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Abstract

changes in the UniFrac-based clustering of the samples.

Background: The microbial community analysis of stools requires optimised and standardised protocols for their
collection, homogenisation, microbial disruption and nucleic acid extraction. Here we examined whether different
layers of the stool are equally representative of the microbiome. We also studied the effect of stool water content,
which typically increases in diarrhoeic samples, and of a microbial disruption method on DNA integrity and,
therefore, on providing an unbiased microbial composition analysis.

Results: We collected faecal samples from healthy subjects and performed microbial composition analysis by
pyrosequencing the V4 region of the 165 rRNA gene. To examine the effect of stool structure, we compared the inner
and outer layers of the samples (N = 8). Both layers presented minor differences in microbial composition and
abundance at the species level. These differences did not significantly bias the microbial community specific to an
individual. To evaluate the effect of stool water content and bead-beating, we used various volumes of a water-based
salt solution and beads of distinct weights before nucleic acid extraction (N =4). The different proportions of water
did not affect the UniFrac-based clustering of samples from the same subject However, the use or omission of a
bead-beating step produced different proportions of Gram-positive and Gram-negative bacteria and significant

Conclusion: The degree of hydration and homogenisation of faecal samples do not significantly alter their
microbial community composition. However, the use of bead-beating is critical for the proper detection of
Gram-positive bacteria such as Blautia and Bifidobacterium.
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Background

In the 1680s, Anton van Leeuwenhoek used homemade
microscopes to provide the first description of faecal bac-
teria. Faecal specimens contain one of the densest micro-
bial communities known, they have been shown to contain
similar microbial community than the colon [1] and do
not require an invasive collection protocol. Therefore they
continue to be the samples most widely used for studying
the intestinal microbiome, a collection of microbial ge-
nomes. In the last ten years, the greatest insights into the
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human intestinal microbiome have come about as a result
of the application of metagenomics approaches to faecal
samples, as attested by more than 1294 scientific publica-
tions found under the terms “human faecal microbiome”
and “human fecal microbiome ” in PubMed.
Metagenomics approaches in biomedicine seek to pro-
vide a comprehensive picture of the diversity and abun-
dance of dominant and subdominant microbial species in
health [2,3] and in diseased states such as inflammatory
bowel disorders (IBDs), irritable bowel syndrome (IBS)
and other functional bowel disorders (FBD) [4-7]. During
the course of these diseases, stool consistency is altered,
varying from very hard (in constipation) to entirely liquid
(in diarrhoea), as determined by the Bristol stool scale [8].
Diarrhoea is defined as an abnormally frequent dis-
charge of semi-solid or fluid faecal matter from the bowel.
As such, it usually implies a large percentage of water. A
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normal stool sample is considered to have a water content
of about 75%, while that of a diarrhoeic stool is > 85% [9].
The freezing of specimens containing water causes the for-
mation of ice crystals, which damage the microbial cell
wall. Consequently, there is an increased release of cellular
components such as DNase and RNase, which in turn
may degrade nucleic acids at the beginning of the DNA
extraction procedure. In intestinal disorders, such as IBD,
IBS, and infectious diseases, the sampling of diarrhoeic
stools is common [10,11]. However, how the water con-
tent of these samples affects the integrity of microbial
DNA, and therefore the analysis of microbial composition,
is unclear.

Steps such as stool homogenisation during collection or
mechanical cell wall breaking during DNA extraction may
affect the analysis of the microbial community. To date,
no study on stool homogenisation or mechanical cell wall
breaking using high-throughput sequencing technique has
been reported. An appropriate collection protocol, to-
gether with a better understanding of the characteristics of
a stool, is critical for downstream microbial community
analysis.

Here we tested various factors that may affect microbial
community analysis during stool sample collection and
DNA extraction steps using gel electrophoresis and pyrose-
quencing of the 16S rRNA gene. In this regard, we exam-
ined the effect of homogenising the stool before freezing,
the addition of a physiological solution to the stools to
simulate a diarrhoeic condition before freezing, and the
use of beads to breakdown the microbial cell wall during
DNA extraction.

Results and discussion

Experimental design

Faecal samples were collected from healthy volunteers
(n =8) who had not taken antibiotics during the previ-
ous three months. Fresh samples were aliquoted as de-
scribed below.

To test whether different layers of a stool sample un-
equally represent the microbiome, we compared the mi-
crobial composition of each faecal sample in three
conditions: fully homogenised during sample collection,
non-homogenised outer layers, and non-homogenised
inner layers. For this comparison, two aliquots from
each volunteer (#1 to #8, named L1 to L8) and for each
condition were used. Thus, a total of 48 samples were
prepared for microbial composition analysis.

To evaluate the effect of stool water content and the
bead-beating technique on the integrity of microbial DNA
and, therefore, on microbial composition analysis, fresh
stool samples were homogenised with an increasing pro-
portion of phosphate-buffered saline (PBS), as indicated in
Table 1. Assuming that a normal stool contains 75% (range
56.6%—84.9%) of water, the dilutions tested corresponded
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Table 1 Addition of PBS to obtain stools with a range of
water content

ID Weight (mg) Presence of beads PBS (ul) Water content
L# 250 yes - 75.0%
DL#.00 250 yes 0 75.0%
DL#.25 187.5 yes 62.5 80.0%
DL#.50 125 yes 1250 87.5%
DL#.75 62.5 yes 1875 93.8%
DL#.90 25 yes 2250 97.5%
DL#.98 5 yes 2450 99.5%
DL#B.00 250 yes - 75.0%
DL#B.25 187.5 yes - 75.0%
DL#B.50 125 yes - 75.0%
DL#B.75 62.5 yes - 75.0%
DL#B.90 25 yes - 75.0%
DL#B.98 5 yes - 75.0%
DL#P.50 125 - 125.0 87.5%
DL#P.75 62.5 - 187.5 93.8%
DL#P.90 25 - 2250 97.5%
DL#P.98 5 - 245.0 99.5%
DL#C.50 125 - - 75.0%
DL#C.75 62.5 - - 75.0%
DL#C.90 25 - - 75.0%
DL#C98 5 - - 75.0%

# indicates the identification number for each subject.

L# = stands for layer in the homogenisation study.

DL# =the “D" stands for diarrhoea in the water content study; the “L” refers to
samples that have been also used in the homogenisation study, that
contained PBS and underwent a bead-beating step.

DL#B = samples that did not contain PBS but underwent a bead-beating step.
DL#P = samples that contained PBS but did not undergo a bead-beating step.
DL#C = samples that did not contain PBS and did not undergo a

bead-beating step.

to 75%, 80%, 87.5%, 93.8%, 97.5% and 99.5% of water con-
tent, respectively, which reflect the range of typical diar-
rhoeic samples [9,12]. Similar amounts of each diluted
sample were then disrupted with and without a bead-
beating step. This procedure was carried out for four of the
eight volunteers cited above (#1, #3, #5 and #8, named
DL1, DL3, DL5 and DLS8). Thus, a total of 46 samples were
collected for microbiome analysis.

Effect of stool homogenisation during collection

Usually, participants are instructed to homogenise their
stool samples during collection. However, given the labori-
ous and unpleasant nature of this task, it is possible that
they might not have fully complied with this procedure.
To evaluate the impact of homogenisation on the compos-
ition of the microbial community, we analysed the 48 sam-
ples as specified in the experimental design cited above
(L#) by means of pyrosequencing the 16S rRNA gene at a
normalised depth of 6173 sequences of 290 bp per sample.
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The microbial profile at the species level was quite
similar between a portion of the stool collected in the
outer area, in the inner area and after homogenisation,
except for sample LO4.1, which showed a similar diver-
sity but distinct abundance of Operational Taxonomic
Units (OTUs) (Figure 1, Additional file 1: Table S1).
This observation was confirmed by an Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) cluster-
ing analysis based on unweighted and weighted UniFrac
distances (Figure 2). Sample LO4.1 from subject #4 was
the only one that clustered far from the other samples
from the same stool when both microbial composition and
abundance were considered (weighted UniFrac analysis,
Figure 2B).

Effect of stool water content

To evaluate how stool water content affects the microbial
community, we analysed the 46 samples from four out of
the eight participants, as described in the experimental de-
sign section above.

After the extraction procedure, genomic DNA was
loaded in an Agilent 2100 Bioanalyzer chip in order to
evaluate integrity. A comparison of the DNA extracted
from DL1 samples (presence of beads and PBS) with those
of DL1B’s (presence of beads but not PBS) showed that the
addition of PBS caused greater genomic DNA degradation
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(Figure 3A). This finding was confirmed by a decrease in
DNA size to lower than 10 Mbp with 125 mg of stool (sam-
ple DL1.50, Table 1) and 50% PBS. In contrast, in the ab-
sence of PBS this degradation was also observed but only
when the stool weighed 62.5 mg (DL1B.75). Interestingly,
we observed a double effect of stool water content and
bead-beating when dealing with a small amount of stool
matter.

Although the presence of PBS could increase the deg-
radation of genomic DNA, the microbial community
profile was not affected at the species level (Figure 3B).
This observation could be explained by the fact that the
microbial analysis was based on the PCR amplification
of the V4 region of the 16S rRNA gene, which is around
300 bp, whereas the degraded genomic DNA fragments
were larger than 3000 bp. Moreover, this size may be
sufficient for shotgun sequencing as DNA would be cut
into fragments of between 400 and 800 bp. However,
further sequencing experiments are required to confirm
that the gene content analysis is not biased.

Effect of bead-beating during DNA extraction

A bead-beating step during DNA extraction is required to
break down the cell wall of Gram-positive bacteria [13]. To
evaluate the effect of bead-beating on the microbial com-
munity of diarrhoeic samples, we compared conditions
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Figure 1 Spatial organization of the microbial community (species level) in stool specimens. 250 mg of stool (N = 8) was collected in the
outer (LO) and inner area (L) layer and once the stool had been homogenised (LH). Stools were collected in duplicates for each condition.
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Figure 2 UPGMA clustering based on weighted (A) and unweighted UniFrac (B) distance analysis. 250 mg of stool (N =8) was collected
from the outer (LO) and inner (L) layers and after the stool had been homogenised (LH). Stools were collected in duplicates for each condition
(48 samples in total). Unweighted UniFrac allows clustering by taking into account only the microbial composition, while weighted UniFrac
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with and without a bead-beating step, and with and without
an increasing volume of PBS (samples DL5 and DL8 versus
DL5P and DL8P). Although the disruption step caused deg-
radation of genomic DNA, in an increased volume of PBS,
it did not greatly modify the microbial community profile
(Figure 4B). Moreover, samples containing a different vol-
ume of PBS (see samples DL5.00 to DL5.98 and DL8.00 to
DL8.98) clustered together (Figure 5A and B), as shown by
an UPGMA-UniFrac analysis, and presented a similar alpha
diversity, as measured by phylogenetic diversity (PD) metric
(Additional file 2: Figure S1). However, in the absence of
bead-beating during the extraction procedure, genomic
DNA did not show any sign of degradation at any volume
of PBS tested, but the DNA yields were lower than with
bead-beating (the average sum was 816 ng/ul versus 941
ng/ul with bead-beating). The microbial profile of these
samples also differed completely to that of those subjected
to bead-beating (DL# versus DL#P and DL#C; where # = 5
or 8). As expected, the absence of bead-beating significantly
decreased the detection of Gram-positive bacteria such as
Firmicutes and Actinobacteria phyla (Figure 4B). At the
genus level, proportions of Blautia and Bifidobacterium

were decreased by at least 5- and 14-fold, respectively
(Mann Whitney test, p < 0.001) (Figure 5).

The UPGMA clustering analysis based on the un-
weighted UniFrac method, which takes into account the
microbial composition, did not show separation of the
samples with or without a bead-beating step (Figure 6A).
However, when the analysis was based on a weighted Uni-
Frac method, which considers both microbial composition
and abundance, samples from one of the four subjects
clustered separately (Figure 6B). Here we show that the in-
clusion of this procedure dramatically changed both the
migration profile of the genomic DNA and the taxonomic
profile of stool samples.

Conclusion

Microbial community studies involve a variety of proce-
dures, ranging from sample collection to sequence data
interpretations. Given the increasing relevance of meta-
genomics for research into intestinal disorders, it is cru-
cial that the data generated in each study be optimally
comparable across all those already underway. However,
strong biases can be introduced into stool research, in
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1 mg of faecal sample was loaded on an Agilent 2100 Bioanalyzer chip using the Agilent 12000 kit. DL1 corresponds to participant L1 from the
homogenisation evaluation. (B) Microbial diversity at the species level. The taxonomic analysis was performed using a cut-off of 97% similarity.
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Figure 4 Effect of bead-beating on genomic DNA integrity and on microbial community composition. (A) Gel electrophoresis analysis. For
each sample, genomic DNA equivalent to 1 mg of faecal sample was loaded on an Agilent 2100 Bioanalyzer chip using the Agilent 12000 kit.

(B) Microbial diversity profile at the phylum level. Sample identification is identical to that indicated in the legend of Figure 3. DL5 and DL8
correspond to the participants L5 and L8 from the homogenisation evaluation. Samples with the identification starting with DL5C and DL8C were
not subjected to bead-beating nor did they contain PBS. DL5P and DL8P contained only PBS. Black bars indicate the samples subjected to
bead-beating and grey bars those that were not, while blue bars show the samples to which PBS was added.
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particular during stool collection and storage and during
DNA extraction. We previously recommended that stool
samples be kept at room temperature and be brought to
the laboratory within 24 h after collection or alternatively
be stored immediately at -20°C by the volunteer in a
home freezer, to be later transported in a freezer-pack to
the laboratory, where all samples are stored at -80°C be-
fore further treatment [14].

Our findings from the present study indicate that
homogenisation of the stool during collection is recom-
mendable but not indispensable. Indeed, samples col-
lected from the inner and outer layers of stool samples
showed a similar microbial composition and abundance.

Moreover, we show that the percentage of water typically
found in diarrhoeic samples does not affect the cluster-
ing of samples from the same subjects. To validate our
results, analysis of diarrhoeic samples could be compared
with non-diarrhoeic ones from the same individual; how-
ever, the collection of these two types of samples from
the same healthy subjects would be complicated for
ethical reasons. Moreover, since other next generation se-
quencing platforms will allow a greater sequencing depth,
this may allow a deeper characterization of the microbial
community and could reveal additional differences in the
microbial community composition for the various condi-
tions measured in this study.
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bars also indicate the samples subjected to bead-beating and grey bars those that were not.
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Finally, our study also reveals that microbial disruption
by bead-beating allows greater detection of Gram-positive
bacteria such as Blautia (Firmicutes phylum) and Bifido-
bacterium (Actinobacteria phylum), commonly detected
in human stools. In conclusion, the hydration of faecal
samples and their degree of homogenisation do not sig-
nificantly alter their microbial community composition
and structure. However, although the mechanical dis-
ruption of microbial cells causes genomic DNA degradation
in simulated diarrhoeic stool samples, our findings confirm
that this step is necessary for the detection of Gram-
positive bacteria such as Blautia and Bifidobacterium.

Methods

Ethics statement

Subjects provided their written consent to participate in
this study, and the Institutional Review Board of the Vall
d’Hebron Hospital (Barcelona, Spain) approved this con-
sent procedure.

Sample collection protocol

Stools were collected from eight healthy participants. The
collection protocol involved providing participants with an
ice bag containing an emesis basin (Ref. 104AA200, PRIM
S.A, Spain), a 50-mL sterile sampling bottle (Ref. 409526.1,
Deltalab, Spain), a sterile spatula (Ref. 441142.2, Deltalab,
Spain), and gloves (Additional file 3: Figure S2) during their
visit to the laboratory. For the purpose of stool collection,
the participants were instructed to do the following once at
home: 1) use the emesis basin to collect the stool; 2) after
the deposit, transfer it to the sampling bottle ensuring no
homogenisation; 3) take it to the lab within the first 3 hours
after deposit; and 4) in the laboratory, the samples were
processed as mentioned in the experimental design, and
then the samples were stored at —80°C.

Naming convention
Since the samples from same individuals were used to test
different factors that could affect microbial composition, a
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labeling nomenclature had to be settled down as indicated
in Table 1. The “D” stands for “diarrhoea” in the water con-
tent study. The “L” stands for “layer”, “O” for “outer” and
“I” for the “inner" layer of the stool, and “H” for “homoge-
nised stool” in the homogenisation evaluation. The “P”
stands for samples that contained PBS to simulate diar-
rhoea not undergoing bead-beating, while “B” stands for
samples that did not contain PBS, but underwent bead-
beating. Samples with the “C” label are controls that did
not contain PBS and did not undergo bead-beating. The
numbers 1-8 signify the 8 different volunteers.

Genomic DNA extraction

To evaluate the need for stool homogenisation during
collection, aliquots (250 mg) of each sample were sus-
pended in 0.1 M Tris (pH 7.5), 250 ul of 4 M guanidine
thiocyanate, 40 pul of 10% N-lauroyl sarcosine and 500 pl
of 5% N-lauroyl sarcosine, as previously described in
[15]. DNA extraction was carried out by mechanical
disruption of the microbial cell wall using beads (Lysing
matrix E, MP Biomedicals, Spain). The disruption was
performed by shaking the mixture using the Bead-
Beater-8 (BioSpec, USA) at a medium speed of about 1500
oscillations/min for 3 minutes, followed by 3 minutes in
ice and again followed by 5 minutes at a medium speed of
about 1500 oscillations/min. Finally, nucleic acids were re-
covered from clear lysates by alcohol precipitation.

To evaluate the effect of stool water content and a bead-
beating step, aliquots of samples were homogenised with
various volumes of PBS (final weight of 250 mg) and with
or without beads, as described in Table 1. They were then
processed the same way as described above. In samples in
which beads were not used, the bead-beater step was also
omitted.

After genomic DNA extraction, an equivalent of 1 mg of
each sample was used for DNA quantification using a
NanoDrop ND-1000 Spectrophotometer (Nucliber). DNA
integrity was examined by microcapillary electrophoresis
using an Agilent 2100 Bioanalyzer with the DNA 12000
kit, which resolves the distribution of double-stranded
DNA fragments up to 17,000 bp in length.

Microbial community analyses

454 pyrosequencing of the V4 variable region of the 16 S
rRNA gene

To analyse bacterial composition, we subjected extracted
genomic DNA to PCR-amplification of the V4 hyper-
variable region of the 16S rRNA gene. On the basis of our
analysis done using PrimerProspector software [16], the
V4 primer pairs used in this study were expected to amp-
lify almost 100% of the Archaea and Bacteria domains.
The 5 ends of the forward primer V4F_517_17 (5'-GC
CAGCAGCCGCGGTAA-3") [17] and the reverse primer
V4R_805_19 (5'-GACTACCAGGGTATCTAAT-3") [18]
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were tagged with specific sequences for pyrosequencing as
follows: 5'-CCATCTCATCCCTGCGTGTCTCCGACTC
AG-{MID}-{GCCAGCAGCCGCGGTAA}-3" and 5 CCT
ATCCCCTGTGTGCCTTGGCAGTCTCAG-{GACTACC
AGGGTATCTAAT}-3'. Tag pyrosequencing was per-
formed using multiplex identifiers (MIDs) (Roche Diag-
nostics) of 10 bases, which were specified upstream of
the forward primer sequence (V4F_517_17). Standard
PCR amplification was run in a Mastercycler gradient
(Eppendorf) at 94°C for 2 min, followed by 35 cycles of
94°C for 30 sec, 56°C for 20 sec, 72°C for 40 sec, and a
final cycle of 72°C for 7 min. PCR products were purified
using a PCR Purification kit (Qiagen, Spain) and subse-
quently sequenced on a 454 Life Sciences (Roche) FLX
system (Scientific and Technical Support Unit, Vall
d’'Hebron Research Institute, Barcelona, Spain), follow-
ing standard 454 platform protocols.

16S rRNA sequence data analysis

A total of 1.47 million sequence reads from 96 samples
were analysed using the default settings in the Quantita-
tive Insights Into Microbial Ecology (QIIME) package of
software tools [19]. The 16S rRNA sequences were quality-
filtered and demultiplexed. These reads had an average
length of 290 bp. Using the pick-otus protocol, we classified
the sequence reads into OTUs on the basis of sequence
similarity. Sequence reads were then clustered against the
February 2011 release of the Greengenes 97% reference
dataset (http://greengenes.secondgenome.com) [20,21].
Taxonomy was assigned using the Basic Local Align-
ment Search Tool (BLAST) [22]. The representative se-
quences of all OTUs were then aligned to the Greengenes
reference alignment using PyNAST [18], and this align-
ment was used to construct a phylogenetic tree using
FastTree [23] within QIIME. The resulting tree topology
with associated branch lengths was used for subsequent
diversity analyses (for many downstream analyses, samples
were rarefied at 6173 and 9390 sequences per sample for
the homogenisation and for the water content evaluations,
respectively). One sample (LO1.1) was removed from the
analysis because of low count reads. Alpha diversity was
estimated using the phylogenetic diversity metric. Beta di-
versity analysis was performed using the UPGMA cluster-
ing method based on weighted and unweighted UniFrac
distances [24].

Availability of supporting data

Sequences have been deposited in NCBI database with
the accession number SRP040438.

Additional files

[ Additional file 1: Table S1. Legend of Figure 1. ]
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Additional file 2: Figure S1. Alpha-diversity curves at a number of
rarefaction depths. Each line represents the results of the alpha-diversity
phylogenetic diversity whole tree metric (PD whole tree in QIIME) for all
samples from subjects #5 and #8.

Additional file 3: Figure S2. Kit for stool collection (see the method
section).
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