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Abstract

Background: The spread of bacterial plasmids is an increasing global problem contributing to the widespread
dissemination of antibiotic resistance genes including β-lactamases. Our understanding of the details of the biological
mechanisms by which these natural plasmids are able to persist in bacterial populations and are able to establish
themselves in new hosts via conjugative transfer is very poor. We recently identified and sequenced a globally
successful plasmid, pCT, conferring β-lactam resistance.

Results: Here, we investigated six plasmid encoded factors (tra and pil loci; rci shufflon recombinase, a putative
sigma factor, a putative parB partitioning gene and a pndACB toxin-antitoxin system) hypothesised to contribute
to the ‘evolutionary success’ of plasmid pCT. Using a functional genomics approach, the role of these loci was
investigated by systematically inactivating each region and examining the impact on plasmid persistence, conjugation
and bacterial host biology. While the tra locus was found to be essential for all pCT conjugative transfer, the second
conjugation (pil) locus was found to increase conjugation frequencies in liquid media to particular bacterial host
recipients (determined in part by the rci shufflon recombinase). Inactivation of the pCT pndACB system and parB
did not reduce the stability of this plasmid.

Conclusions: Our findings suggest the success of pCT may be due to a combination of factors including plasmid
stability within a range of bacterial hosts, a lack of a fitness burden and efficient transfer rates to new bacterial hosts
rather than the presence of a particular gene or phenotype transferred to the host. The methodology used in our study
could be applied to other ‘successful’ globally distributed plasmids to discover the role of currently unknown plasmid
backbone genes or to investigate other factors which allow these elements to persist and spread.
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Background
Plasmids have been indispensable tools in the develop-
ment of molecular biology and much of our under-
standing of their biology has been based on a small
number of model replicon transmissible elements.
However, less is known about natural plasmids and in
particular, the interplay between plasmids and their host
strains. Bacterial plasmids are widely recognised for
their role in the expansion and dissemination of viru-
lence and antibiotic resistance genes both between
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members of the same species and to new bacterial hosts
of different species [1,2]. Their ability to acquire and
spread either single or multiple antibiotic resistance
genes to pathogens has become a considerable problem
and an obstacle to successful therapeutic treatment [3].
This is compounded by the lack of development of new
effective antibiotics, particularly against infections
caused by Gram negative bacteria with plasmid medi-
ated antibiotic resistances, which are causing significant
global clinical problems [4]. The recent emergence of
genes including β-lactamases which confer resistance to
the commonly used β-lactam class of antibiotics, can
largely be attributed to the spread and persistence of
successful plasmids in a wide range of bacterial hosts
[5-7]. However, despite their importance and the
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Figure 1 Plasmid map of pCT showing the relative positions of
each target genes.
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recently generated wealth of plasmid sequence data [8], our
knowledge of the factors which allow plasmids to maintain
antibiotic resistance genes, to remain stable in bacterial
populations in the absence of selective pressure, and to
successfully spread to different bacterial strains is very poor.
In elementary terms the evolutionary success of a plas-

mid is reliant on (1) the ability to transfer vertically to
daughter cells of the host bacterial strain, therefore
remaining stable within this population; and/or (2) the
ability to transfer horizontally to alternative bacterial hosts
via conjugation [9]. Vertical stability can be ensured by the
presence of an addiction system such as toxin-antitoxin
systems [10]; by lack of a fitness cost conferred by the
plasmid [11]; by action of an active plasmid partitioning
system [12]; and/or by providing beneficial attributes such
as antibiotic resistance or adhesive properties to the host
providing a competitive advantage [13]. Effective horizon-
tal transmission is associated with the frequency with
which a plasmid can pass between strains and become
established in a host strain after conjugation under differ-
ent environmental conditions [14].
Previously, we sequenced and characterised an IncK

plasmid, denoted pCT, isolated from scouring calves
[15-17]. Although it was initially identified in E. coli
animal isolate, the ca. 94 kb plasmid carrying a single
antibiotic resistance gene (blaCTX-M-14) was shown to
have disseminated worldwide in bacteria from humans
and animals [15] and to stably persist in the host po-
pulation in the absence of antibiotic pressure [15,18].
Inactivation of the antibiotic resistance gene (blaCTX-M-14)
on pCT also had no effect on the plasmid or bacterial
host biology in the absence of selective antibiotic pres-
sure [18]. Therefore, we proposed that alternative plas-
mid encoded factors were responsible for the successful
persistence and global distribution of pCT. In order to
test this hypothesis, we used an inactivation technique
adapted from a novel gene inactivation method previ-
ously used on multi-copy plasmids [18,19] to systemat-
ically inactivate candidate genes and operons previously
associated with ‘plasmid success’. Using a functional
genomic approach analogous to that which has been
broadly employed in studying chromosomal genes of
various eukaryotic and prokaryotic organisms, we ex-
amined the impact of plasmid genes on pCT persistence
and conjugation and upon the bacterial host.

Results and discussion
Inactivation of six selected genes
Based upon our previous work [15,18], six loci on pCT
were identified as candidates predicted to encode funda-
mental factors contributing to the success of this plas-
mid. Comparative genomics with other characterised
Incompatibility group I plasmids (including IncI, IncB,
IncK and IncZ) identified: a region of pCT encoding a
toxin-antitoxin addiction system, pndACB (pCT_065)
which we hypothesised to be involved in stable inherit-
ance of the plasmid into daughter cells [20]; operons
involved in plasmid conjugation, the tra and pil loci
(pCT_068 and pCT_103) [21] including a gene likely to
determine mating pair recipient specificity, shufflon
recombinase gene rci (pCT_093) [22]; an unusual puta-
tive sigma 70 factor (pCT_066) and a putative parB gene
involved in plasmid segregation (pCT_057) [15]. There-
fore, the effects of inactivating the pndACB operon, rci,
pCT_066 and key structural pilus protein genes traY
(tra locus), pilS (pil locus) and the putative parB gene
were investigated to establish the role of each element in
plasmid ‘success’ (Figure 1).
Each gene was inactivated by homologous recombin-

ation using hybrid amplimers encoding an aph cassette
encoding kanamycin resistance, flanked by regions hom-
ologous to the target. Mutants were created within an
intermediate Lambda Red recombinase encoding E. coli
SW102 host [23] and confirmed by sequencing across
the mutated region to ensure the aph cassette has been
inserted to inactivate the target gene. All six recombin-
ant plasmids were then transformed into E. coli DH5α,
and transferred to S. Typhimurium SL1344 to prevent
further recombination events and for further analysis.

Inactivation of the six genes had no effect on pCT
maintenance
Both wild-type pCT and each of the recombinant pCT
plasmids remained stable over the investigated time
period (approx. 80 generations) in 100% of both E. coli
DH5α and S. Typhimurium SL1344 host cells (Table 1).
These data indicate that none of the six selected pCT
genes are individually responsible for the short term



Table 1 Comparison of recombinant plasmids with wildtype pCT plasmid

Gene inactivated
on pCT

Stability Conjugation to
an E. coli recipient

Conjugation to a
Salmonella recipient

Bacterial host
growth kinetics

Biofilm
formation

Competitive index when
co-cultured with WT pCT

Sigma factor::aph = = = = = 1.00

pilS::aph = ↓ ↓ = = 1.00

traY::aph = UD UD = = 0.99

rci::aph = = ↓ = = 0.99

pndACB::aph = = = = = 1.00

parB::aph = ND ND = = ND

=, the same as wild-type (WT) pCT; ↓, reduced rate when compared to pCT; ND, not determined; UD, Undetectable.
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maintenance and successful vertical transfer of this plas-
mid, as their inactivation did not impact on the inherit-
ance of pCT. The pndACB operon is homologous to
known and characterised systems in other plasmids,
such as R64, R483, p026-vir, ColIb-P9 and pO113, with
protein identity between 91% and 100%. Furuya and
Komano (1996) showed that when the pndACB operon,
similar to that found on the IncI plasmid R64 was inacti-
vated, R64 was rapidly lost from the bacterial population,
therefore it was required for maintenance of R64 over a
similar time period [24]. Based on protein homology,
plasmid pCT was found to encode a putative parB-like
nuclease gene which shares 100% identity to a previously
characterised ParB protein in p026-vir. However, the
putative parB gene on pCT shares no significant hom-
ology to the parB DNA sequences from other IncI plas-
mids, such as R64 and CoIIb-P9. We found that the
recombinant pCT plasmid carrying the inactivated puta-
tive parB gene also showed no significant difference in
stability when compared to the wild-type plasmid. This
was in contrast to work by others with plasmid P1,
which showed that an intact parB is essential for the
stable partitioning of P1 [25]. Our data with pCT indi-
cated that neither pndACB nor the putative parB genes
are individually essential for pCT stability under condi-
tions tested suggesting they may not be expressed under
such conditions; may work in conjunction with other
elements; or are non-essential for stability due to the
presence of other currently unidentified genes or gene
regions. These data also suggest that broad conclusions
about gene function cannot be extrapolated from data
obtained with other plasmids.

The relative contribution of each conjugation pilus in pCT
horizontal transfer
To investigate the contribution of the two conjugation
pilus genes (tra and pil) in the dissemination of pCT, the
effects of inactivating the major structural protein genes
of each pilus (traY and pilS) were assessed. Inactivation
of traY prevented pCT transfer both in liquid and on
solid surfaces (Figure 2) confirming the essential role of
the tra locus for pCT conjugation under both conditions
[26]. The inactivation of thin pilus (pil) gene, pilS, had
no effect on the conjugation rate on solid surfaces, but
reduced the frequency of pCT conjugation in liquid to
both E. coli and S. Typhimurium recipients (Figure 2).
This was in agreement with previous studies which have
shown that the pil locus is required for conjugation in
liquid [21,27]. Removal of an rci recombinase, which
allows the recombination of shufflon elements to deter-
mine the terminal thin pilus protein and impacts on host
specificity, has previously been shown to fix this region
into one particular conformation [22]. Inactivation of
the pCT rci gene resulted in a reduced transfer rate of
pCT to the S. Typhimurium recipient, particularly in
liquid media, however there was no effect on the rate of
transfer to the E. coli recipient (Figure 2). Therefore, we
conclude that the thin pilus is not essential for pCT
conjugation. However, the presence of the thin pilus
consistently increased the frequency with which pCT
conjugated into recipient host strains within liquid. It
may be that production of the thin pilus provides better
attachment of the mating pair in liquid, and the active
shufflon region allows variation and an extended pCT
bacteria host range as shown in R64 [24]. As inactivation
of pilS had no effect on pCT transfer on a filter to E. coli
recipients, the role of the thin pilus in conjugation on a
solid surface is less clear (Figure 2, Table 1).

Inactivation of pCT genes had no detected effect on
various bacterial hosts
Inactivation of the six selected genes on pCT in each of
the recombinant plasmids had no effect on bacterial host
growth rates during mid-logarithmic phase or generation
time of either host when compared to hosts containing
wild-type pCT (Table 1). Apart from the inactivated
parB, each mutant plasmid also remained in a 1:1 ratio
when E. coli DH5α cells containing each mutant plasmid
were co-cultured in competition with E. coli DH5α
containing wild-type pCT in-vitro. After approximately
80 generations, cells containing each mutant plasmid
had a competition index indistinguishable from 1.0
(Table 1) indicating no fitness advantage or disadvantage
over host cells containing wild-type pCT. Therefore,



Figure 2 Conjugation frequencies of wild-type pCT and the pCT mutants on a solid surface (filled box) and in liquid (open box) from
bacterial donor E. coli DH5α to A) a S. Typhimurium recipient and B) an E. coli recipient.
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inactivation of the five selected pCT gene regions had
neither a beneficial or detrimental effect on host growth
or on the host’s ability to compete in co-culture, suggest-
ing these genes do not individually contribute or allevi-
ate any significant burden the plasmid may place on the
bacterial host cell under conditions tested. In contrast,
the recombinant plasmid carrying the inactivated parB
gene was out-competed by the wild-type pCT plasmid.
The reason behind this phenomenon is unclear as the
host cells carrying this recombinant plasmid exhibited
no detectable growth defect. Similarly, the recombinant
plasmid showed no obvious stability problem within the
host. However, we do not exclude the possibility that the
recombinant plasmid carrying host may be less fit com-
pared to the wild-type plasmid carrying host over a lon-
ger duration of competition.
Inactivation of the six loci also had no effect on the

ability of host bacterial cells to form a biofilm (Table 1),
suggesting that the selected genes do not contribute
to the bacterial host’s ability to do so. These data are in
contrast to the findings of Dudley et al. (2006) who
showed that inactivation of pilS on the IncK plasmid,
pSERB1, reduced the host bacterium’s ability to form a
biofilm by up to 50%, strongly suggesting a role in bio-
film formation for the pSERB1 thin pilus [13]. It maybe
that other plasmid encoded factors allow for the differ-
ences in the ability of the host to form a biofilm, or that
the effects on biofilm formation are host specific and
only seen under particular environmental conditions.
Inactivation of the putative sigma factor (pCT_066) had
no detectable effect under any of the conditions tested,
suggesting no role in plasmid dissemination or modu-
lation of host bacterial fitness. Further investigation,
including transcriptomic experiments are required to
determine whether this sigma factor can affect the
expression of plasmid or host chromosomal genes and
whether our assays were not sufficiently sensitive to de-
tect any subtle effects of removing this gene.

Conclusions
In conclusion, we postulate that the success of this plas-
mid is due to a combination of subtle factors rather than
one particular gene or phenotypic benefit conferred
to host strains. These factors include stability within a
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range of bacterial hosts (due in part to the presence of
numerous genes involved in plasmid stability), a lack of
a fitness burden conferred to new host strains allowing
establishment of the plasmid in new hosts (shown previ-
ously) [18], and proficient conjugation allowing dissem-
ination of pCT to a range of bacterial hosts in both
liquid and on solid media. Although it is conventional to
believe that the prudent use of antibiotic therapy would
reduce the spread and dissemination of antibiotic resist-
ance gene harbouring plasmids, our previous data have
suggested otherwise [18]. We have also shown the pCT
backbone to be robust in its persistence and not reliant
on any single loci tested. This means that the reduction
in selection pressures will not always reduce the num-
bers of bacteria carrying such plasmids with antibiotic
resistance genes, and re-exposure to antibiotics will
likely amplify the numbers of these antibiotic resistant
strains. There is still much to learn about the complex
nature of plasmid and bacterial host strain interactions
with regard to plasmid functions, such as conjugation,
stability and the overall evolutionary fitness of plasmids
with their host in different conditions. However, we
have shown that the functional genomic approaches we
used in our study provide an example of how to use
plasmid genomic data to explore fundamental and ap-
plied biological questions. We have also been able to in-
activate specific loci on several other, globally successful
plasmids including those carrying the carbapenemases
blaKPC and blaNDM-1, illustrating the utility of our ap-
proach and its broad applicability to the study of plasmid
gene function (manuscripts in preparation). Recent ad-
vances in sequencing have identified various ‘successful’
plasmids such as those found associated with the globally
disseminated strain E. coli ST131 [7] or those carrying
other prominent resistance genes such as blaCMY-2 or
blaNDM-1. Investigating the factors key to their dissemin-
ation could also be examined using a similar approach
[28,29]. A better understanding of the biological relevance
of plasmid ‘backbone’ genes in the successful survival and
spread of antibiotic resistance plasmids will be of para-
mount importance if we are to prevent future persistence
and further spread of both plasmid vectors and the anti-
biotic resistance genes that they carry.

Methods
Bacterial strains and plasmid extraction
Wild-type plasmid pCT [Genbank: FN868832] was iso-
lated from a veterinary E. coli strain C159/11 [15,16].
Wild-type pCT and recombinant pCT DNA was extracted
using a QIAprep Spin Miniprep Kit (Qiagen, Germany)
and a QIAGEN Large Construct Kit (Qiagen, Germany)
according to the manufacturers’ instructions. All plasmids
were transformed into E. coli DH5α electro-competent
cells (Bioline, UK) (1.25 kV, 25 μF, 200Ω, in chilled 2 mm
electroporation cuvettes) and transformants selected by
growing on agar containing 8 mg/L of cefotaxime
(Sigma-Aldrich, USA) or 50 mg/L of kanamycin (Sigma-
Aldrich, USA) when the aph cassette is used for gene
inactivation.

Inactivation of the six selected pCT genes
To inactivate the six selected pCT genes, pCT was trans-
formed into the E. coli strain, SW102 which carried a
chromosomal Lambda-Red Recombinase [23]. Where
transformation of the plasmid into this strain is difficult,
conjugation by filter mating was done by selecting the
transconjugants on media containing 50 mg/L of tetra-
cycline and 8 mg/L of cefotaxime. The hybrid primers
used to inactivate the selected pCT genes were designed
to have 20 bp identity to the aph cassette on pKD4 [30]
and 40 bp sequence identity to the target genes (Table 2).
Recombination of amplimers encoding the aph gene
with each pCT gene was carried out as previously de-
scribed [18]. Recombination was confirmed in each
case by PCR and sequencing across the mutated DNA
region (Table 2). The recombinant plasmid was then
extracted and electroporated into DH5α or conjugated
into another host strain to avoid further recombination
from occurring and for further study.

Conjugation rates
The conjugation rate of recombinant plasmids was mea-
sured on a filter (Whatman, USA) placed on an LB agar
plate and in LB broth incubated at 37°C with shaking at
180 rpm for three hours as previously described [31]. A
rifampicin resistant E. coli (DH5α) and S. Typhimurium
(SL1344) were used as recipient strains and selection of
transconjugants on LB agar containing 100 mg/L rifampi-
cin and 8 mg/L cefotaxime (and 50 mg/L of kanamycin).
Conjugation frequencies were determined on three separate
occasions. Unpaired Student’s t-tests were used to deter-
mine whether any significant changes were observed in the
conjugation frequency (p < 0.05). The conjugation rate of
the parB mutant was not determined due to the confound-
ing effects arising from its instability. This made accurate
measurements of plasmid transfer difficult due to an inabil-
ity to identify host strains which have lost the plasmid.

Ability to form biofilm
The ability of strains containing each plasmid to form a
biofilm was evaluated using crystal violet staining of
biofilms formed over 48 hours at 30°C as previously
described [32]. Optical density at 600 nm was measured
to quantify the amount of biofilm produced on three
separate occasions using three biological replicates with
four technical replicates each in every experiment. A sig-
nificant difference was determined by Student’s t-test
where p value was less than 0.05.



Table 2 Primers used in the construction and confirmation of recombinant pCT plasmids

pCT gene Description Primer sequence Amplimer size (bp) (WT/inactivation)

Sigma factor pCT_066

Confirmation forward ACAGCGTCTTCTCGTATCCA 1289/1675

Confirmation reverse GTTCTTCCAGCTGACGTAAC 1289/1675

Recombination 1 GGAGGGCGTCTCGCTAAAAAAACTTACTCAAACACATCAAGTGTAGGCTGGAGCTGCTTC 1574

Recombination 2 GCATTACTTTTTATTCTCGTGAGACTCAAGGTCATTCGGTGGGAATTAGCCATGGTCCAT 1574

rci

Confirmation forward AAGGTCATCTGCAGGAGT 945/1867

Confirmation reverse GTGTCGCAGCAACAATA 945/1867

Recombination 1 GGGGGACATGCCGTATGAATCCTGTTGAACTGGTCCGAAAGTGTAGGCTGGAGCTGCTTC 1574

Recombination 2 GCAGTGTCACGACAAACAGCCCGTTTCTGCACCCGACAGTGGGAATTAGCCATGGTCCAT 1574

pilS

Confirmation forward GCGGAAGGAAGTGAGCATAA 722/2053

Confirmation reverse CAGTGACATGCTGAAGCAGT 722/2053

Recombination 1 TGGTGACCAGATCAATACAGTTTTTCTTCGGCACATTGCTGTGTAGGCTGGAGCTGCTTC 1574

Recombination 2 AACCTGCAGACAATCGCCACCAAAATGAAAGCCCAGAAAGGGAATTAGCCATGGTCCAT 1574

traY

Confirmation forward GGAGAGTCCGGTCTGTATGA 2423/2138

Confirmation reverse TGCAACCAGTGTGGTACAG 2423/2138

Recombination 1 GTATCCTGGTCTGCCTGTTACTGATGAGTACCATTGCAGCGTGTAGGCTGGAGCTGCTTC 1574

Recombination 2 CGGCACAAAACAGCAAAAACAGCAGGAAGTAGAGTGGTGGGGGAATTAGCCATGGTCCAT 1574

pndACB

Confirmation forward AAGGATTGTGGCGGACAGGA 486/1288

Confirmation reverse TGATGACGCACAGGACGGAA 486/1288

Recombination 1 CCCAGGCGATTTTTTTATCAATCAACCCAGGGCCCACTGTGTGTAGGCTGGAGCTGCTTC 1574

Recombination 2 ATTGAGGTCAGCCTTCGCAACAATCCGGCGGCAGATGTCCGGGAATTAGCCATGGTCCAT 1574

parB

Confirmation forward TATTAAAAATAACGCGGCGG 663/1872

Confirmation reverse GCAAAGTATCACACTGCCAAAA 663/1872

Recombination 1 GGAGCGGCGGGAGAGTATAGTCATTATTGTAGTCCGGGTAGTGTAGGCTGGAGCTGCTTC 1574

Recombination 2 CTTTTCACTCACCATTATTTTTTCCGCTTCTCTCTGTGCCGGGAATTAGCCATGGTCCAT 1574
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Growth kinetics
Growth of each bacterial strain containing both wild-
type pCT and the recombinant plasmids was determined
by monitoring the optical density of bacterial cultures
at a wavelength of 600 nm in LB broth in a FLUOstar
OPTIMA (BMG Labtech, UK) as previously described
[33]. The growth kinetics were repeated at least three
times with three biological replicates per strain in each
experiment and the differences were analysed using
unpaired Student’s t-test. Differences were significant
when p value was less than 0.05.

Plasmid persistence
Stability of the mutant plasmids was measured by asses-
sing the proportion of cells that carry each plasmid over
time within LB broth isogenic cultures incubated at 37°C
with shaking at 180 rpm. At 12, 24, 48 and 72 hours,
100 μl of culture was used to inoculate fresh pre-
warmed LB broth at a dilution of 1:100. Viable counts
were determined every two hours for the first 12 hours
and then at 24, 48, 72 and 96 hours. Colonies from each
viable count were replica plated onto antibiotic free and
antibiotic containing agar plates (8 mg/L of cefotaxime
or 50 mg/L kanamycin). Colonies growing on the anti-
biotic free plate but not on the antibiotic containing
plates indicated the proportion of bacteria that had lost
the plasmid. The experiment was repeated on three
separate occasions using three biological replicates of
each strain on each occasion.

Pair-wise competitive growth
A pair-wise competition assay in-vitro was used to deter-
mine whether inactivation of the six genes on pCT im-
pacted upon the ability of the plasmid to persist when
competed within a culture with cells containing wild-
type pCT. Overnight bacterial cultures of DH5α pCT
and DH5α containing the five pCT mutant plasmids
were used to seed fresh LB broth in a 1:1 ratio and
grown at 37°C with shaking at 180 rpm. A viable count
was performed every two hours and cultures were used
to seed fresh broth every 24 hours for a period of 4 days.
Colonies from the viable count were replica plated onto
LB agar plates containing 1) cefotaxime 8 mg/L, 2) kana-
mycin 50 mg/L, and 3) no antibiotic. The proportion of
each plasmid in each culture was determined at each
time point by counting the number of colonies on each
of the antibiotic selective plates and calculating the pro-
portion of each test plasmid accordingly. The competi-
tion index was defined as 1 + ([log10A – log10B]/number
of generations) modified from Pope et al. (2010) [34],
where A is the ratio of the plasmids at 72 hours (includ-
ing four passages), B is the ratio at the beginning of the
assay, a competitive index of 1 indicates no competitive
advantage nor disadvantage within the assay.
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