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Abstract

Background: Pine wilt disease (PWD) caused by the pinewood nematode Bursaphelenchus xylophilus is one of the
most serious forest diseases in the world. The role of B. xylophilus-associated bacteria in PWD and their interaction
with the nematode, have recently been under substantial investigation. Several studies report a potential
contribution of the bacteria for the PWD development, either as a helper to enhance the pathogenicity of the
nematode or as a pathogenic agent expressing interesting traits related to lifestyle host-adaptation.

Results: We investigated the nematode-bacteria interaction under a severe oxidative stress (OS) condition using a
pro-oxidant hydrogen peroxide and explored the adhesion ability of these bacteria to the cuticle surface of the
nematodes. Our results clearly demonstrated a beneficial effect of the Serratia spp. (isolates LCN-4, LCN-16 and
PWN-146) to B. xylophilus under the OS condition. Serratia spp. was found to be extremely OS-resistant, and promote
survival of B. xylophilus and down-regulate two B. xylophilus catalase genes (Bxy-ctl-1 and Bxy-ctl-2). In addition, we show
that the virulent isolate (Ka4) of B. xylophilus survives better than the avirulent (C14-5) isolate under the OS condition.
The bacterial effect was transverse for both B. xylophilus isolates. We could not observe a strong and specific adhesion
of these bacteria on the B. xylophilus cuticle surface.

Conclusions: We report, for the first time, that B. xylophilus associated bacteria may assist the nematode
opportunistically in the disease, and that a virulent B. xylophilus isolate displayed a higher tolerance towards the OS
conditions than an avirulent isolate.
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Background
Pine wilt disease (PWD), caused by the migratory plant
parasitic nematode Bursaphelenchus xylophilus (the pine-
wood nematode, PWN), is one of the most serious global
forest diseases [1]. B. xylophilus and its vector beetles are
listed as worldwide quarantine pests [2,3]. Under labora-
tory conditions, B. xylophilus has been reported to be
sufficient for PWD development [4]. However, be-
cause of their ubiquitous existence in the PWD envi-
ronments, some bacteria have also been thought to
be involved in the disease development. For example,
some B. xylophilus-associated bacteria are beneficial to
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B. xylophilus growth and reproduction [5], and others
have been suggested or demonstrated to produce interest-
ing bacterial traits that may contribute to B. xylophilus
pathogenic potential and, ultimately, to PWD develop-
ment [6-9].
Plant oxidative burst comprises in the production of re-

active oxygen species (ROS) as a result of the interaction
between plant cell receptors and pathogen-elicitors imme-
diately after pathogen invasion [10-12]. Being relatively
stable and permeable to the cell membrane, hydrogen
peroxide (H2O2) is the most predominant ROS in plant
oxidative burst [13,14]. In addition, H2O2 leads to the
formation of the radical OH, which is extremely reactive
and for which there is no scavenging system [15]. H2O2

was found to be transversal in different plant-pathogen sys-
tems, being a fundamental diffusible signal in plant resist-
ance to pathogens (i.e. involved in cell-wall reinforcement
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Figure 1 Three Bursaphelenchus xylophilus-associated bacteria
(Serratia spp. LCN-4, LCN-16 and PWN-146) have strong resistance
against the oxidative stress by H2O2. Average ± S.E. are from 3
biological replications composed of 3 technical replicate. There is
no significant difference within the Serratia spp., but between Serratia
spp. and E. coli OP50 (p < 0.05). Control E. coli OP50 could not survive
under strong oxidative stress conditions.

Figure 2 Mortality percentages of Bursaphelenchus xylophilus
virulent (Ka4) and avirulent (C14-5), with and without bacteria
(Serratia spp. LCN-4, LCN-16 and PWN-146, and E. coli OP50)
under oxidative stress conditions. For each H2O2 condition,
columns with different letters reflect statistical differences (p < 0.05).
In control conditions (0 mM H2O2), no statistical differences were
found between all treatments.

Vicente et al. BMC Microbiology 2013, 13:299 Page 2 of 8
http://www.biomedcentral.com/1471-2180/13/299
or induction of defence-related genes in healthy adjacent
tissues) [16].
Plant pathogens have evolved different evasion features

to protect themselves against plant oxidative stress (OS)
[17]. Bacterial defences include production of extracellular
polysaccharides (EPS) coating and periplasmic catalases,
and cytoplasmic catalase and superoxide dismutases (SOD)
to counteract ROS before and after entering bacterial cells
[18,19]. Other factors are related to the production of
polyesters, poly-(3-hydroxyalkanoate) (PHA) also known
as protective molecules [18], or phytotoxins (i.e. corona-
tine in Pseudomonas syringae) that are able to manipulate
or down regulate plant-defences for bacteria successful es-
tablishment [20]. In plant- or animal-parasitic nematodes,
antioxidant enzymes have been found to be the important
weapons against oxidative stress of their plant- or animal-
hosts [21]. Molinari [22] detected different antioxidant
enzymes in Meloidogyne incognita, M. hapla, Globodera
rostochiensis, G. pallida, Heterodera schachtii, H. carotae,
and Xiphinema index and their relationship with life
stages. Robertson et al. [23] and Jones et al. [24] have
studied, the role of host ROS breakdown by peroxire-
doxins (PXN) and glutathione peroxidases (GXP) in
G. rostochiensis, respectively. Bellafiore et al. [25] re-
ported the presence of several detoxifying enzymes, in
particular glutathione S-transferases (GST), in the secre-
tome of M. incognita as means of controlling the global
oxidative status and potential nematode virulence.
Pinus thunbergii [26] and P. pinaster [27] are the

B. xylophilus-susceptible pine trees found in Japan and
Europe (Portugal) to respectively, respond to a strong oxi-
dative burst in the earliest stages of nematode invasion.
Most likely, B. xylophilus has developed an efficient anti-
oxidant system to diminish the deleterious effects of oxi-
dative burst in their invasion and colonization [28], as well
as other plant parasitic nematodes [29]. Our study aimed
to understand the tolerance of the B. xylophilus-associated
bacteria under the OS condition and its interaction with
the nematode. Also, we explored the bacterial attachment
to the nematode cuticle for dissemination purposes.

Results
B. xylophilus and associated Serratia in stress conditions
Firstly, we examined the OS resistance of three B. xylophilus-
associated bacteria (Serratia spp. LCN-4, LCN-16 and
PWN-146) [8] and a control E. coli strain, OP50. Com-
pared to the control strain, all three Serratia spp. were
shown to comparably tolerate different concentrations of
H2O2 ranging from 15 to 40 mM, (Figure 1). Moreover,
the three isolates were able to survive up to 100 mM
H2O2, (data not shown).
Next, we examined the OS resistance of the two

B. xylophilus isolates with and without bacteria (Figure 2).
In the absence of bacteria (surface-sterilized nematode),
B. xylophilus isolates Ka4 (virulent) are more resistant
to OS than the C14-5 (avirulent) (p < 0.05). At 15 and
20 mM, B. xylophilus Ka4 presented 73% less mortal-
ity than B. xylophilus C14-5. The difference of their
mortality was 32% and 12% in 30 and 40 mM H2O2.
To test the effect of bacteria on B. xylophilus survival
under these conditions, we treated B. xylophilus with
Serratia spp. (isolates LCN-4, LCN-16 and PWN-146)
and E. coli OP50 for 1 h, washed away bacteria by excess
and measured their OS resistance. In the presence of
Serratia spp., both Ka4 and C14-5 were able to survive at



Figure 3 Observation of Serratia sp. LCN-16 in association with
Bursaphelenchus xylophilus after 1 h and 24 h contact. (A, B)
Differential interference contrast (DIC) microscope images of B.
xylophilus, treated by 1 h contact of bacteria before (A) and after (B)
washing with sterile DW. (C-F) DIC and fluorescence-merged images
of B. xylophilus, treated by 24 h contact of bacteria and washed with
sterile DW. The images of the head (C) and tail (D) region were cap-
tured in a single focal plane . Serial-section images were acquired
and stacked, showing surfaces of the head (E) and tail (F) region.
Scale bars, (A), (B), 30 μm; (C)-(F), 20 μm.
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all H2O2 concentrations tested, with mortality rates lower
than 10%. Similar to the previous results of Serratia spp.
under the OS conditions (Figure 1), there was no signifi-
cant difference between the OS treatments of three bac-
terial isolates in association with B. xylophilus (p > 0.05).
Serratia spp. PWN-146 was selected for further experi-
ments. In the presence of the E. coli OP50, the mortality
of the avirulent C14-5 isolate was higher and similar to
that in nematode alone conditions (p > 0.05). For virulent
Ka4, association with the control strain lead to similar
results at 40 mM H2O2. At 30 mM H2O2, there was
a significant difference with Ka4 alone (68%), with
control OP50 (38%), although under the same oxidant
conditions, survival of E. coli OP50 was significantly
reduced (Figure 2). Under the other H2O2 conditions,
treatment Ka4 in association with OP50 was almost simi-
lar to Ka4 alone. In non-stress conditions, all treatments
were statistically equal, indicating that the bacteria used
were not harmful to the nematodes.

Observation of the nematode-bacteria association
After 1 h contact between B. xylophilus and its associ-
ated bacteria, microcolonies were found along the nema-
tode body (Figure 3A). After extensive washing, bacteria
were still present in lesser amounts, and scarcely at-
tached to the nematode cuticle (Figure 3B). In order to
test if the bacterial adhesion to the nematode became
stronger, and if the nematode could uptake bacteria into
its body, we performed co-culturing of the nematodes
with the GFP-labelled bacteria on the same plate for 24 h.
Successful GFP-labelling of B. xylophilus-associated
bacteria was only obtained for Serratia spp. LCN-4 and
Serratia spp. LCN-16. Serratia spp. PWN-146 were previ-
ously found to be multi-drug resistant to the antibi-
otics available to select for GFP-containing minitransposons
[8]. After 24 h contact with Serratia spp. LCN-16, the dens-
ity of nematode-attached bacteria was sparse (Figure 3C-F),
and also no GFP fluorescence signal was detected in the
nematode (Figure 3C-F). Taken together, the adhesion of
these bacteria to the nematode surface and organs seems
to be weak and non-specific.

Relative gene expression of Bxy-ctl-1 and Bxy-ctl-2
Using the C. elegans catalases (Ce-CTL-1, Ce-CTL-2
and Ce-CTL-3) as the search queries, only two catalases
were predicted in the B. xylophilus genome, Bxy-CTL-1
(BUX.s00579.159) and Bxy-CTL-2 (BUX.s01109.377) [30].
Both cDNA sequences presented open reading frames
(ORF). The longest ORF for Bxy-ctl-1 encodes a 513 aa
protein with the molecular weight of ~59kDa. The cDNA
to sequence of Bxy-ctl-2 encoded a 512 aa protein with
the molecular weight of ~ 55 kDa. Both Bxy-CTL-1
and Bxy-CTL-2 were predicted as non-secretory per-
oxisomal proteins. However, according to Shinya et al.
[31], Bxy-CTL-2 was secreted after pine wood extract
stimulation. BlastP search for both catalases retrieved
very similar orthologous catalases (62-64% maximum
identity and e-value 0.0) from different species of
Caenorhabditis and other animal parasitic nematodes,
suggesting the catalases are conserved among the phylum
Nematoda (Additional file 1: Figure S1 and Additional
file 2: Figure S2).
The relative gene expression of catalase genes of

B. xylophilus Ka4 and C14-5 with or without Serratia
spp. PWN-146 was studied under stress conditions
(Figure 4). After 24 h exposure to 15 mM H2O2, the
expression levels of Bxy-ctl-1 and Bxy-ctl-2 genes in the
B. xylophilus Ka4 and C14-5 were measured (Figure 4A
and 4B). While virulent Ka4 catalases (Bxy-ctl-1 and
Bxy-ctl-2) were significantly (p < 0.05 and p < 0.01, respect-
ively) up-regulated by nearly 2-2.5-fold compared to the
non-stress condition (Figure 4A) The expression of Bxy-
ctl-1 in the avirulent C14-5 was unchanged and the expres-
sion of Bxy-ctl-2 was slightly reduced (p < 0.05) (Figure 4B).
These results seem to support the observations denoted in
Figure 2. In the presence of the associated bacteria Serratia
spp. PWN-146, the relative expression of Ka4 Bxy-ctl-1



Figure 4 Relative gene expression changes of Bxy-ctl-1 and
Bxy-ctl-2 H2O2 treatment for 24 h. Bursaphelenchus xylophilus Ka4
(virulent) and C14-5 (avirulent) with and without bacteria (A and B)
(Serratia spp. PWN-146 and E. coli OP50). *p < 0.05; **p < 0.01,
compared to a normalized value of 1.00 for control nematode
without H2O2.
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was highly suppressed (p < 0.01), nearly 0.5-fold less than
under non-stress conditions. Under the same condi-
tions, Ka4 expression of Bxy-ctl-2 was not affected.
The expression levels of both catalases in the avirulent
C14-5 showed no significant induction or suppression. In
the presence of control strain E. coli OP50, the expression
level of Bxy-ctl-1 in the Ka4 was induced four-fold under
stress conditions, and Bxy-ctl-2 expression level remained
unchanged under non-stress conditions. Similar result
was obtained for C14-5, in which E. coli OP50 induced 5
times more Bxy-ctl-1 expression under stress conditions,
explaining the results obtained in Figure 2. The expression
levels of Bxy-ctl-2 were also induced (p < 0.05), nearly 1.5-
fold (Figure 4B).

Discussion
Tolerance to host-mediated OS is an essential characteris-
tic of plant-associated organisms. In this study, we tested if
B. xylophilus-associated bacteria could tolerate prolonged
oxidative stress conditions with or without the nematode,
in an attempt to understand their behaviour in the oxida-
tive burst conditions of the host tree in the early stages
of PWD.
Plant-associated bacteria, beneficial or pathogenic,

have developed efficient detoxification systems to cope
with host-ROS [19,32]. This study demonstrates that
Serratia spp. LCN-4 and LCN-16 (S. proteamaculans,
100% identity) and PWN-146 (S. marcescens, 99% iden-
tity) associated to B. xylophilus could sustain growth
independently, and promote the survival of the nema-
todes under strong OS conditions. This result indi-
cates, again, a beneficial and a potential helper effect to
B. xylophilus. Vicente et al. [8] reported that some
B. xylophilus-associated bacteria displayed plant patho-
genic traits potentially related with PWD symptoms and
B. xylophilus pathogenicity such as high cellulolytic activ-
ity, biofilm formation, EPS exudation and siderophores
production. In fact, some of these traits are used by envir-
onmental bacteria as protectants against OS (i.e. EPS
or biofilm). More recently, Chen et al. [9] showed that
B. xylophilus-associated bacteria could support the nema-
tode in the degradation of host xenobiotics. Based on our
results, we suggest that B. xylophilus-associated Serratia
spp. has evolved an elaborate detoxifying system to ex-
press several antioxidant enzymes to cope with H2O2-
mediated OS.
In this study, we measured the transcript levels of two

catalases in B. xylophilus in the presence of H2O2. PWN
catalase genes presented a high protein similarity with
other nematode catalases, evidencing the conserved na-
ture of this enzyme [21]. Cap’n’collar (Cnc) transcription
factors are broadly conserved in eukaryotes except for
plant and fungi [33]. C. elegans CnC transcription factor
SKN-1 regulates cellular differentiation of the pharynx
and intestine during early embryogenesis, and also con-
trols expression of many antioxidative and detoxifica-
tion enzymes such as CTLs, GPXs and GSTs [34,35].
In C. elegans four pathways (p38 MAPK, Insulin/IGF-1
pathway, WDR-23 ubiquitin pathway, and GSK-3 path-
way) are known to control SKN-1 activity and the gen-
omic structures of these pathways are fully conserved in
B. xylophilus [30]. Bacterial effect was transversal to viru-
lent and avirulent B. xylophilus. Relative gene expres-
sion of catalase genes in B. xylophilus show that without
bacteria, the basal expression of the both non-secreted
Bxy-ctl-1 and secreted Bxy-ctl-2 genes in the virulent
isolate Ka4, were higher than the avirulent C14-5 by
2.5-fold, which explains their differential tolerance
level to H2O2. Further investigation on the detoxifying
system of B. xylophilus is imperative. When interact-
ing with Serratia spp. PWN-146, both virulent and aviru-
lent B. xylophilus catalase levels decreased to levels
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comparable to non-stress condition, which is also in
agreement with mortality test results (Figure 2).
The correlation between virulence and the ability to

cope with oxidative stress has been found in the plant
parasitic nematode Melodoigyne incognita [15,29]. Viru-
lent B. xylophilus Ka4 was more tolerant to H2O2 than
the avirulent B. xylophilus strain C14-5. Hirao et al. [26]
reported that the susceptible P. thunbergii reacts to PWN
invasion with a strong oxidative burst, which implies that
virulent B. xylophilus must possess an efficient antioxidant
system to cope with these conditions. Shinya et al. [36]
suggested that potential ROS scavengers GST and
GAPDH are localized on the surface coat of B. xylophilus.
Li et al. [37] proposed 2-cysteine peroxiredoxin on the
nematode cuticle of B. xylophilus, as another antioxi-
dant agent in opposing oxidative burst. Recently, 12
anti-oxidant proteins were identified in the B. xylophilus
secretome after plant extract stimuli, namely peroxire-
doxin, catalase, glutathione peroxidase, nucleoredoxin-like
protein, SOD, and thioredoxin [32]. In this context, it
is essential to further investigate the possible relation
between virulence of B. xylophilus and its tolerance
to oxidative stress, which was shown for the first time
in this study.
To explore the bacterial interaction with B. xylophilus,

we have studied bacteria attachment to the nematode
cuticle, an important characteristic that, to our know-
ledge, has not been reported before. In our experiments,
the associated-bacteria were not found to strongly attach
to the cuticle of B. xylophilus. After 24 h contact with a
high concentration of GFP-tagged Serratia spp. LCN-16,
only a few bacteria could be detected on PWN cuticle
(Figure 3). Shinya et al. [36] have shown the presence
of few bacteria on the nematode cuticle even after vigor-
ous washing by scanning electron microscopy (SEM).
B. xylophilus associated bacteria are reported to be carried
on the nematode’s surface, and in average 290 were
counted on the cuticle of PWN isolated from diseased
trees [7]. If bacteria are not attached to the nematode sur-
face, how can they be transported by B. xylophilus from
and into a pine tree? A possible explanation could be that
these bacteria are transported within the nematode [38].
However, the possible point of entry in B. xylophilus,
the stylet opening, is very small compared with the
bacteria size.
Serratia is an environmental ubiquitous Gram-negative

bacterium, mostly free-living with an opportunistic life-
style but also a pathogenic agent to plants, insects and
humans [39]. In the plant context, S. proteamaculans is
usually identified as an endophytic bacterium living in
poplar trees [40], characterized by colonizing in harmony
and even expresses PGP (plant growth promoting) traits
to promote host health. S. marcescens is also reported as a
pathogenic agent of curcubit yellow vine disease [41]. In
both cases, these Serratia species are well adapted to the
host plant (or tree) conditions, either as endophytes or
pathogens, and are able to evade or suppress plant de-
fences [42]. We could not ascertain a strong attachment
of associated-Serratia and B. xylophilus. It is not unlike
that these bacteria may assist the nematode in an oppor-
tunistic or facultative way, and that perhaps these bacteria
could be indeed host endophytes. This hypothesis can ex-
plain why diverse bacterial communities are associated to
B. xylophilus, and why they possess such interesting traits
and host-related lifestyle. Moreover, it can help to explain
the contrasting results obtained in pathogenicity tests con-
ducted previously [8]. In this scenario, these multi-species
consortia that present some in vitro plant-pathogenic
traits that could aid the nematode inside the tree and con-
tribute to PWD development as well [3], they could be
asymptomatic endophytes that can become pathogenic as
soon as the host tree is weakened [42]. Nevertheless, the
host-colonizing ability of these bacteria requires further
investigation.

Conclusions
This is the first report to show that B. xylophilus-associ-
ated Serratia species can assist the nematode survival
under prolonged OS conditions, revealing a possible
synergism between both organisms. This beneficial effect
of bacteria towards nematode resilience to OS has sig-
nificant influence on PWD development. This disease is
presently occurring in a variety of countries/climate zones,
and might be influenced by much more various biotic and
abiotic factors than previously thought.

Methods
Bursaphelenchus xylophilus isolates and culturing
Two B. xylophilus isolates, virulent Ka4 and avirulent
C14-5 [43], were used in this study. Nematodes were
cultured in Botrytis cinerea grown on autoclaved barley
seeds at 25°C. Prior to the experiments, nematodes were
extracted overnight using the Baermann funnel tech-
nique at 25°C. Nematodes were washed three times with
sterilized distilled water (DW), pelleted in-between by cen-
trifugation at 1,000 rpm during 10 min, surface cleaned
with 3% L-lactic acid during 30 s, and finally washed
with DW [44]. Mix-staged nematodes were used in all
experiments.

Bacteria strains and culturing
Bacterial strains and isolates used in this study are listed
in Table 1. All bacteria were grown and maintained in
LB plates at 28°C or 37°C (in the case of E. coli strains)
for routine use, and in 30% (w/v) glycerol at -80°C for
long-term storage. The antibiotics used in this study
were: gentamycin (10–30 μg/ml), kanamycin (50 μg/ml)
and ampicillin (100 μg/ml).



Table 1 Bacterial strains and isolates used in this study

Bacteria used
in this study

Genotype or
Phenotype

Source or Reference

Serratia spp. LCN-4
(100% Max. Identity:
S. proteamaculans)

AmpR; EryR Bacterium associated
with long lab culturing
PWN. [8,45]

Serratia spp. LCN-16
(100% Max. Identity:
S. proteamaculans)

AmpR; EryR Bacterium associated with
PWN freshly isolated from
wilting tree. [8,45]

Serratia spp. PWN-146 (99%
Max. Identity: S. marcescens)

AmpR; EryR;
KmR;TetR; RifR

Escherichia coli OP50 WormBase http://www.
wormbase.org

mini – TN7 tagging system

Escherichia coli
S17::λpir (deliver)

pBK-miniTN7-
gfp2; GmR;
KmR

[46-48]

Escherichia coli
SM10::λpir (helper)

pUX-BF13,
AmpR

[47]

R – resistance; Amp – ampicillin; Ery – erytromycin; Km – kanamycin;
Tet – tetracyclin; Gm – gentamycin; Rif – rifampycin.
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Tagging bacteria with GFP
Bacteria (LCN-16 and PWN-146) were labelled with GFP
with the vectors pBK-miniTn7-ΩGm, pBK-miniTn7-gfp2,
pUX-BF13 by triparental mating method as described pre-
viously [49]. Briefly, 100 μl overnight cultures of bacteria
strains and isolates (LB with appropriate antibiotics) were
mixed, in 1:1:1 proportion (SM17, SM10, and LCN-16 or
PWN-146), pipetted onto a 13-mm cellulose acetate filter
membrane and placed on non-selective LB medium.
Plates were incubated overnight at 28°C. In the following
day, filters were placed into a sterile microcentrifuge tube
containing 0.2 ml of 0.9% NaCl and vortexed for cell sus-
pension. Aliquots of 100 μl of each suspension was plated
onto LB with selective antibiotic (30 μg/ml gentamycin)
and overnight incubated at 28°C.

Bacteria association to nematode
Bacteria isolates (LCN-4, LCN-16 and PWN-146) and
strain (OP50) were grown overnight in LB broth at 28°C
or 37°C, pelleted at 10,000 rpm for 5 min, washed twice
with sterilized DW, and adjusted OD600 for 1.00 (± 107-
108 CFU/ml). Two approaches were used to associate
bacteria with B. xylophilus. The first approach consisted
in the observation of 1 h contact bacterial association
with B. xylophilus, before and after washing nematodes
for the oxidative stress tests. Firstly, nematodes were sur-
face sterilized and the concentration adjusted to 150 nem-
atodes per 50 μl of sterilized DW. Nematode-bacteria
association was performed by 1 h contact between
surface cleaned nematodes and 1 ml of bacterial suspen-
sion (concentrations were adjusted as described above)
and in accordance to Han et al. [50] procedure. After-
wards, bacteria suspension was removed by pelleting the
nematodes at low speed rotation (800 × g, 5 min), and
then hand-picked with a nematode picker (steel wire) and
transferred into a drop of sodium azide (1 M) on the
centre of the agar pad [51], covered and sealed with a sili-
con grease-rimmed coverslip for viewing by Nomarski
DIC optics.
The second approach consisted in co-culturing of

B. xylophilus Ka4 with GFP-tagged bacteria (LCN-16-
GFP; PWN-146-GFP) in 0.1% MEA plate seeded with
B. cinerea. Firstly, nematodes were cultured on the
0.1% MEA plate for three-days, and then 500 μl of
bacterial suspension (concentrations were adjusted as
described above) were added and co-cultured for 24 h at
28°C. Afterwards nematodes were extracted, washed and
mounted on the agar pad as described above. GFP-tagged
bacteria were observed with a ZEISS Axiovert 200 micro-
scope equipped with a confocal laser-scanning module.

Oxidative stress tolerance tests
To test bacteria tolerance to the oxidative agent, 100 μl
of freshly prepared H2O2 and 10 μl of bacteria (concen-
trations were adjusted as described above) were placed
into each well of a 96-well plate and at a total volume of
110 μl per well. Final concentrations of H2O2 were 0, 15,
20, 30 and 40 mM. After 24 h, the plates were read in a
multi-spectrophotometer (Viento, Dainippon Sumitomo
Pharma, Japan) at OD600. For each B. xylophilus associ-
ated bacteria and control E. coli. Three independent
biological replicates with three technical replicas per
experiment were used for each treatment.
To test nematode and bacteria association in H2O2

oxidative conditions, first, nematodes were surface steril-
ized and the concentration was adjusted to 150 nematodes
per 50 μl of sterilized DW, and performed 1 h nematode-
bacteria association as described above. After 1 h contact
with bacteria, nematodes were washed and re-suspended
in sterilized DW. A 96-well plate was prepared as follows:
each well received 50 μl of different H2O2 concentrations
(prepared previously in double) and 50 μl of each treat-
ment (nematode-bacteria association, nematode alone and
control (DW). Three independent biological replicates
with three technical replicas per experiment were used for
each treatment. . Mortality of nematodes was scored after
24 h. Nematodes were considered dead, if no movements
were observed after mechanical stimulation.

Gene expression analysis of B. xylophilus catalases
Catalase (CTL) was selected as the antioxidant enzyme to
infer gene expression differences toward the effect of H2O2

in the nematode-bacteria association. The amino acid se-
quences of C. elegans catalases (Ce-CTL-1, -2, -3) were ob-
tained from WormBase (http://www.wormbase.org/), and
used as templates for a TBLASTN search in the B. xylophilus
Ka4 genome. The retrieved best matches were predicted

http://www.wormbase.org/
http://www.wormbase.org
http://www.wormbase.org
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as Bxy-CTL-1 and Bxy-CTL-2 of B. xylophilus. Predictions
about general topology, domain/family, and active sites
conserved were made using online tools available at
Expasy WWW pages (http://www.expasy.org/tools/).
Gene expression of Bxy-ctl-1 and Bxy-ctl-2 were ana-

lysed by qRT-PCR using SYBR® green assay. Total RNA
was extracted from 24 h-stressed nematodes (treat-
ments: nematodes alone and nematode-bacteria associ-
ation) in 15 mM H2O2, using CellAmp Direct RNA Prep
Kit for RT-PCR (Real time) (Takara Bio Inc., Japan) and
following manufacturer’s instructions. The concentration
and quality was measured using NanoVue plus specto-
photometer (GE Healthcare Life Sciences, USA). Total
RNA (adjusted for concentration of 50 ng/μl) was re-
verse transcribed using Oligo dT primer and PrimeScript
RT enzyme from PrimeScript™ RT reagent Kit (Perfect
Real Time) (Takara Bio Inc., Japan). Quantitative RT-PCR
was performed using CFX96™ Real-Time (Bio-Rad), and
SYBR Premix Ex TaqTM II (Tli RnaseH Plus) kit (Takara
Bio Inc., Japan). The housekeeping actin gene Bxy-act-1
was used as an internal control gene for calculation of
relative expression levels of each antioxidant gene [52].
Primers were designed using Prime 3 software [53] and
tested for specificity prior to qPCR. The primers used for
Bxy-act-1, Bxy-ctl-1 and Bxy-ctl-2 genes amplification
were listed in Additional file 3: Table S1. Two independent
biological replicates with two technical replicas per experi-
ment were used for each qPCR test. No template controls
(NTC) were prepared for each qPCR run. Thermal cycling
conditions were: initial denaturation at 95°C for 30 sec;
39 cycles of denaturation at 95°C for 5 sec, annealing and
extension at 60°C for 30°C; followed by the melting curve.
A single peak at the melting temperature of the PCR-
product confirmed primer specificity.
Relative gene expression of each gene were analysed

using ΔΔCT Method [52]. The data were analysed with
Ct values in normal and stress conditions and using the
following equation: ΔΔCT = (CT,Target ‐CT,actin)normal ‐
(CT, Target ‐ CT,Actin)stress. The fold change in Bxy-ctl-1
and Bxy-ctl-2 was normalized to Bxy-act-1 and relative
to the expression at normal conditions, was calculated
for each sample using the equation above.

Statistical analysis
Statistical analysis was performed using SPSS 11.5. Data
represent the mean ± standard error (SE). Statistical sig-
nificance was inferred by one-way ANOVA and post hoc
multi-comparison Duncan test.

Additional files

Additional file 1: Figure S1. Alignment of deduced amino acid
sequences from catalase 1 (CTL-1) with the top matches in database.
Residues conserved are highlighted in dark grey and marked by an
asterisk. Bursaphelenchus xylophilus CTL-1; Caenorhabditis elegans CTL-1
(CAA74393.1); C. remanei CTL-3 (XP_003102502.1); C. briggsae hypothetical
protein (XP_002631620.1); Ditylenchus destructor CTL (AFJ15102.1).

Additional file 2: Figure S2. Alignment of deduced amino acid
sequences from catalase 2 (CTL2) with the top matches in database.
Residues conserved are highlighted in dark grey and marked by an
asterisk. Bursaphelenchus xylophilus CTL-2; Caenorhabditis elegans CTL-3
(NP741058.1); C. brenneri CTL-2 (EGT40792.1); Haemonchus contortus CTL
(AAT28330.1); Ditylenchus destructor CTL (AFJ15102.1).

Additional file 3: Table S1. Primers used in this study.
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