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Abstract

Background: SPI-18 is a pathogenicity island found in some Salmonella enterica serovars, including S. Typhi. SPI-18
harbors two ORFs organized into an operon, hlyE and taiA genes, both implicated in virulence. Regarding the hlyE
regulation in S. Typhi, it has been reported that RpoS participates as transcriptional up-regulator under low pH and
high osmolarity. In addition, CRP down-regulates hlyE expression during exponential growth. Previously, it has
been suggested that there is another factor related to catabolite repression, different from CRP, involved in the
down-regulation of hlyE. Moreover, PhoP-dependent hlyE up-regulation has been reported in bacteria cultured
simultaneously under low pH and low concentration of Mg”*. Nevertheless, the relative contribution of each
environmental signal is not completely clear. In this work we aimed to better understand the regulation of hlyE in
S. Typhi and the integration of different environmental signals through global regulators.

Results: We found that Fis participates as a CRP-independent glucose-dependent down-regulator of hlyE. Also, Fis
and CRP seem to exert the repression over hlyE through down-regulating rpoS. Moreover, PhoP up-regulates hlyE
expression via rpoS under low pH and low Mg?* conditions.

Conclusions: All these results together show that, at least under the tested conditions, RpoS is the central regulator
in the hlyE regulatory network, integrating multiple environmental signals and global regulators.
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Background

The genus Salmonella includes two species, Salmonella
bongori and Salmonella enterica. S. enterica is comprised
of six subspecies where only a small fraction of the sub-
species I serovars are involved in infections of humans
and other warm-blooded animals [1,2]. Most of these
Salmonella serovars are “generalists”, infecting a wide
range of hosts and causing different symptoms. This is
the case for S. enterica serovar Typhimurium (S. Typhi-
murium) and S. enterica serovar Enteritidis (S. Enteritidis)
[3]. In contrast, some serovars are able to infect a specific
host, causing typhoid-like disease [4]. These include
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S. enterica serovar Typhi (S. Typhi), which infects
only humans.

S. enterica infection begins with ingestion of contami-
nated water or food. Some environmental conditions
found in the gut induce the expression of virulence factors
that participate in the intestinal invasion and colonization,
including genes found in the Salmonella Pathogenicity
Island 1 (SPI-1) [5]. Among these conditions, high
osmolarity, microaerobiosis and response to bile seem
to be the most important signals at this stage of the in-
fection [5,6]. Some S. enterica serovars, such as S. Typhi
in humans, can enter the host bloodstream, disseminate
and survive inside the macrophages by expressing a differ-
ent subset of genes, including SPI-2 genes [7]. The most
important conditions found at this stage of the infection
include nutrient depletion (especially Mg®*) and low pH
[8]. It is thought that Salmonella virulence factors are
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specifically expressed at determined stages of the infection.
Nevertheless, at present it is more obvious that several
virulence factors are not restricted to a unique stage of the
infection. For example, SipA, encoded by SPI-1 enhances
entry efficiency to intestinal epithelial cells by promoting
actin polymerization, but also contributes to proliferation
of Salmonella inside macrophages [9].

The SPI-18 is a pathogenicity island found in a subset of
S. enterica serovars able to produce a systemic disease in
humans, including S. Typhi; but absent in generalist sero-
vars such as S. Typhimurium [10]. The SPI-18 harbors
only two ORFs organized into an operon, the taiA — hlyE
genes [10,11]. TaiA is a novel invasin involved in increased
phagocytosis of the bacteria by macrophages [11]. On the
other hand, HIyE (also called ClyA or SheA) is a well char-
acterized hemolysin that is exported in outer membrane
vesicles [12]. Human infections by S. Typhi cause a spe-
cific antibody response to HIyE, indicating effective
toxin production during the normal infective cycle [13].
Moreover, heterologous expression of S. Typhi AlyE in
S. Typhimurium improves the colonization of deep
organs in mice [10].

Regarding hlyE regulation in S. Typhi, previously it has
been reported that RpoS participates as a transcriptional
positive regulator under low pH and high osmolarity [14].
In addition, the global regulator CRP, implicated in catab-
olite repression, down-regulates hlyE expression during
exponential growth. Nevertheless, addition of glucose to
the growth medium results in a decrease of #lyE mRNA
in S. Typhi Acrp mutant, suggesting that there is another
factor related to catabolite repression, different from CRP,
involved in down-regulation of AlyE in S. Typhi [14].
PhoP-dependent up-regulation of hlyE was reported when
bacteria were cultured simultaneously under low pH and
low concentration of Mg2+ [11]. Nevertheless, the relative
contribution of each environmental signal is not clear.

In this work we wanted to better understand the
regulation of AlyE in S. Typhi and the integration of dif-
ferent environmental signals through global regulators.
We found that Fis participates as a CRP-independent
glucose-dependent down-regulator of AlyE in S. Typhi.
Moreover, Fis and CRP seem to exert the repression over
hlyE via down-regulating rpoS. On the other hand, PhoP
up-regulates /lyE expression via rpoS under low pH and
low Mg** conditions. All these results together show that,
at least under the tested conditions, RpoS is the central
regulator in the hlyE regulatory network, integrating mul-
tiple environmental signals.

Results

Fis participates in the repression of hlyE at transcriptional
level

CRP is a regulator that acts as a cAMP receptor. The
cAMP-CRP complex is activated when glucose is scarce
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in the culture medium, consequently, numerous genes
are up-/down-regulated [15]. CRP is a transcriptional
regulator previously reported as an activator of the hlyE
transcription in E. coli [16]. Nevertheless, genetic experi-
ments showed that CRP participates in the negative
regulation of hlyE in S. Typhi since crp deletion led to
increased [-galactosidase activity associated to the
AhlyE::lacZ strain [14]. Moreover, hlyE presented a CRP-
independent down-regulation when glucose is present,
suggesting the presence of another down-regulator [14].
Fis (factor for inversion simulation) is a nucleoid-
associated protein that participates in the structuring of
the bacterial chromosome, also known to interact at spe-
cific promoters to regulate gene transcription in E. coli
and S. enterica [17-19]. Since Fis has been implicated in
catabolite repression in E. coli [20,21], we assessed the
role of Fis in hlyE transcription in S. Typhi by RT-PCR.
As shown in Figure 1A, the Afis mutant presented in-
creased transcription of hlyE compared with the WT,
similar to the levels detected in the Acrp mutant (control).
In presence of glucose, the increased transcriptional
level of hlyE seen in the Acrp mutant was reverted, con-
sistently with the presence of additional unknown glucose-
dependent down-regulation [14]. On the other hand, the
presence of glucose was unable to restore the normal tran-
scriptional levels of hlyE in the Afis mutant (Figure 1A),
showing that Fis is the CRP-independent down-regulator
factor previously stated by Fuentes et al. [14], at least
under laboratory conditions. In all cases, the complemen-
tation with the corresponding gene cloned into a plasmid
reverted the mutant phenotype with respect to hlyE tran-
scription (Figure 1A). Moreover, we found no epistasis be-
tween crp and fis with respect to hlyE transcription in LB
with or without glucose added (Figure 1A). Further, the
crp and fis mutations seemed to produce additive effects
on hlyE transcription, strongly suggesting that these two
repressors act through different pathways to repress hlyE
expression.

To corroborate whether an increase in the AlyE tran-
script due to the absence of fis in LB and in LB + glucose
resulted in increased HlyE-associated hemolytic activity,
erythrocyte damage produced by whole bacterial lysates
of S. Typhi WT and Afis mutants grown in LB or LB +
glucose was compared by quantifying the release of
hemoglobin. We used PBS and 5% sodium deoxycholate
to obtain the value for 0% and 100% hemolysis respect-
ively, as previously described [14]. As shown in Figure 1B
and C, the Acrp mutant appeared to be more hemolytic
that the WT strain only when cultured in LB (control).
As previously reported, this effect is abolished in pres-
ence of glucose [14]. On the other hand, the Afis mutant
appeared also to be more hemolytic than the WT strain.
However, unlike the effect observed with the Acrp mu-
tant, the presence of glucose was unable to revert the
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Figure 1 Fis participates in down-regulation of hlyE expression in S. Typhi. A) RT-PCR assay for mRNAs examining transcription of the hlyE
gene from S. Typhi wild-type (STH2370), Acrp, Afis, Acrp Afis double mutant, and the complemented strains Acrp/pTCRP and Afis/pTFIS. All the
strains were cultured as described in Methods. *p < 0.05; **p < 0.01 (ANOVA). B) Relative hemolysis, obtained from the S. Typhi STH2370 wild type,
Afis and Acrp mutants. All the strains were grown in LB and samples were taken to perform the hemolytic activity quantification (see Methods). The
total hemolytic activity was calculated deducting relative hemolysis of S. Typhi AhlyE [10] from S. Typhi wild type, deducting relative hemolysis of
S. Typhi AhlyE Afis from S. Typhi Afis or S. Typhi AhlyE Acrp from S. Typhi Acrp, respectively. C) Relative hemolysis, obtained from the S. Typhi STH2370
wild type, Afis and Acrp mutants grown in LB 4+ 0.4% glucose. Hemolysis was calculated as described in B. D) Immunodetection of epitope-tagged HlyE
from S. Typhi hlyE-3xFLAG (par.: parental strain), S. Typhi hlyE-3xFLAG Acrp, and S. Typhi hlyE-3xFLAG Afis. Bacteria were cultured as described in
Methods. E) RT-PCR for fis transcript levels detection in S. Typhi wild type strain grown to logarithmic phase in LB or LB + glucose. In all the
cases, the data correspond to mean values of three independent experiments performed in triplicate. Error bars correspond to the SD.

hemolysis to the WT level in the Afis strain, consistently
with the results obtained with RT-PCR (Figure 1A). S.
Typhi Acrp AhlyE and S. Typhi Afis AhlyE exhibited no
hemolysis in any condition (data not shown). To corrob-
orate the data obtained by RT-PCR and by the determin-
ation of the hemolytic activity, we constructed the S.
Typhi hlyE-3xFLAG strain by placing a 3xFLAG at the
C-terminus of hlyE. This procedure led to subsequent

detection of the FLAG-tagged proteins via Western blot-
ting as previously described [22]. Then, we constructed
the S. Typhi hlyE-3xFLAG Acrp and S. Typhi hlyE-
3xFLAG Afis derivatives by electrotransforming with
gDNA from single mutants as described [23]. These
strains were used to determine the HIyE accumulation.
As shown in Figure 1D, all the results obtained by RT-
PCR were confirmed by Western blot. These results
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together show that fis participates in the repression of
hlyE at transcriptional level.

Glucose increases transcription of fis

As stated above, the effect of Acrp mutant on /lyE tran-
scriptional level is relieved when glucose is added into
the culture medium, suggesting that a second repressor
is activated in some way under a glucose-rich medium.
Considering that Fis also participates as an hlyE repres-
sor and considering that glucose is unable to relief the
Afis effect in the hlyE transcription (Figure 1A), we in-
ferred that glucose might increase the transcription of fis.
In order to test this hypothesis, we performed a RT-PCR
to detect the fis transcript of S. Typhi cultured to ODggg =
04 in LB or LB+ glucose. As shown in Figure 1E, the
presence of glucose increased fis transcription compared
with bacteria grown in standard LB. This result supports
the fact that glucose increases the fis expression, thereby
contributing to the repression of hlyE.

CRP and Fis participate in the repression of hlyE
transcription by repressing rpoS transcription

To find out whether CRP is repressing hlyE expression
through a direct binding to the respective promoter re-
gion, we performed a shift mobility assay using purified
CRP activated with cAMP and the DNA corresponding
to the taiA — hlyE promoter region. Nevertheless, we were
unable to find direct binding (data not shown). This result
suggested that CRP is participating in hlyE repression
through an indirect pathway. Previously, it has been re-
ported that rpoS expression is repressed by the cAMP-
CRP complex in Vibrio vulnificus [24]. In Salmonella,
previously reported contradictory data indicate that CRP
is an rpoS activator or an rpoS repressor [19,25]. RpoS
seems to be one of the most important factors partici-
pating in hlyE expression, since the detection of these
transcripts is not possible in ArpoS mutants when
grown in pH 5.0, high osmolarity or even in standard
LB [14]. Thus, CRP might repress hlyE expression by
repressing rpoS in S. Typhi. To determine the role of
CRP in rpoS expression, we assessed rpoS expression by
RT-PCR. As shown in Figure 2A, the rpoS transcription
increased in the Acrp mutant compared with the WT
strain. Nevertheless, the rpoS transcriptional levels ob-
tained from the Acrp mutant were comparable to those
of the WT strain in presence of glucose, following the
same pattern for hlyE transcript in Figure 1A. This re-
sult suggests that crp participates as a transcriptional
repressor of rpoS in S. Typhi. Since rpoS is regulated at
multiple levels [26], we determined whether the changes
in the rpoS transcription also lead to changes in RpoS
accumulation. For that, we performed a Western blot
comparing RpoS accumulation in the S. Typhi rpoS-
3xFLAG and S. Typhi rpoS-3xFLAG Acrp strains. As
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shown in Figure 2B, RpoS from S. Typhi rpoS-3xFLAG
was practically undetectable under the tested conditions,
consistently with the fact that the RpoS accumulation is
prevented at logarithmic phase [27]. On the other hand,
the lack of crp led to an evident RpoS accumulation. Simi-
larly to the data observed for hlyE expression (Figure 1),
these results suggest that crp is an rpoS repressor and, in
presence of glucose, there is another crp-independent re-
pressor. The obvious candidate to be such a repressor is
the transcriptional regulator Fis. Then, we assessed the
role of fis in the rpoS transcription and RpoS accumulation
as previously described for crp. As shown in Figure 2A,
the Afis mutant presented a slight increase in the rpoS
transcriptional level compared with the WT strain. Again,
the addition of glucose was unable to abolish the increase
of rpoS transcript in the Afis mutant (Figure 2A). More-
over, the lack of fis clearly contributed to the RpoS ac-
cumulation even in presence of glucose, as inferred
from Figure 2B. All these results are consistent with the
presence of CRP and Fis DNA-binding boxes at the rpoS
promoter region in S. Typhimurium [19,25], which are
also conserved in S. Typhi rpoS promoter (Figure 2C).
Altogether, these results suggest that CRP and Fis are
able to repress the rpoS expression by direct binding,
thereby regulating hlyE expression in S. Typhi.

PhoPQ two-component regulatory system participates in
hlyE induction via rpoS

As shown above, we identified two genes, crp and fis,
implicated in the down-regulation of hlyE. In addition, it
has been described two global regulators implicated in
the up-regulation of this gene: RpoS and PhoP. RpoS-
dependent transcriptional up-regulation in low pH and
high osmolarity was reported [14]. PhoP-dependent up-
regulation was observed when bacteria were cultured
simultaneously under low pH and low concentration of
Mg2+ (10 uM MgCl,) [11]. Nevertheless, considering
that the low pH is an environmental signal that activates
both the RpoS- and PhoP-dependent up-regulation of
hlyE, it is not clear the relative contribution of each glo-
bal regulator to the up-regulation of this gene. Moreover,
the relative contribution of low pH and low Mg** con-
centrations to the PhoP-dependent up-regulation is also
unknown, since, as stated, these two conditions were
tested at the same time [11]. In order to better under-
stand the up-regulation of hlyE, we compared the tran-
scription induction of this gene in LB pH 5.0 versus LB
pH 7.0, and in minimal medium 9 (M9) 10 uM Mg**
versus M9 10 mM Mg>* by RT-PCR in different genetic
backgrounds. As shown in Figure 3A, pH 5.0 is an in-
ducer condition of the hlyE expression, as previously re-
ported [14]. Nevertheless, the relative expression of hlyE
in the ArpoS mutant is nearly zero, even under pH 5.0.
This result suggests that rpoS is necessary for the
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Figure 2 CRP and Fis participate in the repression of rpoS. A) RT-PCR assay for mRNAs examining transcription of the rpoS gene from S. Typhi
wild-type (STH2370), Acrp, Afis, Acrp Afis double mutant, and the complemented strains Acrp/pTCRP and Afis/pTFIS. All the strains were grown in
LB buffered at pH 7.0 to an ODgg = 0.35, washed three times with PBS prior to be resuspended with LB (control) or LB+ 0.4% glucose, and incubated

1 h at 37°C. After the incubation, total RNA were isolated for each strain. The same amount of RNA was applied for RT-PCR. The transcription levels were
normalized against the 16 s transcript in all cases. The data correspond to mean values of three independent experiments performed in triplicate. Error
bars correspond to the SD. *p < 0.05; **p < 0.001 (ANOVA). B) Immunodetection of epitope-tagged RpoS from S. Typhi hlyE-3xFLAG (par.: parental
strain), S. Typhi rpoS-3xFLAG Acrp, and S. Typhi hlyE-3xFLAG Afis. Bacteria were grown in LB buffered at pH 7.0 to an ODgg = 0.35, washed three times
with PBS prior to be resuspended with LB or LB+ 0.4% glucose, and incubated 1 h at 37°C. After the incubation, total proteins were obtained, and

20 ug were used to detect RpoS accumulation as described in Methods. €) In silico sequence analysis of CRP and Fis binding boxes in S. Typhi CT18
rpoS promoter. The S. Typhi rpoS promoter contains conserved binding boxes of S. Typhimurium rpoS promoter according to the previous
evidence [19,25]. Segmented underlined sequences indicate putative CRP boxes. Underlined sequences indicate putative Fis boxes. Asterisk
shows a shared region of each box at the marked position. In bold, transcription start site, and short underlined sequences indicate predicted —35
and —10 promoter regions.

induction of hlyE expression under low pH, but also to
maintain a basal expression of hlyE. This result strongly
suggests that phoPQ is unable to induce the expression
of hlyE under low pH when rpoS is absent. The induc-
tion levels obtained from the ArpoS AphoPQ double mu-
tant reinforces this hypothesis, highlighting the fact that
rpoS is epistatic over phoPQ. On the other hand, the

AphoPQ mutant shows the half of induction under low
pH compared with the WT strain, suggesting that rpoS,
by itself, is sufficient to exert a partial induction under
low pH. Thus, both rpoS and phoPQ are necessary to
achieve a complete induction under low pH of /lyE in
S. Typhi. However, the phoPQ-dependent up-regulation
occurs via RpoS. The Figure 3B shows that 10 uM Mg>*
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Figure 3 PhoPQ two-component regulatory system participates in the hlyE induction via rpoS. A) RT-PCR assay for mRNAs examining
transcription of the hlyE gene from S. Typhi wild-type (STH2370), ArpoS, AphoPQ, and the ArpoS AphoPQ double mutant, and the complemented
strains ArpoS/pBRPOS and AphoPQ/pBPHOPQ. All the strains were grown in LB buffered at pH 7.0 to an ODgg = 0.35, washed three times with
PBS prior to be resuspended with LB buffered at pH 7.0 (control) or LB buffered at pH 5.0, and incubated 1 h at 37°C. After the incubation, total
RNA were isolated for each strain. The same amount of RNA was applied for RT-PCR. The transcription levels were normalized against the 16 s
transcript in all cases. The data correspond to mean values of three independent experiments performed in triplicate. Error bars correspond to
the SD. B) RT-PCR assay for mRNAs examining transcription of the hlyE gene from S. Typhi wild-type (STH2370), ArpoS, AphoPQ, and the ArpoS
AphoPQ double mutant. All the strains were grown in LB buffered at pH 7.0 to an ODgpo = 0.35, washed three times with PBS prior to be
resuspended with M9 10 mM Mg?*(control) or M9 10 uM Mg?", and incubated 1 h at 37°C. After the incubation, total RNA were isolated for each
strain. The same amount of RNA was applied for RT-PCR. The transcription levels were normalized against the 16 s transcript in all cases. The data
correspond to mean values of three independent experiments performed in triplicate. Error bars correspond to the SD. In all the cases, the
numbers above the bars represent the fold of induction. *p < 0.05 (ANOVA).
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is also an inducer condition, exhibiting approximately
25 fold compared with 10 mM Mg>*. Again, the relative
expression of hlyE in the ArpoS mutant is nearly zero
under high or low Mg®* concentration, supporting the
fact that rpoS is essential for the hlyE expression under
different culture conditions. In addition, the induction
under 10 pM Mg** is completely abolished in the
AphoPQ mutant, strongly suggesting that phoPQ is es-
sential to increase the hlyE transcript under low Mg**.
Moreover, rpoS alone is not sufficient for increase the
hlyE transcript under the same tested conditions. Fi-
nally, rpoS is epistatic over phoPQ, reinforcing the fact
that the induction of the hlyE expression under low
concentration of Mg** depends on PhoPQ and occurs
via RpoS. In all the cases, the induction was restored
when the mutants were complemented with the corre-
sponding genes cloned into a plasmid vector (Figure 3).

All these results together strongly suggest that RpoS is
essential for hlyE transcription under all the conditions
tested. On the other hand, phoPQ participates in hlyE
induction under pH 5.0 and low Mg** in an RpoS-
dependent manner.

Discussion

In this work we studied the regulation of hlyE expression
and the integration of different environmental signals
through global regulators (Figure 4).

As previously reported, CRP participates in the hlyE
repression. Nevertheless, the mechanism involved in such
repression has not been elucidated [14]. The absence of
obvious CRP DNA-binding boxes at the promoter region
of taiA — hlyE operon [14], and the fact that we were
unable to find direct binding between CRP-cAMP and the
taiA — hlyE promoter region, suggests that CRP might be

I >—| e >—
pHs.o
TT

L

Yo
J,glucose Tgluccse

Figure 4 Model showing that CRP, Fis and PhoPQ regulate
taiA-hlyE operon expression via RpoS. RpoS integrates multiple
environmental signals through different global regulators in order to
regulate the taiA-hlyE operon expression. Like hlyE, taiA expression is
up-regulated by RpoS and PhoPQ under low pH and low Mg”*
concentrations [11,14].
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acting indirectly, more likely regulating other transcrip-
tional regulators. Here, we present genetic evidence in-
dicating that CRP exerts down-regulation of hlyE by
repressing rpoS (Figures 1 and 2), one of the most im-
portant hlyE activators in S. Typhi [14]. CRP has been
also described as an RpoS repressor in other bacterial
species. For instance, E. coli Acrp is remarkably resistant
to hydrogen peroxide and acid stress, due to an elevated
catalase activity attributable to enhanced accumulation
of the alternate sigma factor RpoS [28]. On the other
hand, it has been reported that rpoS expression is re-
pressed by direct binding of CRP-cAMP to its promoter
region in Vibrio vulnificus [24]. In that same work, the
authors suggest that CRP could repress RpoS expression
in S. enterica by direct binding arguing that S. enterica
rpoS promoter presents similar CRP binding boxes than
V. vulnificus [24]. Nevertheless, the available studies of
S. enterica include experiments performed only with S.
Typhimurium, and the data are controversial. Cheng
and Sun demonstrated direct binding of CRP to the
rpoS promoter region in S. Typhimurium, where it is
able to bind to two sites in this sequence. Both sites are
conserved in S. Typhi rpoS promoter, suggesting a dir-
ect binding by CRP. Moreover, the authors showed that
base-substitutions performed in the CRP-binding sites
at the rpoS promoter region, led to a decreased rpoS
transcription, concluding that CRP is an rpoS up-regulator
[25]. Nevertheless, this result can be also explained by the
fact that the base-substitution may be affecting unknown
overlapped regulators’ binding sites. On the other hand,
Hirsch and Elliott showed that S. Typhimurium rpoS-lacZ
Acrp exhibited twice more [-galactosidase activity com-
pared with the otherwise isogenic strain S. Typhimurium
rpoS-lacZ, suggesting that CRP is an RpoS repressor [19],
supporting our findings in S. Typhi. In addition, CRP has
been described as a pleiotropic factor in S. enterica impli-
cated in carbon source utilization, synthesis of flagella, re-
duced growth rate, and attenuation of virulence, among
other functions [29-32]. This versatility can be explained,
at least in part, by the fact that CRP is regulating rpoS.

As previously stated, hlyE presents a CRP-independent
down-regulation when glucose is present in the culture
medium, suggesting the presence of another glucose-
dependent down-regulator [14]. In this work, we found
that fis participates in hlyE repression especially in pres-
ence of glucose (Figure 1). It has been stated that Fis
regulates gene expression by increasing/decreasing its
level in E. coli [20]. In this work, we found that glucose
induces the fis expression in S. Typhi, suggesting that
Fis is also regulated by its level in S. enterica (Figure 1E).
On the other hand, Fis precludes the RpoS accumula-
tion by repressing the rpoS transcription (Figure 2). Hirsch
and Elliott showed that fis represses rpoS expression by
direct binding in S. Typhimurium [19], supporting our
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observations. As with CRP, Fis might participate in down-
regulation of hlyE via RpoS, and this regulation could be
exerted directly due to the presence of several putative Fis
binding boxes in S. Typhi rpoS promoter (Figure 2C).
Considering that crp and fis deletions seem to produce
additive effects in KlyE transcription (Figure 1A), these
two repressors probably act through different pathways to
repress the hlyE expression (Figure 4).

We also explored the relative participation of rpoS and
phoPQ in the up-regulation of hlyE under pH 5.0 and
low Mg>* concentrations. We found that RpoS$ is essen-
tial for /hlyE expression under all the tested conditions,
strongly suggesting that RpoS accumulation is the most
relevant event in hlyE regulation. Moreover, both rpoS
and phoPQ are necessary to achieve a complete induction
of hlyE under low pH in S. Typhi, where the phoPQ-
dependent induction occurs via RpoS. The induction
pathway of RpoS by low pH is not fully understood.
One component of induction is RpoS stabilization, where
PhoPQ participates by serving as a transcriptional activa-
tor of the iraP (yaiB) gene in S. Typhimurium. IraP en-
hances RpoS stability by interacting with RssB, the protein
that normally delivers RpoS to the ClpXP protease for
degradation [33], supporting the fact that phoPQ requires
rpoS to induce hlyE expression (Figure 4). On the other
hand, it has been reported that mutant strains unable to
degrade RpoS still exhibited induction under acid shock in
S. enterica. Moreover, rpoS translation is enhanced under
low pH [34]. This phenomenon can explain the fact
that rpoS is able to partially induce hlyE transcription
under pH 5.0, independently of the presence of phoPQ
(Figure 3A).

In the case of the hlyE induction under low Mg**
concentrations, we found that phoPQ is essential to in-
crease hlyE transcript in an rpoS-dependent manner. In S.
enterica RpoS accumulates when bacteria are grown under
low Mg>" conditions [33]. This process requires PhoPQ,
which is specifically activated under low Mg>* by in-
creasing the transcription of iraB, as previously reported
[33,35]. It is possible that PhoPQ is participating in the
increase of hlyE transcription under low Mg** via IraP-
dependent RpoS stabilization. Nevertheless, in the case
of low Mg>* we found that 7poS is unable to induce an
increased transcription of hlyE in a AphoPQ background.
Previous studies reported that low Mg”* concentrations
are unable to induce RpoS accumulation in a AphoPQ
background [33], supporting our results.

In this paper we showed that RpoS is the most import-
ant activator of /lyE expression. According to our results,
RpoS sits atop a hierarchical network that integrates di-
verse environmental and physiological cues. PhoPQ, CRP,
and Fis fine-tune these global inputs to precisely control
the dosage of HIyE, but also the time in the infection cycle
in which this gene is expressed. For HIyE, the amount of
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protein produced can determine the function. For in-
stance, sublytic concentrations of HIyE affect the Ca**
homeostasis in epithelial cells by induction of slow,
intracellular Ca®* oscillations, while increased concen-
trations act cytolytically [36]. Thus, HIyE belongs to the
novel group of pore-forming toxins shown to elicit such
biphasic responses [36]. On the other hand, HIyE appar-
ently is participating in different stages of the infective
process. Previously, it has been reported that S. Typhi
hlyE mutants are impaired in invasion of human epithe-
lial cells HEp-2 in vitro [10]. Consistently, other pore-
forming hemolysins play critical roles in invasion of
eukaryotic epithelial cells [37-39]. These data show that
hlyE could participate in the intestinal stage of the S.
Typhi infection. On the other hand, HIyE is capable to
reduce or control bacterial growth, as hlyE deletion en-
hanced S. Typhi survival within macrophages without
affecting cytotoxicity [11], suggesting that this cytolysin
could also be participating in the systemic dissemin-
ation of bacteria inside macrophages. In addition, hlyE
increase their expression when bacteria were cultured
under high osmolarity, a condition normally associated
to the gut [14,40], but also when bacteria were cultured
under low Mg2+ concentrations or low pH (Figure 3),
conditions found inside the macrophages [41,42]. RpoS,
PhoP, CRP and Fis may be important for the proper
hlyE expression inside macrophages, since the RpoS and
PhoP respective regulons are activated inside these cells;
and both crp and fis expression is repressed in the same
environment [41,43]. Furthermore, hlyE induction by
high osmolarity is RpoS dependent [14], reinforcing the
fact that this sigma factor is an integrator of different
signaling pathways. All this evidence together strongly
suggests that HIyE is not circumscribed to a single stage
of the infective process, as previously proposed [14].
This work show that hlyE presents a complex regulation
network involving different environmental signals and
global regulators, presumably because this gene is actually
participating in different stages of the S. Typhi infections
process.

Conclusions

We studied the hlyE regulation in S. Typhi using genetic
approaches. All our results together show that, at least
under the tested conditions, RpoS is the most important
up-regulator in the hlyE regulatory network. RpoS inte-
grates multiple environmental signals and global regula-
tors, including CRP, Fis, and PhoP signaling pathways, to
control S. Typhi hlyE expression.

Methods

Bacterial strains, media and culture conditions

A clinical isolate of S. Typhi, named STH2370, was ob-
tained from the Infectious Diseases Hospital Lucio
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Coérdova in Santiago, Chile. S. Typhi STH2370 strain
was grown to an optical density at 600 nm (ODggg) of
1.4, and frozen as a primary stock. S. Typhi STH2370
and derivative strains were grown routinely in liquid
culture in Luria-Bertani (LB) broth (Bacto tryptone,
10 g/liter; bacto yeast extract, 5 g/liter; NaCl, 5 g/liter)
at 37°C, with aeration provided by shaking. When re-
quired, medium was supplemented with chloramphenicol
(20 pg/ml), ampicillin (100 pg/ml), gentamicin (20 pg/ml)
or glucose (0.4% w/v). LB medium was solidified by the
addition of agar (15 g/l). The culture medium was modi-
fied in order to simulate the environmental conditions
during S. Typhi infection process. To determine the effect
of glucose in gene expression, bacteria were grown in LB
buffered at pH 7.0 to an ODgq = 0.35, washed three times
with PBS prior to be resuspended with LB buffered at
pH 7.0 (control) or LB buffered at pH 7.0 + 0.4% w/v
glucose. To determine the effect of low pH in gene ex-
pression, bacteria were grown in LB buffered at pH 7.0
to an ODggo = 0.35, washed three times with PBS prior
to be resuspended with LB buffered at pH 7.0 (control)
or LB buffered at pH 5.0 with buffer citrate. To deter-
mine the effect of low Mg>" in gene expression, bacteria
were grown in LB buffered at pH 7.0 to an ODgg = 0.35,
washed three times with PBS prior to be resuspended with
M9 10 mM Mg**(control) or M9 10 uM Mg>*. In all the
cases, bacteria were incubated 1 h at 37°C with shaking
prior to isolate total RNA or total proteins of each strain.
It is important to underline that all the strain tested are in
logarithmic phase at ODggo = 0.35 when cultured in LB
buffered at pH 7.0.

Construction of S. Typhi mutant strains

Mutant strains with substitution of the hlyE, rpoS, crp,
phoPQ or fis genes by resistance cassettes (cat: resistance
to chloramphenicol) or FRT scar were constructed using
the Red/Swap method [44]. PCR primers with 60 bases
long overlapping the internal regions of the genes were
synthesized with 40 bases at the 5 ends corresponding
to the regions flanking the desired substitutions (Table 1).
S. Typhi hlyE-3xFLAG and S. Typhi rpoS-3xFLAG mu-
tants were constructed using the primers listed in Table 1
as previously described [22]. All the double mutants
were constructed by electrotransformation with gDNA
from single mutants as described [23]. The presence of
each substitution was confirmed by PCR using primers
complementary to the DNA genome flanking the sites of
substitution.

Plasmid construction

PCR amplifications for plasmid construction were per-
formed using an Eppendorf thermal cycler and Taq
(Fermentas) DNA polymerase. Reaction mixtures con-
tained 1x PCR buffer, 1.5 mM MgCl,, each dANTP
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(200 mM), primers (1 mM), 100 ng of template DNA,
and 2 U of Taq DNA polymerase. Standard conditions
for amplification were 30 cycles at 96°C for 40 s, 60°C
for 45 s, and 72°C for 2 min, followed by a final extension
step at 72°C for 10 min. Template S. Typhi STH2370
chromosomal DNA was prepared as described [45]. For
complementing S. Typhi ArpoS or S. Typhi AphoPQ, we
constructed the pBRPOS and pBPHOPQ plasmids by
cloning the PCR product generated with RPOS-C +
RPOS-NP or PHOPQ-C + PHOPQ-NDP, respectively, into
pBBR5. For complementing S. Typhi Acrp or S. Typhi Afis,
we constructed the pTCRP and pTFIS plasmids by clon-
ing the PCR product generated with CRP-C + CRP-NP
or FIS-C + FIS-NP, respectively, into pCR TOPO 2.1 TA
(Invitrogen) according to the manufacturer’s instruc-
tions. In all the cases, the cloned amplicons contained
the ORF and the corresponding promoter region.

RNA isolation, reverse transcription and real-time
quantitative PCR (RT-PCR)

Total mRNA from the strains grown under the tested con-
ditions was extracted using TRIzol reagents (Invitrogen)
as described by the manufacturer. RNA was precipitated
with isopropanol for 10 min at room temperature, washed
with ice cold 70% v/v ethanol and resuspended in DEPC-
treated water prior to treatment with DNase I to remove
any trace of DNA. Purity of extracted RNA was deter-
mined by spectrometry. Reverse transcription was per-
formed on 2 pg of DNase-treated RNA using Superscript
II RT (Invitrogen) at 50°C for 50 min followed by 70°C for
10 min in 20 pl with 2.5 mM of the corresponding reverse
primer (RT-HLYE-C, RT-RPOS-C and RT-FIS-C for hlyE,
rpoS and fis mRNA detection, respectively). The 16sRV
reverse primer for 16 s mRNA by quantitative detection
was used under each condition to normalize against a
reference transcript. Relative quantification of each mRNA
was performed using Brilliant II SYBR Green QPCR
Master Reagent Kit and the Mx3000P detection system
(Stratagene). The reaction mixture was carried out in a
final volume of 20 pl containing 1 pl of diluted cDNA
(1:1000), 0.24 pl of each primer (120 nM) (RT-HLYE-C +
RT-HLYE-N for hlyE mRNA detection, RT-RPOS-C + RT-
RPOS-N for rpoS mRNA detection, RT-FIS-C + RT-FIS-N
for fis mRNA detection and 16sFW + 16sRV for 16 s
mRNA detection), 10 pl of 10X Master Mix, 0.14 ul of di-
luted ROX (1:200) and 8.38 pl of nuclease-free H,O. The
reaction was performed under the following conditions:
10 min at 95°C followed by 40 cycles of 30 s at 95°C, 30 s
at 53°C and 45 s at 72°C. Finally a melting cycle from
53 to 95°C was performed to check for amplification
specificity. Amplification efficiency was calculated from a
standard curve constructed by amplifying serial dilutions
of RT-PCR products for each gene. These values were
used to obtain the fold change in expression for the gene
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Table 1 Primers used in this study
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Primers used for the red/swap technique [44]

crp (H1 + P1)
crp (H2 + P2)
fis (H1 + P1)

fis (H2 + P2)
rpoS (H1 + P1)
rpoS (H2 + P2)
phoP (H1 + P1)
phoQ (H2 + P2)
Primers for epitope tagging (3xFLAG) [22]
rpoS-3xFLAG
rpoS-kan
hlyE-3xFLAG
hlyE-kan
Primers used for cloning
CRP-C

CRP-N

RPOS-C
RPOS-N
PHOPQ-C
PHOPQ-N

FIS-C

FIS-N

Primers for mRNA detection by RT-PCR
RT-HLYE-C2
RT-HLYE-N
RT-RPOS-C
RT-RPOS-N
RT-FIS-C
RT-FIS-N
16SFW

16SRV

TTCTTGTCTCATTGCCACATTCATAAGTACCCGTCAAAGAtgtaggctggagctgcttcg
GGCGAGGTTACCTACTTTTTCAGAGGTGACTTGTAAGCGACatatgaatatcctccttag
AAATTCTGACGTACTGACCGTTTCTACCGTTAACTCTCAGtgtaggctggagctgcttcg
ACGCAGCGTACCACGGTTGATGCCCATCATCAGAGCAGCACatatgaatatcctccttag
AATACGCTGAAAGTTCATGATTTAAATGAAGACGCGGGtgtaggctggagctgctteg
GCGCAGGTATACGTTCAGCTCTTTAACAATGTGAAT catatgaatatcctccttag
CCAGGATTCAGGTCACCAGGTCGATGCCGCAGAAGATGtgtaggctggagctgcttcg
TTCCTCTTTCTGTGTGGGATGCTGTCGGCCAAAAACGAC Ccatatgaatatcctccttag

GCAGACGCAGGGGCTGAATATCGAAGCGCTGTTCCGCGAGgactacaaagaccatgacgg
TCTGGACGGTATATCAGTGTCAGCATTGTCTGTATACCT Geatatgaatatcctccttag
AAGACACGGTAAGAAGACGCTTTTCGAGGTTCCTGACGTCgactacaaagaccatgacgg
GAATGCGGAAATCACCCTCGACTACCAGCTTAACGCCTGACcatatgaatatcctecttag

CTGCAGGCTGGCCTATCAATAAACCA
CTGCAGAAGCGAGACACCAGGAGACA
CTGCAGCCGATGATTTGTCCACGCTG
CTGCAGTGCCCCGTATAGCCTGAATG
CGTTCAAGAAAGTCGGGCCA
GCCTTAAAGCCATGACGCCG
TTCTGCAGGCGCCTTTTTAAACAAGCAG
TTCTGCAGGACCAGTTTCGGCGCACATT

CGCTTCATTCAGTTTCTTGA
AAGTTTTGCTTATGGACAGC
TTCGGAATCACCGCCCAGCG
TCGCCGTCGCATGATTGAGAG
CATCATCAGAGCAGCACGGG
TCAGGATCAGGTAACCCAAA
GTAGAATTCCAGGTGTAGCG
TTATCACTGGCAGTCTCCTT

Lowercase: Annealing site with pKD3 [44].
Italics: Annealing site with pSUB11 [22].
Bold letters: Pstl restriction site.

of interest normalized with 16 s levels as previously
described [46]. Experiments were performed in three
biological and technical replicates for each culture condi-
tion. When appropriate, the statistical significance of dif-
ferences in the relative expression data was determined
using the one way ANOVA test.

Immunodetection analysis

3xFLAG fusion proteins were immunodetected by the
use of anti-FLAG M2 mAbs from Sigma. Strains carry-
ing the epitope-tagged gene were grown under the con-
ditions described above and washed twice with 100 mM

Tris—HCl pH 8.0. Bacterial pellets were resuspended
with 100 mM Tris—HCI and sonicated 60 s on ice. Then,
the samples were mixed with 1 volume of Laemmli
buffer [47]. Suspensions were incubated at 98°C for
5 min. The resulting lysates were quickly centrifuged to
remove cell debris and used, straight or suitably diluted,
for SDS-PAGE. Twenty pg of bacterial proteins, previ-
ously quantified following the Bradford method [48],
were resolved by SDS-PAGE and then transferred to
poly (vinylidenedifluoride) membranes and probed with
mAbs (1:1.000) and horseradish peroxidase-conjugated
goat antimouse IgG [1:5.000 (Sigma)]. Detection was
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performed by enhanced chemioluminescence (ECL,
Amersham Pharmacia).

Hemolytic activity quantification

S. Typhi and derivative strains were grown under the
tested conditions, the ODgo, was recorded, and the cul-
tures were chilled to 4°C. Samples of each strain were
washed twice with PBS, resuspended in 1 ml of PBS and
then sonicated for 60 s on ice. This suspension was gently
mixed with 1 volume of sheep erythrocytes (10° cells/ml)
previously washed twice with PBS, and incubated 30 min
at 37°C without shaking. To measure the hemolytic activ-
ity, samples were cleared by centrifugation and the ODsy45
was determined. Instead of the bacterial suspension, PBS
or 5% sodium deoxycholate (DC) were used as reference
hemolysis values for 0 and 100%, respectively. The arbi-
trary hemolytic units were calculated using the formula:
(ODsg5Sample — ODs545PBS)/(OD545DC — OD545PBS).
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