoter activity. mboA, mboC and mbok (A), belonging to the mbo operon and mgoB
and mgoA (B), belonging to the mgo operon transcript levels in the wild type strain P. syringae pv. syringae UMAF0158 and mgoA and gacA
mutants. (C) Comparison of the described consensus motif (5-CANGGANG-3') for P. fluorescens [49-51]: The search was done in front of each start
codon of the mgo and mbo genes. (D) (3-galactosidase activity of the mbo operon promoter in the wild-type strain UMAF0158 and mgoA, gacS
and gacA mutants. These strains were transformed with the mbo operon promoter named pMP:P,,,o; and the empty promoter-probe vector
pMP220 was used as a control. The different mutants were also transformed with the vector pLac-mgoBCAD. Log2RQ represents the expression
levels of the studied genes by relative quantification scores. Values below 0 indicates lower expression than the housekeeping gene used for
normalization of data. The results are average of three independent experiments performed in triplicate. Error bars indicate standard deviation.
Data were analysed for significance using an arcsine square root transformation with analysis of variance followed by Fisher's least significant
difference test (P = 0.05). Values of bars with different letter designations represent a statistically significant difference.
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wild type strain, with cell densities of up to 10" cfu ml™" in
liquid medium after 108 h of growth at 22°C (Additional
file 2: Figure S1A). In contrast, the gucA mutant presented
an altered growth, with cell densities in the stationary phase
reaching only 10° cfu ml™ (Additional file 2: Figure S1A).
The dynamics of the mangotoxin production in relation to
bacterial growth was followed during four days of incuba-
tion. Mangotoxin production was detectable after 24 h of
growth, increased up to 1.4 toxic units (T.U.), then reduced
slightly upon entry of the stationary phase and then stabi-
lized (Additional file 2: Figure S1B).

In order to know if the virulence of the derivative mu-
tants mboA- and mgoA was reduced in comparison with
the wild type strain, detached tomato leaflets were arti-
ficially inoculated. Artificial inoculation experiments
using detached tomato leaflets [4] showed that bacterial
growth inside the tomato leaflets of the mboA™ and
AmgoA mutants as well as their complemented derivatives
followed similar dynamics (Additional file 3: Figure S2A).
When inoculations were performed, development of
necrotic lesions was observed on the leaf. Disease sever-
ity, represented by the necrotic area, showed that both
mangotoxin defective mutants were less virulent than
the wild type UMAF0158 (Additional file 3: Figure S2B
and S2C). When derivative strains were complemented
with the mboA and mgoA genes disease severity in-
creased but complementation did not fully restore
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virulence to wild type level (Additional file 3: Figure
S2B and S2C).

Mangotoxin production and transcriptional regulation in
the gacA and mgoA mutant

To study the role of mgoA and gacA in mangotoxin biosyn-
thesis, transcription of the mboACE and mgoBA genes was
analyzed for the wild type strain, and for the mgoA and
gacA derivative mutants. Time course experiments showed
that the mbo genes in the wild type are expressed at the
highest level after 12 to 24 h (Additional file 4: Figure S3).
Therefore all comparisons between wild type and mutants
were performed at 18 h of growth. Transcript levels of the
mboACE genes after 18 h of growth were significantly lower
in the gacA and the mgoA mutants than in the wild type
(Figure 2A). Also the transcript levels of mgoB and mgoA
were significantly lower in the gacA mutant (Figure 2B).
The mgoA mutation did not affect transcription of gacS/
gacA (data not shown). Also mboA, mboC, or mboE muta-
tions did not significantly affect transcription of gacS/gacA
or mgoA (data not shown). These results indicate that the
GacS/GacA two-component regulatory system affects tran-
scription of both the mbo and mgo genes and that the prod-
uct of the mgo operon influences transcription of the mbo
genes. To further study if the GacS/GacA two-component
regulatory system could regulate the mgo and mbo genes
via RNA repressor binding proteins [49-51], the upstream

Table 2 Toxic activity of P. syringae pv syringae UMAF0158 mutants and mgo operon complemented strains

Strains E. coli inhibition assay Mangotoxin
PMS PMS + ornithine production

Wild type strain and derivative mutants

UMAF0158 + - Yes

mboA -* -* No

AmgoA - - No

gacA - - No

gacs - - No

Transformed with empty vector

UMAF0158 + - Yes

mboA -* -* No

AmgoA - - No

gacA - - No

gacs - - No

Transformed with pLac-mgoBCAD

UMAF0158 ++ - Yes

mboA * ¥ No

AmgoA ++ - Yes

gacA - - No

gacs - - No

The results are indicated as follows: - absence of inhibition halo, + inhibition halo between 5-10 mm, ++ inhibition halo bigger 10 mm, -* slight toxicity which did
not revert in presence of ornithine. Toxic activity, which reverts in the presence of ornithine, denotes the production of mangotoxin.
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regions of the mgo and mbo genes were inspected for the
presence of the described consensus motif (5'-CANG-
GANG-3’) previously described in P. protegens CHAO
[49]. This motif allows the binding of the repressor to the
RNA, and these repressor proteins can be removed by Gac/
Rsm. The complete consensus sequence was not detected
upstream of any of the mbo/mgo genes (Figure 2C). How-
ever, consensus GGA motifs for binding of the RNA bind-
ing proteins [49-51] were detected upstream of the mbo
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and mgo operons (Figure 2C). It must be taken into account
that the described consensus sequence is from P. protegens
[49], and nothing is known yet about the recognition site of
RNA binding proteins in P. syringae.

As the transcription of the mgo operon was substan-
tially lower in the gacA mutant (Figure 2B), we subse-
quently tested whether introduction of extra copies of
the mgo operon in the gacS or gacA mutant could re-
store mangotoxin production. When the mgo operon
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Figure 3 Phylogeny of the MgoA adenylation domain. Neighbor-joining tree, constructed with MEGAS5 using the adenylation domains
extracted from nonribosomal peptide synthetases involved in syringomycin, syringopeptin, massetolide A, arthrofactin synthesis and mangotoxin
biosynthesis (MgoA). The presence (+) or absence (-) of the mbo operon is shown in the phylogenetic tree. The boxes indicate the different
groups of Pseudomonas species which are able to produce mangotoxin when were transformed with pLac-mboABCDEF (mbo operon under its
own and P4 promoter expression) or pLac-mboFEDCBA (mbo operon under its own promoter expression). Also is indicated the signature
sequence of the adenylation domains in each strain. The evolutionary history was inferred using the Neighbor-Joining method [52]. The
evolutionary distances were computed using the JTT matrix-based method [53] and are in the units of the number of amino acid substitutions per site.
The variation rate among sites was modelled with a gamma distribution. The analysis involved 126 amino acid sequences. There were a total of 328
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was introduced in the mgoA mutant mangotoxin pro-
duction was restored, which was not the case for the
mboA, gacA and gacS mutants (Table 2).

The mgo operon is a positive regulator of mbo operon
transcription

To further elucidate the role of the mgo operon in the regu-
lation of mangotoxin biosynthesis, expression assays were
carried out using a plasmid reporter construction consisting
of the mbo operon promoter fused to a promoterless lacZ
gene. When the plasmid reporter was transferred into the
wild type strain, high levels of -galactosidase activity were
found, whereas for the mgoA, gacA and gacS mutants this
activity was substantially lower (Figure 2D). For the mgoA
mutant, complementation with the mgo operon restored [3-
galactosidase activity to similar levels as in the wild type
strain (Figure 2D). In contrast, no restoration of the p-
galactosidase activity was found when the mgo operon was
introduced in the gacS/gacA, confirming results described
above (Table 2).

MgoA phylogeny and mangotoxin production in other
strains

The amino acid sequence of a typical non-ribosomal pep-
tide synthetase (NRPS) displays an adenylation (A) domain
responsible for recognition and subsequent activation of an
amino acid substrate. It also contains the typical thiolation
(T) and condensation (C) domains. Finally, the thioesterase
(TE) domain releases the final molecule from the NRPS as-
sembly line. Based on the specific signature sequences de-
scribed previously for A domains, analysis of MgoA did not
allow prediction of the amino acid to be activated. There-
fore, a phylogenetic analysis was performed with multiple
A domains from NRPSs of which activated amino acids are
known and with MgoA from other Pseudomonas species
(Figure 3 and Additional file 5: Figure S4). The results
showed that the A domains from the different MgoA
orthologues grouped in the same cluster, separate from
other A domains for which the activated amino acid residue
is known (Figure 3).

To determine if mgoA present in other Pseudomonas
species can regulate the mbo operon, reporter constructs
pLac-mboABCDEF (mbo operon under its own and under
pLac promoter expression) and pLac-mboFEDCBA (mbo
operon only under its own promoter expression) were
used. Firstly, only specific P. syringae pathovars harbor the
mbo operon, and almost all strains from these pathovars
produce mangotoxin [29], with or without the introduc-
tion of the mbo operon containing plasmids (Figure 3).
Our results showed that other P. syringae pathovars, that
do not contain the mbo operon, are all able to produce
mangotoxin when they were transformed with pLac-
mboABCDEF and pLac-mboFEDCBA (Figure 3). When
different P. fluorescens strains were transformed with
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either vector, they only produced mangotoxin when the
mbo operon was expressed constitutively but not when
they were transformed with the mbo operon with its na-
tive promoter (Figure 3).

To further investigate if the mgo operon is able to
regulate the expression of the mbo operon, we intro-
duced the mbo operon promoter reporter construct
(pMP::P,,1,) and the mgo genes in P. protegens Pf-5,
which lacks both the mgo and the mbo operons in its
genome. Compared to the promoter activity in the wild-
type Pf-5 background, a two-fold increase in ectopic
mbo promoter activity was observed when Pf-5 was
complemented with the mgo operon (Figure 4A). When
P. protegens Pf-5 was transformed with pLac-mboABC-
DEF (mbo operon under pLac regulation), it produces
mangotoxin. However, when P. protegens Pf-5 was trans-
formed with pMP-mboFEDCBA (mbo operon under only

A R-Galactosidase activity (M.U. x 10?)
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Figure 4 Heterologous expression and production of
mangotoxin. (A) The mbo operon promoter activity in P. protegens
Pf-5 transformed with the mbo operon promoter (pMP:P,»0) and
with the empty promoter-probe vector pMP220 was used as a
control. To check the positive regulation of the mgo operon, the
strain Pf-5 was transformed with the vector plLac-mgoBCAD. The
result is the average of three independent experiments performed
in triplicate. Error bars indicate standard deviation. (B) Mangotoxin
production of P. protegens Pf-5 transformed with plLac-mboABCDEF
(mbo operon under its own and P, 4 promoter expression), pLac-
mboFEDCBA (mbo operon under its own promoter expression) and
plac-mgoBCAD (mgo operon under its own and P, - promoter
expression) and pMP220-mboABCDEF (mbo operon under its own
promoter expression). Data were analysed for significance using a
Student's t-test (P = 0.05). Value of bar with an asterisk designation
represent a statistically significant difference to the other bar value.
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its own promoter expression) it was not able to produce
detectable amounts of mangotoxin, neither in absence
nor in presence of the mgo operon of P. syringae pv. syr-
ingae UMAFO0158 (Figure 4B). Therefore, the presence
of the mbo and mgo operons in P. protegens Pf-5 would
be not sufficient for the production of detectable
amounts of mangotoxin.

Discussion

The results of our study show that the regulation of
mangotoxin biosynthesis in the plant pathogenic P. syr-
ingae pv. syringae strain UMAF0158 is governed by a
complex interplay between the GacS/GacA two-
component regulatory system, the nonribosomal peptide
synthetase mgoA and the mangotoxin biosynthesis op-
eron mbo. We showed that disruption of the mbo bio-
synthesis genes leads to reduced virulence. Introduction
of the mbo operon in these biosynthesis mutants re-
stored mangotoxin production but did not lead to full
restoration of virulence on tomato leaflets. Multiple cop-
ies of the plasmid with the mbo operon could lead to
overproduction of mangotoxin which may affect the
regulation or production of other virulence factors such
as syringomycin and syringopeptin.

Taken together the obtained results of this work and the
previously described data [4,6,7], a simplified model for the
interplay among these genes can be constructed (Figure 5).
In this model, the GacS/GacA two-component regulatory
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system receives a yet unknown signal that activates a set of
small RNAs [8,50,54]. The expression of genes regulated by
the GacS/GacA might be mediated through the Rsm path-
way [55,56]. In fact, components of this pathway such as
the three small RNAs RsmX, RsmY and RsmZ and two
RNA-binding proteins (RsmA and RsmE) were found in
the genome of P. syringae pv. syringae UMAF0158 (Unpub-
lished data). Transcriptional analysis of the mgo, mbo
and gac genes showed that the mbo genes were mark-
edly down-regulated in both the gacA and mgoA mu-
tants. On the other hand, the transcriptional levels of
mgoB and mgoA, also showed down-regulation in the
gacA mutant, indicating that the mgo operon is also
under regulation by the GacS/GacA two-component
regulatory system. These data suggest that GacS/GacA
is regulating the mbo operon expression via the mgo
operon, however direct regulation of the mbo operon
by the two-component regulatory system gacS/gacA
cannot be excluded (Figure 5).

Transcriptional analysis with a lacZ fusion on the pro-
moter of the mbo operon (P,,;,), revealed that the product
of the mgo operon could acts as positive regulator of mbo
transcription. Interestingly, the pvfC gene (homologue of
mgoA) is considered a regulator of virulence in P. enthomo-
Phila, but appears not to be part of the GacS/GacA regula-
tory cascade [28]. In strain UMAF0158, introduction of the
mgo operon in a gac mutant could not restore mangotoxin
production or mbo-promoter activity, suggesting that next
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Figure 5 Proposed model for regulation of mangotoxin biosynthesis in P. syringae pv. syringae. In this model, GacS/GacA
two-component regulatory system activates directly or indirectly the transcription of the mgo operon. And the mgo operon could synthetize a
positive regulator of the mbo operon transcription. The mbo operon produces mangotoxin which acts as virulence factor.
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to the mgo operon, additional factors are regulated by the
gac system that influence mangotoxin production. It is
worth noting that P. entomophila and P. syringae pv. syrin-
gae harbor two different genetic backgrounds, adapted to
different environments. The first is found in diverse envi-
ronments such as soil, aquatic ecosystems, rhizosphere, and
in pathogenic interactions with Drosophila melanogaster
[57]. The second is adapted for plant infection and epi-
phytic survival [3]. Therefore, the regulatory roles of these
orthologues can substantially differ between these two
Pseudomonas species. On the other hand, the fact that both
PvfC and MgoA are involved in the regulation of virulence
could indicate that in other Pseudomonas spp. these factors
would be involved in the regulation of virulence and/or sec-
ondary metabolite production.

Phylogenetic analysis of MgoA and the adenylation do-
mains suggested an evolutionary specialization of this
protein into the Pseudomonas genus. In this context, it
is worth noting that the transformation of the mbo op-
eron under the expression of its own promoter only con-
fers mangotoxin production in the P. syringae group and
not in the P. fluorescens group. Therefore, it seems that
the NRPS MgoA is involved in different signal transduc-
tion pathways depending of the Pseudomonas species. In
the case of P. syringae, MgoA appears to activate man-
gotoxin production. It remains to be studied if MgoA is
also involved in the regulation and production of other
antimetabolites in the P. syringae group, such as tabtoxin
and phaseolotoxin. The positive regulation of the mbo
operon promoter activity in the presence of the mgo op-
eron in Pf-5, combined with the lack of detectable
amounts of mangotoxin suggests that additional factors
for mangotoxin biosynthesis or its export are not present
in the P. fluorescens group.

Conclusions

In summary, for P. syringae pv. syringae UMAFO0158, the
GacS/GacA two-component system regulates transcription
of the mgo and mbo operons and thereby mangotoxin bio-
synthesis. At the same time, the mgo operon product seems
to act as a positive regulator of the mbo operon. The pro-
posed model for mangotoxin biosynthesis is a simplified
and initial overview of the interaction between the gac, mgo
and mbo gene products based on the results obtained in
the current study. This is the first evidence of the interplay
between MgoA and the GacS/GacA two-component regu-
latory system in the regulation of the mangotoxin
biosynthesis.
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Additional files

Additional file 1: Table S1. Primers used in this study.

Additional file 2: Figure S1. Growth characteristics of P. syringae pv.
syringae strain UMAF0158 and the derivatives mgoA and gacA mutants.
(A) Growth of the wild type strain UMAF0158 and the mgoA (AmgoA)
and gacA (28B7) mutants at 22°C in PMS. At each time point, the
bacterial density was estimated by serial dilutions and colony counts on
plates of selective medium and expressed as log cfu ml™" of culture. (B)
UMAF0158 mangotoxin production at 22°C in PMS. At each time point,
the mangotoxin production was estimated using cell-free filtrate and
represented as the previously defined toxic units (T.U.). The dashed line
represents the detection limit of the technique. Mean values for three
replicates are given; the error bars represent the standard errors of the
mean.

Additional file 3: Figure S2. Virulence analysis of the wild type strain
P. syringae pv. syringae UMAFO0158 and corresponding derivatives using a
detached tomato leaf assay. (A) In planta growth inside the tomato
leaflets after H,O, surface disinfection of the wild type strain UMAF0158,
mgoA and mboA mutants, and their respective complemented
derivatives. (B) Severity of necrotic symptoms (necrotic area) on tomato
leaflets inoculated with wild type strain UMAF0158, the mutants in mboA
and mgoA with their respective complemented derivatives. The total
necrotic area (mm?) from 30 inoculated points on tomato leaflets was
measured 10 days after inoculation and used to compare the severity of
necrotic symptoms produced by the different strains. (C) Representative
pictures of the necrotic lesions produced by the wild type strain and the
different mutants at 10 dpi. Different letters denote statistically significant
differences at p = 0.05, according to analysis of variance followed by
Fisher's least significant difference test.

Additional file 4: Figure S3. mboACE transcript levels in the wild type
strain UMAF0158. Relative expression of the genes involved in the
mangotoxin biosynthesis at the different time points during the growth
curve. For each time point, mean values of four biological replicates are
given; the error bars represent the standard errors of the mean.

Additional file 5: Figure S4. Phylogenetic analysis of the MgoA of
different Pseudomonas spp. Neighbor-joining tree was constructed with
MEGAS using a partial sequence of MgoA. The boxes indicate the
different groups of Pseudomonas and the presence (mbo +) or absence
(mbo -) of the mbo operon. The evolutionary history was inferred using
the Neighbor-Joining method [52]. The evolutionary distances were
computed using the JTT matrix-based method [53] and are in the units
of the number of amino acid substitutions per site. The rate variation
among sites was modelled with a gamma distribution. The analysis
involved 126 amino acid sequences. There were a total of 1015 positions
in the final dataset. Evolutionary analyses were conducted in MEGAS [45].
Burkholderia cenocepacia 12315 was used as the outgroup. Bootstrap
values (1,000 repetitions) are shown on the branches.
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