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Abstract

residues was observed.

slow-growing mycobacteria.

Background: Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by
the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA)
and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt
homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive
bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the
lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid
and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid.

Results: We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein
modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified
BCG_2070c and BCG_2279c as putative Int genes in M. bovis BCG. Lipoproteins LprF, LpgH, Lpgl and LppX were
expressed in M. bovis BCG and BCG_2070c Int knock-out mutant and lipid modifications were analyzed at molecular
level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was
observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl

Conclusions: Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in
M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in
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Background
Proteins posttranslationally modified by covalent lipid at-
tachment are present in eukaryal and bacterial organisms.
In bacteria, 1-3% of the genome encode for lipoproteins.
Bacterial lipoproteins are anchored in the membrane sur-
face where they fulfill various cellular functions, ranging
from cell wall integrity, secretion, nutrient uptake, envir-
onmental signaling to virulence [1-3].

Lipoproteins from Gram-positive and Gram-negative
bacteria are synthesized in the cytosol as preprolipoproteins
and are translocated across the cytoplasmic membrane via
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the Sec- or Twin arginine translocation (Tat) system [4].
Lipoprotein signal sequences terminate in a highly con-
served lipobox motif consisting of four amino acids (LVI/
ASTVI/GAS/C) [2]. Processing of lipoprotein precursors
into mature forms takes place at the outer leaflet of the
cytoplasmic membrane and is accomplished by the sequen-
tial action of three enzymes attacking the conserved
cysteine in the lipobox: 1) the phosphatidylglycerol:pre-
prolipoprotein diacylglyceryl transferase (Lgt) attaches a
diacylglyceryl residue to the cysteine via thioether linkage
[5], 2) the prolipoprotein signal peptidase (LspA) cleaves off
the signal peptide and 3) apolipoprotein N-acyltransferase
(Lnt) acylates the N-terminal cysteine residue at its free
amino group [1,6,7]. In proteobacteria, N-acylation of lipo-
proteins is a prerequisite for the transport to the outer
membrane by the Lol system [8,9].
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Lgt and LspA are universally present in Gram-positive
and Gram-negative bacteria [10]. The gene encoding Lnt
was originally identified in the Gram-negative bacterium
Salmonella enterica sv. Typhimurium and is conserved
in proteobacteria. The Lnt structure and function are
well studied in Escherichia coli [11]. Contrary to the long
held assumption that Int is restricted to Gram-negative
bacteria [10] /nt homologues are also present in high
GC-rich Gram-positive bacteria. In the fast-growing,
saprophytic mycobacterial model organism Mycobacter-
ium smegmatis, Lnt-dependent N-acylation was demon-
strated and the lipid moiety of lipoproteins has been
resolved at molecular level. M. smegmatis lipoproteins
are modified with a thioether-linked diacylglyceryl resi-
due composed of ester-linked palmitic acid and ester-
linked tuberculostearic acid and an additional palmitic
acid amide-linked to the a-amino group of the con-
served cysteine. Diacylglycerol modification and signal
peptide cleavage are prerequisites for N-acylation [12,13].
Secreted proteins, among them lipoproteins often are
modified by glycosylation. O-glycosylation in mycobac-
teria occurs through a stepwise process depending on
at least a protein mannosyl tranferase (PMT) performing
the initial mannosylation step and a al-2 mannosyl
tranferase realizing the subsequent elongation of the
mannosyl chains. Recently, PMT enzyme responsible for
the initial attachment of mannose residue to the pro-
tein was identified [14].

In addition to M. smegmatis, N-acyltransferase activ-
ity by Lnt homologues was shown in two other high
GC-rich Gram-positive bacteria, namely Streptomyces
scabies [15] and Corynebacterium glutamicum [16]. Re-
cent mass spectrometry analyses of lipoproteins in low
GC-rich Gram-positive bacteria (firmicutes and mollicutes)
provided evidence that N-acylation also occurs in these
bacterial species, however, no obvious /nt-like gene has
been identified to date [17-21]. Instead, biochemical
analysis identified two new lipoprotein structures, the “N-
acetyl” and the “peptidyl” lipoprotein structure. These
novel structures strongly suggest the presence of yet to be
identified key enzymes involved in bacterial lipoprotein
biosynthesis [22].

Most pathogenic mycobacteria belong to the group of
slow-growing mycobacteria, including Mycobacterium
leprae, the causative agent of leprosy and the members
of the Mycobacterium tuberculosis complex (e.g. M. tu-
berculosis, Mycobacterium africanum, Mycobacterium
cannetti, Mycobacterium bovis). Mycobacterium tubercu-
losis is the causative agent of human tuberculosis, a
major cause of death around the world (http://www.
who.int/tb/publications/factsheets/en/index.html). Elim-
ination of tuberculosis requires an improved under-
standing of the host, the pathogen and their interaction
for the development of better, more effective drugs and
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vaccines. Lipoprotein biogenesis is a major virulence
factor of M. tuberculosis [23,24]. Moreover, lipoproteins
evidently meet pathogen-associated molecular patterns
(PAMPs) criteria and are well detected by innate im-
mune recognition mechanisms [25]. M. tuberculosis lipo-
proteins are major antigens and trigger the activation of
cellular and humoral immune responses to mycobac-
teria. Lipoproteins are potent agonists of toll-like recep-
tor 2 (TLR2) which upon long term stimulation has
been associated with the down regulation or deviation of
the immune response. TLR2 agonist activity has been
demonstrated for several M. tuberculosis lipoproteins
including LpqH, LprA, LprG and PstSI [26,27]. Recently,
it was reported that mycobacteria generate and release
membrane vesicles (MVs) [28]. Strikingly, MVs from
pathogenic mycobacteria as compared to non-pathogenic
mycobacteria are enriched in lipoproteins, some of them
well known TLR2 agonists. MVs produced a severe
TLR2 dependent inflammatory response in vitro and
in vivo [28]. Investigations regarding the vaccine poten-
tial of MVs from pathogenic mycobacteria elicited a
mixed cellular and humoral immune response. This
suggests a vaccine potential of MVs and their lipopro-
teins against M. tuberculosis.

Even though research on lipoproteins in fast-growing
mycobacteria contributed to the knowledge of lipopro-
tein biosynthesis and modification, there is scarcely
known anything about lipoprotein modifications and
their chemical structures in slow-growing mycobacteria.
Mycobacterium bovis bacille Calmette Guerin (BCG) is
derived from virulent M. bovis, the causative agent of
bovine tuberculosis. The genome of M. bovis BCG is
highly similar to the M. tuberculosis genome (>99.5% se-
quence identity) [29]. M. bovis BCG was first used in
1921 as a live vaccine against tuberculosis. Since then
four billion doses have been applied to humans. Still
today it is the only licensed tuberculosis vaccine, despite
its incomplete protective efficacy, particular against adult
lung tuberculosis [30].

Concerning the presence of open reading frames
(ORFs) encoding lipoprotein modifying enzymes, both
genomes of M. tuberculosis and M. bovis BCG Pasteur
reveal a single ORF encoding Lgt (Rv1614, BCG_1652)
and a single ORF encoding LspA (Rv1539, BCG_1591).
Two ORFs encoding Lnt are found in M. bovis BCG
(BCG_2070c, BCG_2279c). BCG_2070c (which is identi-
cal to M. tuberculosis Rv2051c = ppm]l) is a two domain
protein with a conserved apolipoprotein-N-acyltransferase
and a Ppm-like domain. BCG_2279¢ shows conserved
apolipoprotein-N-acyltransferase domain and exhibits
considerable homology to E. coli Lnt. In M. tuberculosis,
the corresponding open reading frame is split into two,
Rv2262c and Rv2261c. In our previous analysis [12], these
may have escaped our attention, since split. Only upon
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completion of the M. bovis BCG sequence the homology
to Lnt became apparent. Due to this polymorphism in the
second M. tuberculosis putative Lnt ORF, we focussed our
studies on lipoproteins and lipoprotein synthesis in slow-
growing mycobacteria on the vaccine strain M. bovis
BCG. Prediction of lipoproteins in M. tuberculosis com-
plex using DOLOP database suggests the presence of 50
potential lipoproteins of the approximately 4000 ORFs [2].
However, the existence of twice as many lipoproteins has
been discussed [1].

In this study, we show that lipoproteins are triacylated
in slow-growing M. bovis BCG. We demonstrate apoli-
poprotein N-acyltransferase acitivity and by targeted
gene deletion identify BCG_2070c as a functional
Lnt. We give structural information about the lipid
modification of four mycobacterial lipoproteins, LprF,
LpgH, LpqL and LppX. Hereby mycobacteria-specific
tuberculostearic acid is identified as a further sub-
strate for N-acylation.

Methods

Bacterial strains and growth conditions

Mycobacterium bovis BCG Pasteur strains were culti-
vated in Middlebrook 7H9 medium or on Middlebrook
7H10 agar enriched with oleic acid albumin dextrose
(OADC, Difco). Liquid broth was supplemented with
0.05% of Tween 80 to avoid clumping. If necessary, the
appropriate antibiotic was added at the following concen-
tration: 5 pg ml™" gentamicin, 100 ug ml™ streptomycin,
25 pug ml™! hygromycin. Strains used in this study were M.
bovis BCG SmR (further referred to as M. bovis BCG or
parental strain) [31], a streptomycin resistant derivative of
M. bovis BCG Pasteur 1173P2, Alnt = M. bovis BCG
SmR [nt knock out mutant in BCG_2070c and Alnt-
IntBCG_2070c = M. bovis BCG SmR Int knock out
mutant in BCG_2070c transformed with complementing
vector pMV361-hyg-lntBCG_2070c.

Disruption of Int in M. bovis BCG

A 1.9 kbp Miul/Nsil fragment of M. bovis BCG from
position 2296156 to 2294306 comprising the 5'Int
flanking sequence and a 2.8 kbp SnaBl/Mlul fragment
from position 2292652 to 2289856 comprising the 3'/nt
flanking sequence of the /nz domain of BCG_2070c were
PCR amplified using genomic DNA from M. bovis BCG
Pasteur and cloned into vector pMCS5-rpsL-hyg with
the respective enzymes resulting in knock-out vector
pMCS5-rpsL-hyg-AlntBCG. This way, we deleted a 1.6
kbp of the Lnt domain without introducing a frameshift
or any other deletion to the Ppm synthase domain. The
IntBCG allele was deleted in the M. bovis BCG SmR
chromosome as described previously [31,32] and con-
firmed by Southern blot analysis with 0.2 kbp Sall Int
downstream probe. For complementation with M. bovis
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BCG BCG_2070c a 6.3 kbp fragment from M. bovis
BCG from position 2289839 to 2296178 spanning the
entire /nt gene was cloned into pGEM-T Easy (Promega)
to result in pGEM-T Easy-/ntBCG_2070c and subse-
quently subcloned as a 6.3 kbp EcoRI fragment into
the Hpal site of plasmid pMV361-hyg [33] to result in
pMV361-hyg- /ntBCG_2070c. Complementation was con-
firmed by Southern blot analyses with 0.2 kbp Kpnl/
HindIll [ntBCG_2070c upstream probe.

Expression of Lipoproteins LprF, LpgH, LpgL and LppX
Plasmid pMV261-Gm, a derivative of pMV261 shuttle
vector, is able to replicate in E. coli as well as in myco-
bacteria [34]. LprF [13], lpgH, IpqL and IlppX [12] were
amplified by PCR from M. tuberculosis genomic DNA
and fused to the M. tuberculosis 19 kDa promoter. The
target proteins and 19 kDa promoter are identical be-
tween M. tuberculosis and M. bovis BCG. Sequences en-
coding a hemagglutinin and a hexa- histidine epitope
were fused to the 3’ part of each gene to facilitate subse-
quent purification and detection on Western blot. The
insert was cloned into the EcoRI site of pMV261-Gm to re-
sult in pMV261-Gm-LprF, pMV261-Gm-LpgH, pMV261-
Gm-LpqL and pMV261-Gm-LppX. Subsequently plasmids
were transformed into BCG parental strain, Alnt and
Alnt-IntBCG_2070c.

Preparation of cell extracts and Western blot analysis
Bacteria from 1-liter cultures were harvested and resus-
pended in phosphate-buffered saline containing Complete
EDTA-free tablets (Roche) to inhibit protein degradation.
Cells were lysed by three French Press cycles (American
Instrument Co.) at 1.1 x 10° Pa. Extracts were treated with
2% sodium N-lauroylsarcosine (SLS) for 1 h at room
temperature, and incubated for 16 h at 4°C thereafter.
Extracts corresponding to 1-5 pg of total protein were
separated by a 12.5% SDS-PAGE gel and subsequently an-
alyzed by Western blot using anti-HA-antibody (1:300,
Roche) and corresponding secondary antibody conjugated
with horseradish peroxidase.

Fast protein liquid chromatography protein purification

Soluble fractions of cell extracts from recombinant
strains expressing epitope-tagged proteins were diluted
with buffer containing 20 mM NaH,PO,, 0.5 M NaCl,
pH 7.4 to 1% sodium N-lauroylsarcosine and loaded on
a HisTrap™ HP column (GE Healthcare) previously
equilibrated with buffer containing 20 mM NaH,POy,,
0.5 M NaCl, 0.2% sodium N-lauroylsarcosine and 20
mM imidazole, pH 7.4. Proteins were eluted applying an
imidazole gradient (0.125-0.5 M). As a further purifica-
tion step, if necessary, HisTrap™ HP column flow
through was dialyzed against buffer containing 20 mM
Tris-hydroxymethyl-aminomethane, 0.1 M NaCl, 0.1
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mM EDTA, pH 7.5 and loaded onto anti-HA-affinity
matrix (Roche). Proteins were eluted with buffer containing
0.1 M glycine, pH 2.0.

MALDI-TOF/TOF analysis

100-200 pmol of purified lipoprotein were prepared and
analyzed according to Ujihara et al. [35]. Briefly, lipopro-
teins in elution fractions from FPLC or HA chromatog-
raphy were precipitated and SDS-PAGE gel was performed.
Proteins separated by electrophoresis were visualized with
copper staining. Protein bands with the apparent molecular
weight of apolipoprotein/mature lipoprotein were cut from
the stained gel. Lipoproteins were in-gel digested with
Trypsin or AspN and extracted peptides were dried and
dissolved in 5 pl 0.1% trifluoroacetic acid, 50% acetonitrile.
Samples were loaded onto the target and covered with 1 pl
matrix solution (5 mg ml" a-cyano-4-hydroxy-cinnamic
acid (Bruker Daltonics) in 0.1% trifluoroacetic acid, 50%
acetonitrile). The MALDI-TOF/TOF mass spectra were
recorded on an Ultraflex II MALDI-TOF/TOF instrument
with smartbeam laser upgrade (Bruker Daltonics). The laser
was set to a repetition rate of 100 Hz and the ion acceler-
ation voltage was 29.5 kV. The mass measurements were
performed in the positive ion reflector mode.

Results

Lipoproteins are expressed in M. bovis BCG

As model substrates for lipoprotein modification in
slow-growing mycobacteria we chose four different lipo-
proteins being identical in M. tuberculosis and in M.
bovis BCG Pasteur. The well characterized LppX [12,36]
and LprF [13] in addition to LpgH and LpqL. LppX
(Rv2945c¢) has been shown to be involved in transloca-
tion of phthiocerol dimycocerosates (DIM) to the outer
membrane [36]. LprF (Rv1368) is involved in signaling
and has been suggested to interact with the histidine kin-
ase KdpD in response to environmental osmotic stress
[37]. LpgH (19 kDa antigen, Rv3763) functions as an
adhesin and has been recognized as an immunodominant
lipoprotein [38]. LpqL (Rv0418) is predicted to be a
lipoprotein aminopeptidase. Hence, our choice of lipo-
proteins is representing different classes of lipoproteins.
The four expression vectors pMV261-Gm for hexa-
histidine/hemagglutinine tagged LprF, LpqH, LpqL or
LppX were transformed into M. bovis BCG. Whole cell
extracts from the four strains expressing the recombin-
ant lipoproteins were analyzed by Western blot. The
apparent molecular masses of the detected proteins
correspond to the predicted mass of the recombinant
apolipoproteins/mature lipoproteins (LprF 29.4 kDa,
LpgqH 17.3 kDa, LpqL 54.2 kDa, LppX 26.3 kDa). Even-
tually the prepro-/pro-lipoprotein forms whose sizes
are increased by 2-3 kDa due to the presence of the
signal peptide, are also detected.
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Identification of the lipoprotein lipid anchor in
M. bovis BCG
To characterize the modifications of lipoproteins at the
molecular level, the four recombinant lipoproteins LprF,
LpqH, LpqL and LppX were expressed in M. bovis BCG
parental strain. Proteins were purified by FPLC or HA af-
finity chromatography. Eluted fractions were analyzed by
Western blot (see Additional file 1) and lipoprotein
containing fractions were precipitated for SDS-PAGE gel.
Bands of purified lipoproteins were visualized with copper
staining, cut from the gel and the proteins were in-gel
digested with Trypsin or AspN (in case of LprF). Resulting
peptides were prepared and analyzed by MALDI-TOF/
TOF mass spectrometry [35]. For the identification of the
modification we determined the structure and calculated
the expected monoisotopic molecular masses of the un-
modified N-terminal tryptic or AspN-digested peptides of
LprE, LpgH, LpqL and LppX (without signal peptide).
Phospholipids found in mycobacteria mainly consist of pal-
mitic (C16:0), palmitoleic (C16:1), oleic (C18:1) and
tuberculostearic acid (10-methyloctadecanoic acid) (C19:0)
[39]. In E. coli, fatty acids of membrane phospholipids, i.e.
myristic (C14:0), palmitic, palmitoleic, oleic (C18:1 »9) or
vaccenic (18:1 w7) acid are used for the modification of li-
poproteins [40-44]. Therefore we calculated the theoretical
mass of the N-terminal peptides of the four lipoproteins
with all possible combinations of the above mentioned
fatty acids observed in mycobacterial phospholipids to
identify putative modifications. Glycosylations are also
commonly found in lipoproteins [45,46]. Some of the ana-
lyzed N-terminal peptides carry putative O-glycosylation
sites, therefore we also calculated the masses with hexose
modifications. [M+H]" signals at m1/z values which we cal-
culated for the unmodified N-terminal peptides were not
found. Instead, we found MS signals at m/z values which
indicate that the N-terminal peptides are modified in a
lipoprotein-specific manner with different combinations of
saturated and unsaturated C16, C18 and C19 fatty acids.
The calculated m/z values are summarized and compared
with the experimentally determined m1/z values in Table 1.
The modifications we estimated from the [M+H]" sig-
nals in the MS spectrum were confirmed by MS/MS frag-
mentation and thereby information about the linkage of
the modification was obtained. The structures of the di-
or triacylated N-terminal tryptic or AspN-digested pep-
tides from LprE, LpqH, LpqL and LppX were investigated
by MS/MS. All eliminations found in MS/MS of lipo-
proteins isolated from the parental strain are summa-
rized in Table 2.

Lipoproteins in slow-growing Mycobacteria are
N-acylated with C16 or C19 fatty acids

Since N-acylation was shown to be a common motif in li-
poproteins of high GC-rich Gram-positive M. smegmatis
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Table 1 Comparison of m/z values of N-terminal AspN-digested/tryptic peptides of LprF, LpqH, LpqL and LppX found
in BCG parental and Alnt mutant strain

Peptide Calculated m/z Parental strain m/z Alnt m/z
CGK...ILQ 2496.24 - -
CGK...ILQ 3047.11 - 3046.70
+ Diacylglycerol (C16/C16) (+550.87) (+550.46)
CGK...ILQ 3073.15 - 3072.71
+ Diacylglycerol (C16/C18) (+576.91) (+576.47)
CGK...ILQ 3089.20 - 3088.74
+ Diacylglycerol (C16/C19) (+592.96) (+592.50)
CGK...ILQ 325144 - 3251.65
LprF + Diacylglycerol (C16/C19) (+755.20) (+75541)
+ Hexose
CGK...ILQ 332760 3326.83 -
+ Diacylglycerol (C16/C19) (+831.36) (+830.59)
+ N-acyl (C16)
CGK...ILQ 353193 3530.56 -
+ Diacylglycerol (C16/C19) (+1035.69) (+1034.32)
+ N-acyl (C19)
+ Hexose
CSSNK 538.23 - -
CSSNK 1089.10 - 1088.60
+ Diacylglycerol (C16/C16) (+550.87) (+550.37)
CSSNK 1115.14 - 1114.68
LoqH + Diacylglycerol (C16/C18) (+576.91) (+576.45)
CSSNK 1131.19 1130.79 1130.71
+ Diacylglycerol (C16/C19) (+592.96) (+592.56) (+592.48)
CSSNK 1369.59 1369.04 -
+ Diacylglycerol (C16/C19) (+831.36) (+830.81)
+ N-acyl (C16)
CIR 391.21 - -
CIR 984.17 984.50 983.77
Lpal + Diacylglycerol (C16/C19) (+592.96) (+593.29) (+592.56)
CIR 122257 122198 -
+ Diacylglycerol (C16/C19) (+831.36) (+830.77)
+N-acyl (C16)
CSS...EIR 2964.46 - -
CSS...EIR 351533 351494 351494
+ Diacylglycerol (C16/C16) (+550.87) (+55048) (+550.48)
CSS...EIR 355742 - 3556.96
+ Diacylglycerol (C16/C19) (+592.96) (+592.50)
LppX CSS...EIR 3719.66 - 3719.00
+ Diacylglycerol (C16/C19) (+755.20) (+754.54)
+Hexose
CSS...EIR 3795.82 3795.21 -
+ Diacylglycerol (C16/C19) (+831.36) (+830.75)

+ N-acyl (C16)
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Table 1 Comparison of m/z values of N-terminal AspN-digested/tryptic peptides of LprF, LpqH, LpqL and LppX found

in BCG parental and Alnt mutant strain (Continued)

CSS...EIR 3881.90 - 3881.06
+ Diacylglycerol (C16/C19) (+917.44) (+916.60)
+ 2 Hexoses

CSS...EIR 3958.06 3957.28
+ Diacylglycerol (C16/C19) (+993.60) (+992.82)
+ N-acyl (C16)
+ Hexose

CSS...EIR 412030 411945
+ Diacylglycerol (C16/C19) (+1155.84) (+1154.99)

+ N-acyl (C16)

+ 2 Hexoses

Peptides correspond to the N-terminal AspN-digested/tryptic peptides of LprF, LpgH, LpgL and LppX upon cleavage of the signal peptide by LspA. Mass
differences to the corresponding unmodified peptide (bold number) due to modifications are given in parentheses. Observed modifications are: diacylglycerol
with C16 fatty acid and C16 fatty acid (+550.87 Da). Diacylglycerol with C16 fatty acid and tuberculostearic acid (C19:0) (+592.96 Da), plus one hexose (+162.24
Da, X = 755.20 Da) or two hexoses (+324.48 Da, X = 917.44). Diacylglycerol with C16 fatty acid and C19:0 fatty acid (+592.96 Da) plus N-acyl with C16 fatty acid
(+238.40 Da, X = 831.36), N-acyl with C16 fatty acid plus one hexose (+162.24 Da, ¥ = 993.6 Da) or two hexoses (+324.48 Da, X = 1155.84 Da). Or diacylglycerol
with C16 fatty acid and C19:0 fatty acid (+592.96 Da) plus N-acyl with C19:0 fatty acid and hexose (+280.49 Da +162.24 ¥ = 1035.69).

[12,13], we proposed Lnt modification also taking place in
slow-growing mycobacteria. This proposal was based on
the observation that M. tuberculosis apolipoprotein N-
acyltransferase Ppml could complement a M. smegmatis
Int mutant [12].

In M. bovis BCG, differences in molecular mass of
about 831.36 Da for LprF, LpqH, LpgqL and LppX,
993.60 Da for LppX, 1035.69 Da for LprF and 1155.84
Da for LppX between the experimentally determined
peptide and unmodified N-terminal peptide were found
(Table 1). These differences indicated posttranslational
modifications of lipoproteins by Lgt, LspA and Lnt. The
difference in molecular mass of 831.36 Da points to a
modification with diacylglyceryl residue with ester-linked
C16 and C19 fatty acid and amide-linked C16 fatty acid.
The difference of 993.60 Da indicates a modification
with diacylglyceryl residue with ester-linked C16 and
C19 fatty acid, amide-linked C16 fatty acid and a glyco-
sylation with one hexose on an O-glycosylation site in
the N-terminal peptide of LppX. The difference of
1155.84 Da points to a modification with diacylglyceryl
residue carrying ester-linked C16 and C19 fatty acid,
amide-linked C16 fatty acid and a glycosylation with two
hexoses. The difference in molecular mass of 1034.32 Da
suggests a modification of LprF with diacylglyceryl residue
carrying ester-linked C16 and C19 fatty acid, amide-
linked C19 fatty acid and a glycosylation with one hex-
ose (Table 1). Moreover, differences in molecular mass
of about 550.87 Da for LppX and 592.96 Da for LpqH,
LpqL and LppX were found, both indicating (Lgt and
LspA, but not Lnt modified peptides carrying) a diac-
ylglycerol modification with ester-linked C16 and C16
or ester-linked C16 and C19 fatty acid, respectively.

All modifications we estimated from MS data were
confirmed by MS/MS (Table 2). Modifications with
diacylglyceryl residue were confirmed by eliminations of
fragments with the mass of 626.53 Da (C16/C19), corre-
sponding to the elimination of a diacylthioglyceryl carry-
ing C16 and C19 fatty acid. The O-linked C16 or C19
fatty acids were confirmed by neutral losses of 256.24
Da and 298.29 Da, corresponding to the elimination of
palmitic acid or tuberculostearic acid. Further, neutral
losses of 328.24 Da and 370.29 Da correspond to the
elimination of C16 or C19 fatty acid a-thioglyceryl
ester, respectively. Proposed modification with N-linked
C16 fatty acid was identified by the neutral loss of
307.26 Da which is consistent with the elimination of
palmitamide plus didehydroalanine. Glycosylations in
the tryptic or AspN-digested N-terminal peptides at
other amino acids than the conserved cysteine were
confirmed by the eliminations of fragments of 162.24
Da for each hexose. (Note, since MS data of LppX from
this study are comparable with data from our recent
study in M. smegmatis [12], MS/MS data for LppX were
not further determined).

Previous structure analyses of lipoprotein modifications
in M. smegmatis recovered C16 and C19 moieties as
ester-linked acyl residues of the diacylglycerol and C16
fatty acid exclusively as substrate for N-acylation [12,13].
However, beside the signal at m/z = 3326.828, an add-
itional signal at m/z = 3530.562 was found in the MS of
LprF (Figure 1A). The signal at m/z = 3326.828 corre-
sponds to LprF modified with a diacylglyceryl residue car-
rying ester-linked C16 and C19 fatty acid and N-linked
C16 fatty acid. Eliminated fragments in MS/MS analysis of
the signal m/z = 3530.562 (Figure 1B) confirmed a



Table 2 Comparison of experimentally determined eliminations from N-terminal AspN digested/tryptic peptides of LprF, LpgqH, LpqL and LppX in the
MALDI-TOF/TOF spectra of BCG parental and Alnt mutant strain with theoretically calculated eliminations

Experimentally determined mass of eliminated fragment [Da]

Calculated mass of Parental strain Alnt
Modification Eliminated fragment eliminated LprF LpgH LpglL LppX LprF LpgH LpgL  LppX
fragment [Da]
C16/C19  C16/C19 C16/C19  C16/C19 C16/C16 C16/C19 C16/C16 C16/C18 C16/C19 C16/C19
C16 c19 C16 c16

O-linked palmitoyl (C16) Palmitic acid 256.24 256.5 - 256.3 2563 nd. - - 256.2 256.1 2563 2563 nd.*
O-linked oleyl (C18) Oleic acid 282.24 - - - - nd. - - - 2824 - - nd. *
O-linked tuberculostearyl (C19) Tuberculostearic acid 298.29 - - 2983 2983 nd. - - - - 2983 2984 nd.*
N-linked palmitoyl (C16) + Palmitamide + Didehydroalanine 307.26 - 306.6 - - nd. - - - - - - nd. *
Didehydroalanine
N-linked tuberculostearyl (C19) + Tuberculostearinamide + Didehydroalanine 349.31 3498 - - - nd. - - - - - - nd. *
Didehydroalanine
Diacylglyceryl (C16/C16) Diacylhioglyceryl (C16/C16) 584.44 - - - - nd. 5833 - - - - - nd. *
Diacylglyceryl (C16/C18) Diacylhioglyceryl (C16/C18) 610.52 - - - - nd. - - - - - - nd. *
Diacylglyceryl (C16/C19) Diacylhioglyceryl (C16/C19) 626.53 6259 626.7 626.7 6266 nd. - 626.7 - - 626.6 6267 nd.*

C16 fatty acid a-thioglyceryl ester 328.24 - - 3284 3283  nd. - - - - - nd. *

C19 fatty acid a-thioglyceryl ester 370.29 - - 3705 3703  nd. - 369.8 - - - 3704  nd.*
Hexose Hexose 160.76 161.62 - - - nd. - 1629 - - - - nd. *

* MALDI-TOF/TOF data for LppX from M. bovis BCG were not determined, since MS data of LppX from this study are comparable with data of LppX from M. smegmatis (A. Tschumi et al.

2009).
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modification with diacylglyceryl residue carrying ester-
linked C16 and C19 fatty acid, N-linked C19 fatty acid
and a hexose. The neutral loss of 625.89 Da from the
ion at m/z = 3368.508 corresponds to the elimination
of diacylthioglyceryl carrying both O-linked C16 and
C19 fatty acids. In addition, the neutral loss of 349.82
Da from m/z = 2742.615 corresponds to the elimination
of tuberculostearinamide plus didehydroalanine. This
fragmentation pattern shows that the +1 cysteine is
modified at the sulfhydryl group by a diacylglyceryl
residue carrying ester-bound C16 fatty acid and C19
fatty acid and an amide-bound C19 fatty acid at the
cysteine (Figure 1C).

Generation of an Int deletion mutant in M. bovis BCG

Using E. coli Lnt as a query in a BLASTp search on a sub-
set of mycobacteria, we identified three open reading
frames annotated as polyprenol-monophosphomannose
synthase Ppml, ie. Rv2051c in M. tuberculosis, BCG_
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2070c in M. bovis BCG Pasteur and MSMEG_3860 in M.
smegmatis, respectively. In M. tuberculosis two additional
putative homologous open reading frames, Rv2262¢ and
Rv2261c annotated as hypothetical proteins were found
(Figure 2). Both, MSMEG_3860 as well as the N-terminal
part of the two-domain protein encoded by Rv2051c are
already identified as functional N-acyltransferases in
mycobacteria [12]. A further search with M. tuberculosis
Rv2262¢/2261c as a query in a BLASTp search identified
BCG_2279¢ as homologue in M. bovis BCG Pasteur,
whereas no homologue was found in M. smegmatis. We
used sequence alignment with the Needleman-Wunsch al-
gorithm (http://www.ebi.ac.uk/Tools/psa/emboss_needle)
with default settings to compare both M. bovis ORFs to
E. coli Int, M. tuberculosis Int Rv2051c, as well as M. tu-
berculosis Rv2262c¢/2261c sequences. Pairwise sequence
alignment revealed the highest sequence identity (100%)
between BCG_2070c and Rv2051c from M. tuberculosis.
Interestingly, pairwise sequence alignment of BCG_2279¢
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Figure 1 MALDI-TOF and MALDI-TOF/TOF analysis of the N-terminal peptides of LprF. A. MS analysis of AspN-digested peptides of LprF
purified from M. bovis BCG parental strain. Filled triangle, diacylglycerol (C16/C19) + N-acyl (C16) modified and glycosylated N-terminal peptide,
open triangle, diacylglycerol (C16/C19) + N-acyl (C19) modified and glycosylated N-terminal peptide B. MS/MS analysis of the N-terminal peptide
of LprF from M. bovis BCG parental strain. Eliminated fragments of LprF modifications are shown in the upper part of the spectrum. @
Tuberculostearinamide + Didehydroalanine, @ Diacylthioglyceryl (C16/C19), @ Hexose. C. Schematic drawing of the modified +1 cysteine with
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Mycobacterium tuberculosis H37Rv (lab strain)_7

Mycobacterium bovis BCG str, Pastenr 1173P2_7
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Figure 2 A comparison of the genomic region of Lnt homologues in mycobacteria. Black bars/arrows indicate Lnt homologues. A second
domain is fused to the Int domain in M. tuberculosis Rv2051c, and M. bovis BCG BCG_2070c (grey arrows) and is homologous to M. smegmatis
MSMEG_3859 (grey arrow). White arrows indicate orientation of surrounding genes.

and Rv2262¢/2261c reveals that both sequences differ by a
2 bp insertion in Rv2262c (see Additional file 2). This leads
to a stop codon and initiation of Rv2261c with codon ttg.
BCG_2279c¢ does not have this insertion and therefore en-
codes only one protein. We confirmed this polymorphism
by sequencing corresponding regions of M. tuberculosis
and M. bovis BCG genomes. We also used protein se-
quence alignment with the Needleman-Wunsch algorithm
(http://www.ebi.ac.uk/Tools/psa/emboss_needle) and Clus-
talW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) with
default settings to analyze the conservation of essential
residues (see Additional file 3). BCG_2070c and Rv2051c
showed conservation of 14 among 23 residues required
for optimal activity of E. coli Lnt and conservation of
the three essential residues of the catalytic triad of E.
coli Lnt ie. E267, K335, C387 (see Additional file 4)
[11]. For comparison, the alignment of BCG_2279¢ and
Rv2262¢/2261c with E. coli Lnt also showed conservation
of 13 or 12 (in Rv2262c/2261c E. coli P346 is altered from
proline to leucine) among the 23 residues of E. coli Lnt.
However, different residues among the 23 were conserved
(see Additional file 4). In BCG_2279c¢ and Rv2262c/2261c
it revealed that essential residue C387 of the catalytic triad
is altered from cysteine to serine. C387 is essential for
Lnt-activity and transfer of the acyl residue to the apo-
lipoprotein in E. coli. However, it has been shown that
a Lnt (C387S) mutant also formed an acyl-enzyme
intermediate as the wildtype Lnt C387, but did not
have any detectable Lnt activity [11,47]. Moreover, it is
noteworthy that the residues of the catalytic triad are
separated on two different ORFs encoded by Rv2262c/
2261c in M. tuberculosis. Beside the three essential res-
idues of the catalytic triad, four other essential residues
W237, E343, Y388 and E389 are absolutely required
for Lnt function. Among these seven essential residues,
five residues are conserved in M. tuberculosis Rv2051c,
Rv2262¢/2261c and M. bovis BCG BCG_2070c, BCG_
2279c¢ Lnt homologues.

In summary, homology searches and comparison of
essential residues in the putative Lnts revealed only
small differences and it may be hypothesized that
both BCG_2070c and BCG_2279c are functional N-
acyltransferases. BCG_2070c is identical to an ORF with
proven N-acyltransferase activity since M. tuberculosis
Lnt complemented the M. smegmatis Int deletion mu-
tant and all three residues of the catalytic triad essential
for Lnt function in E. coli are conserved. Lnt activity of
BCG_2279¢ may be buried by the Lnt activity of
BCG_2070c. Therefore we generated a BCG_2070c [nt
deletion mutant and characterized lipoprotein modifica-
tions in the mutant. The [/nt deletion mutant was
constructed by transformation of M. bovis BCG with the
suicide plasmid pMCS5-rpsL-hyg-AlntBCG applying rpsL
counter-selection strategy, a powerful tool to generate
deletion mutants in mycobacteria [31,32]. The mutant
strain resulting from allelic exchange is referred to as
M. bovis BCG Alnt. Deletion of [nt was verified by
Southern blot analysis using a 5lnt DNA probe (see
Additional file 5). The probe hybridized to an 8.1-kbp
fragment of the parental strain and to a 3.1-kbp frag-
ment of the Alnt mutant. Moreover, a complemented
mutant strain was constructed by transformation of M.
bovis BCG Alnt mutant with complementation vector
pMV361-hyg-IntBCG_2070c expressing M. bovis BCG
BCG_2070c. The complemented strain is referred to as
M. bovis BCG Alnt-IntBCG_2070c.

BCG_2070c is a functional N-acyltransferase in

M. bovis BCG

The four expression vectors pMV261-Gm for hexa-
histidine/hemagglutinine tagged LprF, LpqH, LpqL or
LppX were transformed into M. bovis BCG Alnt mutant.
Recombinant lipoproteins expressed in the four strains
were analyzed by Western blot. The apparent molecular
masses of the detected proteins correspond to the pre-
dicted mass of the recombinant apolipoproteins/mature
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lipoproteins. Eventually the prepro-/pro-lipoprotein forms,
whose sizes are increased by 2—3 kDa due to the presence
of the signal peptide, are also detected.

In order to characterize BCG_2070c and eventually re-
sidual N-aclytransferase activity in M. bovis BCG, lipo-
protein modifications of LprF, LpqH, LpqL and LppX
from Alnt mutant were analyzed at the molecular level.
In Alnt, signals with molecular masses indicating Lgt-
and LspA- modified and glycosylated peptides were
found. The differences in molecular mass of 550.87 Da
for LprF, LpqH and LppX and 576.91 Da for LprF and
LpqH between the experimentally found peptide and the
unmodified N-terminal peptide (Table 1) indicate (Lgt
and LspA, but not Lnt modified peptides carrying) a di-
acylglycerol modification carrying ester-linked C16 and
C16 or ester-linked C16 and C18 fatty acid, respectively.
The differences in molecular mass of 592.96 Da for LprF,
LpqH, LpqL and LppX refer to a diacylglycerol modifica-
tion with ester-linked C16 and C19 fatty acid. The differ-
ences in molecular mass of 755.20 Da for LprF and
LppX refer to a diacylglycerol modification with ester-
linked C16 and C19 fatty acid plus glycosylation with
one hexose (592.96 Da + 162.24 Da). The difference in
molecular mass of 917.90 Da for LppX refers to a diac-
ylglycerol modification with ester-linked C16 and C19
fatty acid plus modification with two hexoses (592.96
Da + 162.24 Da + 162.24 Da).

In contrast to the MS from parental strain, no molecu-
lar masses which we calculated for modifications with
three fatty acids were found in the Alnt mutant strain.
In particular, the differences in molecular mass of 238.4
Da (831.36 Da - 592.96 Da) or 280.49 Da (1035.69 Da -
162.24 Da - 592.96 Da) between the C16/C19/C16 or
C16/C19/C19 triacylated modification found in the par-
ental strain and the corresponding estimated C16/C19
modification in the Alnt mutant indicate a lack of N-
acylation with a C16 or C19 fatty acid in the Alnt mu-
tant. In MS/MS analysis, this indication of missing
N-acylation in the mutant was confirmed by identifica-
tion of the estimated modifications and information
about its linkage (Table 2). Modifications with C16/C19
diacylglyceryl residue were confirmed by eliminations of
fragments with the molecular mass of 626.53 Da, corre-
sponding to the elimination of a diacylthioglyceryl carry-
ing C16 and C19 fatty acid. The O-linked C16 or C19
fatty acids were confirmed by neutral losses of 256.24
Da or 29829 Da, corresponding to the elimination of
palmitic acid or tuberculostearic acid, respectively. Fur-
ther, the neutral loss of 370.29 Da corresponds to the
elimination of C19 fatty acid a-thioglyceryl ester. A gly-
cosylation at other amino acids than the conserved cyst-
eine was confirmed by the release of a fragment of
162.24 Da for a hexose. These findings indicate that
N-acylation is not a prerequisite for glycosylation. As
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mentioned before, only diacylglyceryl residues composed
of a C16 and a C19 fatty acid were identified in myco-
bacterial lipid anchors so far [12,13]. However, the elimi-
nations of fragments with the molecular mass of 584.44
Da or 256.24 Da, corresponding to the elimination of
diacylthioglyceryl and palmitic acid, give evidence for
modifications with diacylglyceryl residue carrying C16
and C16 fatty acids. Moreover, estimated diacylglycerol
modifications carrying C16 and C18 fatty acids were
confirmed by neutral losses of fragments with the mo-
lecular mass of 256.24 Da and 282.44 Da, correspond-
ing to the elimination of palmitic and oleic acid. In
complemented mutant Alnt-IntBCG_2070c, lipopro-
teins LprF and LppX were triacylated and glycosylated
(see Additional files 6 and 7). This confirmed that
BCG_2070c restored the BCG_2070c mutant.

The absence of N-acylation of the four analyzed lipo-
proteins in the Alnt mutant and the complementation of
the mutant provide strong evidence that BCG_2070c is
the only functional apolipoprotein N-acyltransferase that
modifies these lipoproteins with an amide-linked fatty
acid in M. bovis BCG. In addition, it demonstrates that
BCG_2279c¢ is not able to adopt or substitute N-acyl-
ation of the four lipoproteins in the Alnt mutant.

Discussion

Lipoproteins are present in all bacterial species, but
their biogenesis and lipid moieties differ, especially be-
tween Gram-negative and Gram-positive bacteria. The
three enzymes involved in lipoprotein biosynthesis,
namely Lgt, LspA and Lnt first were identified in
E. coli. Therefore, the lipoprotein biosynthesis pathway
in E. coli is intensively studied and well described [6].
Mycobacteria are classified as Gram-positive bacteria,
but their lipoprotein biosynthesis pathway resembles
that of Gram-negative bacteria. The discovery of Lnt in
mycobacteria and the identification of lipoprotein N-
acylation in M. smegmatis renewed interest within the
field of mycobacterial lipoprotein research. The evi-
dence of triacylated lipoproteins in mycobacteria re-
futed the long held assumption, that N-acylation is
restricted to Gram-negative bacteria. Thus, the acyl-
ation with three fatty acids is a common feature of
mycobacterial and E. coli lipoproteins. But, mycobacter-
ial lipoproteins differ from E. coli lipoproteins with re-
spect to the fatty acids used for the triacylation.
Mycobacteria-specific fatty acid 10-methyl octadecanoic
acid (tuberculostearic acid) is uniquely found in lipopro-
teins of M. smegmatis [12,13].

All three enzymes of the lipoprotein biosynthesis path-
way, Lgt, LspA and Lnt are essential in Gram-negative,
but not in Gram-positive bacteria. However, in M. tuber-
culosis, Igt, the first enzyme of the lipoprotein biosyn-
thesis pathway is essential. A targeted deletion of Igt was
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not possible [48]. In contrast, an IspA deletion mutant
was viable, but the mutant strain showed a reduced
number of CFU in an animal model and induced hardly
any lung pathology. This confirmed a role of the lipo-
protein biosynthesis pathway in pathogenesis of M. tu-
berculosis [23,24].

Lipoproteins itself are well known virulence factors in
pathogenic bacteria. M. tuberculosis lipoproteins in par-
ticular have been shown to suppress innate immune re-
sponses by TLR2 agonist activity [26]. Newest data also
show that lipoproteins constitute the main proteinaceous
content of membrane vesicles released by pathogenic
mycobacteria and that they are highly immunogenic
[49]. Several M. tuberculosis mutants deficient in indi-
vidual lipoproteins are attenuated in virulence as shown
for LppX [50], LprG [51] and LpgH [52]. Recently, a M.
tuberculosis deletion mutant, defective in lipoprotein
LpqS showed attenuation in macrophages [53]. Despite
the important role of M. tuberculosis lipoproteins in im-
munogenicity and pathogenicity and all the achieve-
ments in knowledge about the lipoprotein modification
in apathogenic M. smegmatis, still little is known about
the molecular structure of lipoproteins in pathogenic
mycobacteria. The elucidation of lipoprotein structure
can build the fundamental knowledge for future devel-
opment of lipoprotein based subunit vaccines and
antitubercular drugs targeting enzymes of the lipopro-
tein synthesis pathway [54]. Therefore we extended our
research in lipoprotein modifications to slow-growing
mycobacteria. Most of the pathogenic mycobacteria and
the tuberculosis vaccine strain M. bovis BCG belong to
this sub-group.

In the present study, we investigated the lipid moieties
of four mycobacterial lipoproteins representing lipopro-
teins with different functions. By MALDI-TOF/TOF
analyses of a Trypsin digest of purified LpqH, LpqL and
LppX and an AspN digest of purified LprF, we unam-
biguously identified modifications at the universally con-
served cysteine in the parental strain. All four proteins
were found to be triacylated carrying a thioether-linked
diacylglyceryl residue with C16 and C19 fatty acid (C16/
C19) to the sulfhydryl group of the lipobox cysteine and
an amide-linked C16 fatty acid. Whether the fatty acids
of the diacylglyceryl residue are in the S,1 or S,2 pos-
ition could not be determined by mass spectrometry and
therefore currently remains elusive. In LprF, a novel
triacylation with C16/C19 diacylglycerol and C19 N-acyl
was identified. This differs from previous lipoprotein
analyses in M. smegmatis, where C16 fatty acid was the
single substrate for Lnt [12,13]. Likewise, it shows that
mycobacteria not only use mycobacteria-specific fatty
acids for diacylglycerol modification, but also for N-acyl-
ation. Lipoprotein modifications with acyl residues of
different length, stiffness and bulkiness may influence
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membrane fluidity and localization of lipoproteins. In
Francisella novicida, an environmentally regulated mem-
brane remodelling directed by multiple alleles of the
lipid A-modifying N-acyltransferase enzyme is reported.
By incorporation of shorter or longer N-acyl fatty acid
chains to the outer membrane lipid A, the bacterium
regulates the maintenance of membrane fluidity and
integrity [55]. Therefore, it is obvious to speculate a
similar important role of the C19 N-acyl lipoprotein
modification for mycobacteria in terms of adaptations
to environmental alterations or specific bacterial condi-
tions. Adaptation of lipoprotein modification to envir-
onmental conditions has been shown for S. aureus. A
combination of conditions including acidic pH and
post-logarithmic growth phase induced the accumula-
tion of diacylated lipoproteins [56].

By the usage of C19 fatty acid, mycobacterial Lnt
strongly differs in substrate specificity from E. coli Lnt.
E. coli Lnt utilizes all three major phospholipids of E.
coli phosphatidylethanolamine, phosphatidylglycerol and
cardiolipin as its fatty acid source in vivo [40]. Subse-
quent analysis revealed that both the phospholipid
head group and its acyl chain composition affect N-
acyltransferase activity in vitro [41]. E. coli Lnt incorpo-
rates palmitic (C16) fatty acids from the S, 1 position of
phospholipids to diacylated lipoproteins [42]. In myco-
bacterial phospholipids the S,1 position is esterified
principally with octadecanoic or tuberculostearic acid
(C18 related fatty acids), whereas palmitic acid (C16) is
mainly located at the S,2 position [57]. Based on this
and the fact, that palmitic acids were used for N-acyl-
ation of lipoproteins in M. smegmatis [12,13], Nakayama
et al. proposed that M. smegmatis Lnt uses fatty acids
from the §,2 position as substrates and therefore has a
different specificity than E. coli Lnt [20]. This specifi-
city obviously is different in M. bovis BCG. Our results
provide strong evidence, that not only palmitic acid
from the S,2 position, but also tuberculostearic acid
(C19), a fatty acid from the S,1 position of phospho-
lipids is transferred by Lnt [57].

Lipoproteins are recognized by TLR2 in association
with TLR1 or TLR6. While diacylated lipoproteins carry-
ing the S-diacylglyceryl residue are recognized by TLR2/
6 heterodimers, triacylated lipoproteins carrying the add-
itional N-acyl are recognized by TLR1/2 heterodimers.
The two ester-bound fatty acids are inserted into a
pocket in TLR2 while the amide-bound fatty acid is
inserted into a hydrophobic channel in TLR1. Therefore
the N-acyl of the lipoprotein is indispensable for the
heterodimerization of TLR2 and TLR1 and thus the ini-
tiation of TLR2/1 signaling [58,59]. Recent investigations
indicate that TLR1 polymorphisms are associated with
resistance towards bacterial pathogens, including M. tu-
berculosis [60,61]. It may be hypothesized that the
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modification of lipoproteins with particular fatty acids
plays a crucial role for lipoprotein function, its reten-
tion in a membrane, and interaction with TLRs. However,
whether the N-acylation with C19 fatty acid is only
characteristic for LprF or also for other lipoproteins
and whether it is a feature of M. bovis BCG Lnt re-
mains to be investigated.

Beside the triacylated forms, also diacylated forms of
the N-terminal peptide were found in proteins from the
parental BCG strain. A modification with C16/C19 diac-
ylglycerol was found in LpqL and a C16/Cl6 diac-
ylglycerol was found in LppX. These molecules probably
indicate N-terminal peptides from unmature proteins
which have not been converted to mature lipoproteins
by Lnt yet.

Lipoproteins from M. bovis BCG were identified to be
triacylated at their N-terminus which suggests that N-
acylation by an Lnt enzyme also exists in slow-growing
mycobacteria. We identified the open reading frame, en-
coding the Lnt enzyme responsible for the N-acylation.
M. bovis BCG Pasteur genome analysis revealed two
open reading frames BCG_2070c and BCG_2279c hom-
ologous to E. coli Lnt. Our biochemical analyses of four
lipoproteins expressed in a BCG_2070c Alnt mutant
demonstrated that BCG_2070c is the major if not the
only functional mycobacterial Lnt in M. bovis BCG.
When we subjected lipoproteins LprF, LpqH, LpqL and
LppX expressed in the Alnt mutant to MALDI-TOF/
TOF analyses, none of the proteins was found to be N-
acylated. All four proteins were found to be only
diacylated in contrast to the triacylated proteins in the
parental strain. Diacylglyceryl residues composed of
C16/C19 fatty acid, C16/C16 fatty acid or C16/C18 were
found. Hereby the usage of oleic acid as a substrate for
lipoprotein modification in mycobacteria, to our know-
ledge is shown for the first time.

We showed that the lack of BCG_2070c results in a
failure of lipoprotein N-acylation and that BCG_2279c is
not able to compensate Lnt function. BCG_2279¢ has a
C to S amino acid substitution in C387, a residue essen-
tial for Lnt function in E. coli. In E. coli, a C387 alter-
ation absolutely abolishes Lnt function, because this
residue is part of the catalytic triad of Lnt [11]. Alter-
ations in BCG_2279c¢ therefore could account for its in-
activity as Lnt. But we cannot exclude that BCG_2279c¢
is a second Lnt particularly active under specific growth
conditions. Alternatively, BCG_2279c may act only on a
small subset of dozens of putative mycobacterial lipopro-
teins not yet characterized by MALDI-TOF/TOF.

Streptomyces spp., bacteria closely related to mycobac-
teria, also encode two Lnt homologues. Deleting Strepto-
myces scabies Intl and [nt2 genes individually or in
combination revealed that Lntl is a functional Lnt suffi-
cient and required for N-acylation. Lnt2 could not
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compensate for the Lntl deletion. However, both Lnts
seem to be required for efficient lipoprotein N-acylation
as the lack of Lnt2 alone resulted in a marginal N-acyl-
ation activity. This implies a subsidiary but inessential
role for Lnt2, not directly involved in N-acylation of li-
poproteins [15]. Likewise, an interplay can count for the
two Lnt homologues in M. bovis BCG. But, in contrast
to the Lnts in S. scabies, BCG_2279c¢ is missing one of
the three essential residues required for Lnt activity in E.
coli. This, in our opinion diminishes the possibility for
BCG_2279c to be an Lnt with N-acylation activity and
favours a contributive role for it. In vitro biochemical as-
says [41] with purified BCG_2279¢ or analyses of a
BCG_2279¢ mutant alone or in combination with
BCG_2070c would be required to elucidate this.

Beside the fatty acid modifications, we also identified
hexose glycosylations in LprF and LppX. Modifications
with one or more glycosyl residues have been shown for
several mycobacterial lipoproteins [13,45,62]. O-glycosyl-
ation occurs at Ser and Thr residues respectively. Al-
though glycosylations of the tryptic or AspN-digested
N-terminal peptides of LprF and LppX were identified,
the exact glycosylation site within the peptide could
not be determined. No glycosylations were found for
N-terminal fragments of LpqH and LpqL. This possibly
is due to the use of proteases which have cleavage sites
close to the N-terminus and therefore the peptide frag-
ment may be too short to include O-glycosylation sites.
The information about the exact molecular nature and
function of the glycosylation is scarce, but its influence
on subcellular lipoprotein localization and its protec-
tion from proteolytic degradation are proposed [45,62].
In B. subtilis lipoprotein glycosylation is discussed to
control a lipoprotein “shaving” mechanism and thus
their release into the culture medium [63]. In our study,
glycosylations were found also in lipoproteins from the
Alnt mutant, demonstrating that N-acylation is not a
prerequisite for glycosylation. Lnt independent glyco-
sylation was also demonstrated in C. glutamicum [16].
In C. glutamicum Cg-Ppml is responsible for glycosyla-
tion. Cg-ppm1 (Ppm synthase) and Cg-ppm2 (Lnt) are
similar organized as MSMEG_3859 (Ppm synthase) and
MSMEG_3860 (Lnt) in M. smegmatis (Figure 2). Dele-
tion of the Lnt domain of BCG_2070c obviously did
not abolish Ppm activity encoded in the same ORF.
Of note, Lnt is dispensable while Ppm is essential in
M. tuberculosis [64].

In Gram-negative bacteria, the efficient lipoprotein
transport to the outer membrane depends on the
localization of lipoproteins (Lol) transport system and
there is good evidence that N-acylation by Lnt facilitates
lipoprotein translocation in E. coli [6,65]. Lnt is essential
in E. coli, however deletion of Int was possible upon
overexpression of proteins from the Lol system,
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indicating an important role of N-acylation in targeting
lipoproteins to the outer membrane [9]. Mycobacteria
have an outer membrane mycolic acid bilayer [66-68]
and are known to localize lipoproteins to the cell surface
[66]. Nevertheless, no mechanisms for translocation or
transport systems are identified and whether N-acylation
and glycosylation, alone or in combination are involved
in the translocation of specific lipoproteins to the
mycolate layer is not known so far.

In the present study we show that lipoproteins from M.
bovis BCG, the live vaccine for tuberculosis are triacylated
and we identified the lipid modifications at the molecular
level. BCG_2070c is a functional homologue of E. coli Lnt,
but differs in substrate specificity. The identification of
N-linked tuberculostearic acid shows for the first time, to
our knowledge, that mycobacteria-specific fatty acids are
used by mycobacterial Lnts.

The antituberculosis drug pipeline is not sufficiently
filled and the vaccines used at present do not provide
effective protection against tuberculosis in adults. For
lipoproteins and their biosynthesis pathway potential
implications in M. tuberculosis pathogenesis and im-
munogenicity have been shown. Our results about lipo-
protein structure therefore may contribute to provide
the knowledge which is required to develop novel vac-
cines and antituberculosis drugs to eliminate this
worldwide epidemic.

Conclusions

Lipoproteins are triacylated in slow-growing mycobac-
teria. By MALDI-TOF/TOF analyses lipoprotein modifi-
cations in M. bovis BCG wildtype and BCG_2070c Int
deletion mutant were analyzed at the molecular level. N-
acylation of lipoproteins was only found in the wildtype
strain, but not in the mutant strain, which confirmed
BCG_2070c as functional Int in M. bovis BCG. More-
over, we identified mycobacteria-specific tuberculostearic
acid as further substrate for N-acylation in slow-growing
mycobacteria.
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