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Abstract

Background: Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide
genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based
UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished.
Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is
characterized by a dimeric form of the chemotaxis-receptor Tlp7m+c. The second has an extended amino acid metabolism
and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt).

Results: Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell
mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates
in distinct clusters. Especially the aforementioned Tlp7m+c

+ and ansB+/ ggt+ subgroups could be discriminated by
PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these
specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended
amino acid metabolism.

Conclusions: Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different
order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly
coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the
genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA
clustering could be an additional tool for analyzing the relatedness of bacterial isolates.

Keywords: MALDI-TOF species identification, Phyloproteomics, Multilocus sequence typing, MLST, Intact cell mass
spectrometry, ICMS, Principal component analysis, PCA, Campylobacter jejuni
Background
The Gram-negative bacterium Campylobacter jejuni,
belonging to the class of Epsilon Proteobacteria, is the
leading cause for bacterial gastroenteritis and Guillain-
Barré-syndrome (GBS) worldwide [1].
Over the years, it has become apparent that different

subtypes of C. jejuni are associated with different mani-
festations of disease. Therefore, several Campylobacter-
subtyping methods have been established. The first, and
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for a long time the gold standard, was serotyping by slide
agglutination using heat-stable and heat-labile antigens
[2-5]. Using this methodology, the Lior serotype 4 was
found to be associated with acute campylobacteriosis
in the majority of cases in Germany, whereas GBS was
most strongly associated with Lior serotype 11 [6].
Later phagetyping schemes [7] and restriction fragment
length polymorphisms like amplified fragment length
polymorphism fingerprinting (AFPL) [8], ribotyping [9], as
well as pulsed field gel electrophoresis [10] were used for
epidemiological typing.
Today these methods play a minor role in studying

Campylobacter epidemiology. Instead, sequence-based
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methods, such as multi locus sequence typing (MLST) [11]
and the sequencing of the short variable region of the fla-
gellin A gene (flaA-SVR sequencing) [12] are widely used.
Among C. jejuni isolates of human origin the most

frequent clonal complexes (CC) are CC 21 and CC 45
[13,14]. These two prominent isolate groups differ sig-
nificantly from each other in various aspects. For one,
differences in the stress responses of these two MLST-CC
groups were observed. Isolates of CC 21 were more tolerant
to extreme temperatures as compared to CC 45 isolates
[15] while CC 45 isolates showed increased survival in
oxidative and freeze stress models [15]. These differences in
stress responses may be the reason for the establishment of
certain C. jejuni subgroups in defined hosts, environments,
and thus the spread over different transmission routes. The
finding that acute Campylobacter-diarrhea cases caused by
CC 21 or CC 45 isolates show different temporal distribu-
tions supports this hypothesis [14]. While C. jejuni isolates
of CC 45 are more prevalent during the early summer
months obviously following an environmental transmission
route, campylobacteriosis caused by CC 21 isolates are re-
ported more or less consistently throughout the whole year,
with a peak during late summer months [16] and with a
clear association to infected cattle [17]. The combination of
MLST with isolate-profiling for sixteen genetic markers:
ansB, dmsA, ggt, cj1585c, cjj81176-1367/71 (cj1365c),
tlp7m+c (cj0951c plus cj0952c), cj1321-cj1326, fucP, cj0178,
cj0755/cfrA, ceuE, pldA, cstII, and cstIII lead to a more
detailed subgrouping of the C. jejuni population dis-
criminating twelve C. jejuni subgroups [18,19].
Recently, matrix-assisted laser desorption ionization-time

of flight mass spectrometry (MALDI-TOF MS)-based
intact cell mass spectrometry (ICMS) has advanced to
be a widely used routine species identification tool for
cultured bacteria and fungi [20-22]. This technique also
allows the accurate identification of Campylobacter and
Arcobacter species [23].
Moreover, MALDI-TOF MS also has the potential to

characterize strains at the subspecies level [24], and hence
could act as a useful tool for taxonomy and epidemiology
[25]. For example, we were recently able to demonstrate
that it is possible to separate typhoid from non-typhoid
Salmonella enterica subspecies enteria serotypes [26].
To investigate the potential of ICMS to discriminate

between different C. jejuni isolate subgroups with dif-
ferences in host adaptation and pathogenic potential,
we used well-characterized C. jejuni isolates [18,19] repre-
senting different phylogenetic groups. Especially the dis-
crimination of these isolates positive for the periplasmic
gamma-glutamyl-transpeptidase (ggt) but negative for
the fucose permease (fucP) associated with a higher
rate of hospitalizations and bloody diarrhea [27] stood
in the focus of this approach as compared to MLST and
the estimated marker gene profiles in this study.
Results
Classification results
A total of 104 C. jejuni previously characterized and
MLST-typed isolates of either human, bovine, chicken or
turkey origin were re-identified using standard procedure
ICMS. All isolates were identified as C. jejuni with MALDI
Biotyper score values ≥2.000.

PCA analysis of Campylobacter jejuni isolates
In order to determine whether the C. jejuni isolate groups
as defined by similar marker gene profiles could also be
discriminated by their ICMS-spectra, the spectra obtained
were clustered by PCA and their phyloproteomic related-
ness analyzed. In all four biologically independent analyses
we obtained comparable phylogenetic distances of the
different isolates by PCA considering the existing degrees
of freedom at particular dendrogram nodes (Figure 1).
With only four singular outliners, isolates positive for

dmsA and ansB formed distinct groups within the subclus-
ters Ia, Ib1, and IIb (Figure 1). The corresponding marker
gene profiles revealed that nearly all dmsA and ansB posi-
tive isolates in subclusters Ia and Ib1 were ggt-negative,
whereas nearly all ggt-positive isolates formed a combined
subcluster IIb2 + IIb3 (Additional file 1: Table S1). Isolates
in cluster IIb2 were typically cstII and cj1365c negative,
whereas IIb3 isolates were typically positive for these two
genetic markers.
The vast majority of the isolates, predominantly positive

for the marker genes cj1365c, cj1585c, cj1321-6, fucP,
cj0178 and cj0755, were distributed across the clusters,
however a subset of isolates expressing the dimeric variant
of the TLP7-receptor TLP7m+c formed two distinct sets in
the neighboring subclusters Ib2 (ST 53 & 61 isolates) and
Ib3 (ST 21 isolates).
In an overlay of the spectra from all isolates included in

this study (Figure 2) one particular mass (A, m/z = 5303) sep-
arated CC 21/ST 21 C. jejuni isolates positive for TLP7m+c

and of bovine origin from all others (Figure 3). Two add-
itional masses separated ggt-positive C. jejuni isolates from
ggt-negative ones. The majority of isolates displayed a peak at
m/z = 5496 (C), which is replaced by neighboring peaks in
specific isolates. The ggt- and cj1365c-postive C. jejuni isolates
(MLST-ST 22) showed a shift of this peak from m/z = 5496
to ~5479 (B). In contrast to that the ggt-positive but cj1365c-
and cstII-negative isolates (MLST ST-45) showed a shift of
this peak into the opposite direction to m/z = 5523 (D).

Comparison of phylogenetic and phyloproteomic analyses
To determine if there was a more global correlation be-
tween phyloproteomic and phylogenetic relatedness, the
two dendrograms obtained by PCA and MLST clustering
were compared (Figure 4).
The MLST-based UPGMA-dendrogram splits at two

bifurcations into a minor and a major group. At the third
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Figure 1 Dendrogram based on relationships obtained from PCA analysis of the ICMS spectra. (A) Global cluster analysis of C. jejuni
isolates. B1-3: Enlargement of major clusters, the overall majority of isolates is positive for the marker genes cj1365c, cj1585c, cj1321-6, fucP, cj0178,
and cj0755 positive but dmsA-, ansB- and ggt-negative (different shades of yellow); B1: one cluster of dmsA+, ansB+ but ggt- C. jejuni isolates in
subtree Ia and a second cluster of dmsA+, ansB+ but ggt- C. jejuni isolates in subtree Ib (blue & violet); cluster of CC 53 & CC 61 isolates with the
dimeric form of the formic acid specific chemotaxis receptor Tlp7m+c (beige); cluster of Tlp7m+c

+ CC 21 isolates – all of bovine origin (orange); B2:
small cluster of dmsA+ and cstII+ isolates belonging to MLST-CC 1034 (teal) B3: The cluster of ggt+ isolates splits in two subclusters, which differ in
cj1365c and cstII (dark and light blue). The relatedness of C. jejuni isolates in the ICMS spectra-based PCA-tree reflects the isolates subgroup
affiliation & MLST CC/ST.
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bifurcation the remaining isolates form two approximately
equal groups. In each of both groups, subgroups positive for
dmsA and ansB and predominantly also for ggt are present.
In the ICMS-spectra-based PCA-dendrogram the

ggt-positive isolates of both subgroups form a common
cluster combined of two subgroup specific subclusters,
whereas most of the ggt-negative isolates form a separate
cluster together with the dmsA- and ansB-positive but
ggt-negative isolates of that cluster, which branched off
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Figure 2 Overlay of ICMS spectra (Overview of entire MALDI-TOF MS
of the C. jejuni strains NCTC 11168 (red) and 81-176 (blue). The numbers ab
mass range that is detailed in Figure 3.
at the second bifurcation of the MLST-based UPGMA-
dendrogram (MLST-CC 257).
The vast majority of the C. jejuni isolates of both groups

formed by MLST-CC 21, 48, 49, 206, and 446 as well as
MLST-CC 52, 353, 354, 443, 658, and 61 is positive for
the marker genes cj1365c, cj1585c, cj1321-6, fucP, cj0178
and cj0755. These isolates, with comparable marker gene
profile, mix in the ICMS-spectra-based PCA-dendrogram
despite of their phylogenetic distance, as noted above.
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Figure 3 Overlay of ICMS spectra (Detail of Figure 2). Overlay of ICMS spectra of all isolates led to the identification of characteristic peaks for
specific C. jejuni subgroups. Peak A (m/z = 5303; red) is specific for isolates of MLST-ST 21 expressing a dimeric form of the formic acid specific
chemotaxis receptor Tlp7m+c. The majority of isolates shows a peak at m/z = 5496 (peak C, dark blue). Ggt- and cj1365c-postive isolates (MLST-ST 21)
show a shift of this peak to m/z = 5479 (peak B, light blue), whereas ggt-positive but cj1365c- and cstII-negative isolates (MLST-ST 45) show a shift of this
peak to m/z = 5523 (peak D, green).
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One obvious exception is a group of MLST-ST 21 isolates
of bovine origin expressing TLP7m+c, which forms a
common subcluster in the PCA-subcluster Ib. Finally,
there is very small cluster with a significant phylopreteomic
distance (IIa1) of dmsA+ and cstII+ isolates belonging to
MLST-CC 1034.

Discussion
Today, phylogenetic methods like MLST [11] and flaA-SVR
sequencing [12] are considered to be the standard typing
methods for C. jejuni isolates. Thus, every new classification
technique must be compared with those genomic classifi-
cations [25]. However, the genomic methods reflect some
phenotypic aspects only insufficiently.
In this context, MALDI-TOF MS-based ICMS has

recently advanced to be a widely used routine species
identification tool for cultured bacteria and fungi [20-22].
In contrast to species identification by ICMS, subtyping
within a single species (or differentiation between extremely
close related species) is a more subtle process. Nevertheless,
several examples already do exist proving the applicability
of this method for isolate differentiation at the subspe-
cies level, for example it was shown that methicillin-
resistant and methicillin-susceptible Staphylococcus aureus
strains can be discriminated by ICMS [28]. ICMS can
also be used to differentiate between the Lancefield
groups A, B, C, and G of Streptococci [29,30]. Other
examples are the subtyping of Listeria monocytogenes
[31], Salmonella enterica [26,32,33], Yersinia enterocolitica
[34], and Stenotrophomonas spp. [35].
The discrimination between the different Campylobacter

and closely related species is well established and species-
specific mass spectra are integrated in routine databases
[23,36-39]. It has also been demonstrated that shifts in
biomarker masses, which are observable in MALDI-TOF
spectra due to amino acid substitutions caused by nonsy-
nonomous mutations in the biomarker gene, can be used
to discriminate between the C. jejuni subspecies C. jejuni
subsp. jejuni and C. jejuni subsp. doylei [37,40].
As noted above the C. jejuni population is divided into

two major isolate groups, which differ significantly from
each other in stress response, transmission route, host
tropism, temporal distribution, and pathogenic potential for
humans. These two (including related C. jejuni subgroups)
are associated with specific genetic markers. CC 21
isolates as well as the vast majority of other C. jejuni
isolates are positive for cj1365c (cjj81176-1367/1371),
cj1585c, cj1321-cj1326, fucP, cj0178, and cj0755/cfrA
(Additional file 2: Table S2) [18,19].
In contrast to that, MLST-CC 45 isolates and the related

isolates of the MLST-CC 22, 42, and 283 are predominantly
negative for these marker genes; with the exception that
MLST-CC 22 and 42 isolates harbor cj1365c. In these
isolates the oxidoreductase gene cj1585c is replaced by
the tripartite anaerobic dimethyl sulfoxide oxidoreductase
dmsA to –D facilitating an alternative anaerobic metabolic
pathway. Additionally this isolate group has an extended
amino acid metabolism and is characterized by the presence
of ggt and ansB. The cj1365c-positive isolates of MLST-CC
22 and 42 are also cstII-positive, whereas MLST-CC 45 and
282 isolates have no LOS-sialyltransferase genes [18,19].
Theses isolates positive for ggt but negative for fucP could
be significantly associated with a higher rate of hospitali-
zations and bloody diarrhea and bear apparently a higher
pathogenic potential for humans [27].
There are also smaller evolutionary intermediate isolate

groups, which are for example positive for dmsA, ansB,
cj1365c and fucP but not for ggt [18,19].
Furthermore, MLST-ST 21 isolates have a variation of

TLP7, which is expressed as dimer [18,41]. In this group
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Figure 4 Comparison of the ICMS-spectra-based PCA-phyloproteomic tree with the phylogenetic MLST-based UPGMA-tree. Most of the
Tlp7m+c

+ isolates cluster together in the ICMS-spectra-based PCA-dendrogram as well as the MLST-based UPGMA-tree (orange); ggt+ isolates of
MLST-CC 22, CC 45, and CC-283 form a common cluster in the PCA-tree (IIb2 + 3) whereas MLST-CC 42 isolates (mixed ggt+/-) cluster together
with MLST-CC 257 isolates (dmsA+, ansB+ but ggt-).
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of isolates the most in vitro hyperinvasive strains can be
found [42]. These isolates are mostly responsible for
outbreaks associated with cattle [17].
We have shown in this study that biomarker shifts can

be used to discriminate not only between the vast majority
of C. jejuni isolates and this C. jejuni subgroup with an
extended amino acid metabolism (ggt+), which was shown
to have a higher pathogenic potential for humans [27], we
were even able to discriminate between MLST-CC 45/282
isolates and MLST-CC 22/42 isolates. MLST-CC 22/42 iso-
lates positive for the LOS-sialyltransferase cstII could be as-
sociated with GBS and higher host cell invasiveness [19].
Furthermore, we were able to identify another biomarker

ion (m/z = 5303) that differentiates the subset of MLST ST
21 isolates associated with the dimeric TLP7m+c-variant.
It should be noted that the biomarker ions are not based

on the expression of the marker genes used, as the pro-
teins encoded in the marker genes are of entirely different
sizes than the observed masses, but there is an obvious
evolutionary association between the presence of specific
marker genes and some of the biomarker ions.

Conclusions
In conclusion, our study demonstrates that it is possible to
discriminate specific subtypes within the C. jejuni species
that have a different metabolism and different clinical rele-
vance even using smear spectra.
Phyloproteomics corresponds only partial to phylo-

genetics. However, the phyloproteomic relatedness re-
flects phenotypic aspects better than the phylogenetic
and it therefore may present a more meaningful typing
approach than MLST.
Nevertheless, before such subtyping approaches for

use in epidemiology can be implemented in the respective
commercial ICMS MALDI-TOF MS technologies using for
example weighted pattern matching and specific reference
spectra, additional approaches to increase the robustness of
spectrum generation and clustering are necessary.

Methods
C. jejuni strains
For our analyses we chose a total of 104 C. jejuni iso-
lates. Eventually, 46 isolates of human, 31 of chicken, 16
of bovine, and 11 of turkey origin, which had previously
been characterized for 16 different genetic markers
(the genes for: the serine protease cj1365c, the oxidore-
ductase cj1585c, the dimeric formic acid chemotaxis
receptor tlp7m+c [43], the tripartite anaerobic dimethyl
sulfoxide oxidoreductase subunit A dmsA, the periplas-
mic asparaginase ansB, periplasmic gamma-glutamyl-
transpeptidase ggt, the O-glycosylation cluster cj1321-6,
the fucose permease fucP, the outer membrane siderophore
receptor cj0178, the iron uptake protein cj0755/ferric
receptor cfrA, enterochelin E ceuE, phospholipase A pldA,
lipooligosaccharide sialyltransferase II cstII, lipooligosacchar-
ide sialyltransferase III cstIII, Campylobacter invasion anti-
gen B ciaB, and cytolethal distending toxin subunit B cdtB)
[18,19] were selected. The isolates were chosen in such
a way that particular representative groups of MLST-
related isolates with almost identical marker gene profile
could be arranged (see Additional file 2: Table S2) and
a wide spectrum of different MLST ST/CC was covered.
Thus, three to five isolates with same or close related MLST
CC(ST): 21(21, 50, 53), 206(46, 122, 572), 48(38, 48), 446
(450), 49(49), 283(267), 45(45), 42(42), 828(828), 52, 443, 22
(22), 353(353), 354(354), (464), 658(658), 61(68, 61), (877),
257(257), 1034 and a typical marker gene profile were
selected. Isolates with an atypical marker gene profile
and redundant isolates (with reference to the previous
studies [18,19]) were not included.
Avian and bovine isolates were originally obtained

from the German Campylobacter reference center at
the Bundesinstitut für Risikobewertung (Federal Institute
for Risk Assessment) in Berlin, Germany. The bovine iso-
lates originated from anal swabs taken in 2004-2009, the
turkey isolates from cloacal swabs taken in 2007-2009, and
the chicken isolates from cloacal swabs taken in 2003-2009.
All distributed over the whole area of the German federal
republic. The human isolates originated from stool samples
of patients with watery diarrhea (85%) or bloody diar-
rhea (15%) processed at the University Medical Center
Göttingen, Germany in the years 2000 – 2004 [18,19].

Culture conditions and intact cell mass spectroscopy
All isolates were grown in one batch under identical condi-
tions on Columbia agar base (Merck, Darmstadt, Germany)
supplemented with 5% sheep blood (BA) and incubated at
42°C under microaerophilic conditions (5% O2, 10% CO2,
85% N2) over night, prepared in duplicate for ICMS by
smear preparation and overlaid with HCCA matrix. For
reproducibility it was important to use exactly the same
culture conditions (identical lot number of agar plates and
identical size of anaerobic/microaerophilic culture jars)
and to grow all isolates parallel in one occasion. Using the
extraction method (harvesting and washing the cells in
70% ethanol, subsequent drying, and lysing the cells in 70%
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formic acid followed by ACN addition) demonstrates no
significant differences in comparison to smear preparation.
ICMS was done by standard procedures recommended

for the MALDI Biotyper system (Bruker Daltonics,
Bremen, Germany). For analysis, 600 spectra from 2-20 kDa
were gathered in 100-shots steps and added. Results with
MALDI Biotyper identification score values ≥2.000 were
considered correct. Analyses not yielding a significant
score did not occur.

PCA-analysis
Phyloproteomic analyses were done using Flexanalysis and
the PCA-algorithms implemented into the MALDI Biotyper
3.0 software (both Bruker Daltonics, Bremen, Germany).
Spectra were pre-processed by baseline subtraction and
smoothing, for ICMS-spectra-based PCA hierarchical
clustering distance measurement was set to ‘correlation’;
the linkage algorithm to ‘average’. Recording of spectra
and subsequent phyloproteomic analyses using the
PCA-algorithms was performed four times, two times
each using smear preparation and the extraction method.
Before comparison of the obtained PCA-trees of all four
biologically independent repeats the existing degrees of
freedom were assessed and the dendrogramms were con-
verted by pivoting single (sub-)branches around existing
dendrogram nodes in such a way that phyloproteomic re-
latedness was visualized optimally.

Phylogenetic analysis
For construction of a UPGMA-dendrogram (unweighted-
pair group method using average linkages) the MEGA5.1
software was used [44], and the C. jejuni MLST website
(http://pubmlst.org/campylobacter/) was consulted for
designation of sequence types and clonal complexes [45].

Additional files

Additional file 1: Table S1. Marker gene profile of 104 C. jejuni isolates
given in the order of the ICMS-based PCA-dendrogram. Presence of a given
marker gene is indicated in orange, absence is indicated in green. The
group assignment in the last column is taken from a previous study [18].

Additional file 2: Table S2. Marker gene profile of 104 C. jejuni isolates
given in the order of the MLST-based UPGMA-tree. Presence of a given
marker gene presence is indicated in orange, absence is indicated in
green. The group assignment in the last column is taken from a previous
study [18].
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