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Abstract

Background: Candida spp. are recognized as a primary agent of severe fungal infection in immunocompromised
patients, and are the fourth most common cause of bloodstream infections. Our study explores treatment with
photodynamic therapy (PDT) as an innovative antimicrobial technology that employs a nontoxic dye, termed a
photosensitizer (PS), followed by irradiation with harmless visible light. After photoactivation, the PS produces either
singlet oxygen or other reactive oxygen species (ROS) that primarily react with the pathogen cell wall, promoting
permeabilization of the membrane and cell death. The emergence of antifungal-resistant Candida strains has
motivated the study of antimicrobial PDT (aPDT) as an alternative treatment of these infections. We employed the
invertebrate wax moth Galleria mellonella as an in vivo model to study the effects of aPDT against C. albicans
infection. The effects of aPDT combined with conventional antifungal drugs were also evaluated in G. mellonella.

Results: We verified that methylene blue-mediated aPDT prolonged the survival of C. albicans infected G. mellonella
larvae. The fungal burden of G. mellonella hemolymph was reduced after aPDT in infected larvae. A fluconazole-
resistant C. albicans strain was used to test the combination of aPDT and fluconazole. Administration of fluconazole
either before or after exposing the larvae to aPDT significantly prolonged the survival of the larvae compared to
either treatment alone.

Conclusions: G. mellonella is a useful in vivo model to evaluate aPDT as a treatment regimen for Candida infections.
The data suggests that combined aPDT and antifungal therapy could be an alternative approach to antifungal-
resistant Candida strains.
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Background
Candida albicans and other Candida species commonly
colonize the epithelial surfaces of the human body [1].
One-half of humans have oral cavities colonized by Can-
dida species in a commensal relationship with the host
[2]. Although few healthy carriers develop clinical can-
didiasis, when the host becomes immunocompromised
due to cancer, HIV/AIDS, diabetes, major surgery, trans-
plantation of solid organs or hematopoietic stem cells,
these opportunistic pathogens can cause superficial
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infections that may be cutaneous, subcutaneous or mu-
cosal. In progressive cases, the fungus can penetrate the
epithelial surface and be disseminated by the blood-
stream with serious consequences [1,3-7].
C. albicans is the most common species isolated from

superficial and systemic candidiasis and it is considered
the most pathogenic species of the Candida genus
[5,8-11]. In vitro investigations indicate that C. albicans
expresses higher levels of putative virulence factors com-
pared to other Candida species. It has been proposed
that several virulence factors are involved in the patho-
genicity of C. albicans, such as adhesion to host sur-
faces, hyphal formation and secretion of proteinases
[11]. In addition, C. albicans cells employ mechanisms
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that protect of the fungal cells from the host immune
system, including an efficient oxidative stress response
[12,13]. When immunocompetent individuals are
infected by fungi, macrophages and neutrophils gener-
ate reactive oxygen species (ROS), such as superoxide
radicals and hydrogen peroxide that damage cellular
components of C. albicans, inclusive of proteins, lipids
and DNA. The production of ROS is an important
mechanism of host defense against fungal pathogens
[13], damaging cells enough to cause cell death of
phagocytosed fungal cells [12,14].
Treatment of fungal infections, especially invasive

ones, is considered difficult due to the limited availabil-
ity of antifungal drugs and by the emergence of drug-
resistant strains. The development of new antifungal
agents and new therapeutic approaches for fungal infec-
tions are therefore urgently needed [4,8,15]. Photo-
dynamic therapy (PDT) is an innovative antimicrobial
approach that combines a non-toxic dye or photosensi-
tizer (PS) with harmless visible light of the correct
wavelength. The activation of the PS by light results in
the production of ROS, such as singlet oxygen and hy-
droxyl radicals, that are toxic to cells [6,16]. PDT is a
highly selective modality because the PS uptake occurs
mainly in hyperproliferative cells and cell death is
spatially limited to regions where light of the appropri-
ate wavelength is applied. As microbial cells possess
very fast growth rates, much like that of malignant cells,
PDT has been widely used for microbial cell destruction
[17]. Several in vitro studies have shown that PDT can
be highly effective in the inactivation of C. albicans and
other Candida species. Therefore, antifungal PDT is a
subject of increasing interest especially against Candida
strains resistant to conventional antifungal agents [16].
Galleria mellonella (the greater wax moth) has been

successfully used to study pathogenesis and infection
by different fungal species, such as Candida albicans,
Cryptococcus neoformans, Fusarium oxysporum, Asper-
gillus flavus and Aspergillus fumigatus [18]. Recently,
our laboratory was the first to describe G. mellonella as
an alternative invertebrate model host to study anti-
microbial PDT alone or followed by conventional thera-
peutic antimicrobial treatments [19]. We demonstrated
that after infection by Enterococcus faecium, the use of
antimicrobial PDT prolonged larval survival. We have
also found that aPDT followed by administration of a
conventional antibiotic (vancomycin) was significantly
effective in prolonging larval survival even when
infected with a vancomycin-resistant E. faecium strain.
In this study, we go on to report the use of the inver-

tebrate model G. mellonella as a whole animal host for
the in vivo study of antifungal PDT, as well as the study
of combined therapy using PDT and a conventional an-
tifungal drug.
Methods
Microbial strains and culture conditions
The C. albicans strains used in this study were Can14
and Can37. C. albicans Can14 is a wild-type strain
SC5314 [20] and C. albicans Can37 is a fluconazole re-
sistant clinical isolate from a patient with oropharyngeal
candidiasis [3]. C. albicans Can37 was identified by
growth on Hicrome Candida (Himedia, Munbai, India),
germ tube test, clamydospore formation on corn meal
agar, and API20C for sugar assimilation (BioMerieux,
Marcy Etoile, France). Susceptibility pattern to flucona-
zole was determined by the broth microdilution assay
according to the Clinical and Laboratory Standards In-
stitute (CLSI).
Strains were stored as frozen stocks with 30% glycerol

at −80°C and subcultured on YPD agar plates (1% yeast
extract, 2% peptone, and 2% dextrose) at 30°C. Strains
were routinely grown in YPD liquid medium at 30°C in
a shaking incubator.

Fungal inocula preparation
C. albicans cells were grown in YPD at 30°C overnight.
Cells were collected with centrifugation and washed
three times with PBS. Yeast cells were counted using a
hemocytometer. The cell number was confirmed by de-
termining colony-forming units per mL (CFU/mL) on
YPD plates.

Inoculation of G. mellonella with C. albicans strains
G. mellonella (Vanderhorst Wholesale, St. Marys, OH,
USA) in the final larval stage were stored in the dark
and used within 7 days from shipment. Sixteen randomly
chosen G. mellonella larvae with similar weight and size
(250-350 mg) were used per group in all assays. Two
control groups were included: one group was inoculated
with PBS to observe the killing due to physical trauma,
and the other received no injection as a control for gen-
eral viability.
A Hamilton syringe was used to inject 5 μL inoculum

aliquots into the hemocoel of each larvae via the last left
proleg containing 106 CFU/larvae of C. albicans cells
suspended in PBS. After injection, larvae were incu-
bated in plastic containers at 37°C and monitored for
survival daily.

Chemicals and photosensitizer
Methylene blue (MB, Sigma, St Louis, MO) was used at
a final working concentration of 1 mM. The dye was
dissolved in distilled and deionized filter sterilized water
(ddH2O). For each experiment, a new PS solution was
prepared daily. Fluconazole (Sigma-Aldrich, Steinheim,
Germany) was dissolved in ddH2O and injected in G.
mellonella at a concentration of 14 mg/Kg.
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Antimicrobial photodynamic therapy
The G. mellonella larvae were injected with 10 μL of a
1 mM solution of MB 90 min after the Candida infec-
tion and the PS was allowed to disperse for 30 min into
the insect body in the dark, prior to the light irradiation.
A broad-band non coherent light source (LumaCare,

Newport Beach, CA) was used for light delivery. This
device was fitted with a 660 ± 15 nm band-pass filter
probe that was employed to produce a uniform spot for
illumination. The optical power was measured using a
power meter (PM100D power/energy meter, Thorlabs,
Inc., Newton, NJ).

Antifungal administration
For the study of aPDT combined with conventional an-
tifungal drug, fluconazole (14 mg/kg) was injected im-
mediately before or after the exposure of larvae to light.
As a control, a group of the larvae received an injection
containing PBS, in lieu of fluconazole.

G. mellonella survival assays
After aPDT or combined treatment of aPDT with flucona-
zole, larvae were observed every 24 h, and considered dead
when they displayed no movement in response to touch.
Survival curves were plotted and statistical analysis was
performed by the Log-rank (Mantel-Cox) test using Graph
Pad Prism statistical software. A P value <0.05 was consid-
ered statistically significant. All experiments were repeated
at least twice, representative experiments are presented.

Persistence of C. albicans in the hemolymph of G.
mellonella
The number of fungal cells recovered from the hemolymph
of G. mellonella infected by C. albicans Can37 was mea-
sured immediately after larvae were exposed to aPDT and
to combined treatment (aPDT and fluconazole). Three sur-
viving larvae per group were bled by insertion of a lancet
into the hemocoel. Hemolymph from 3 larvae was pooled
into 1.5 ml Eppendorf tubes in a final volume of approxi-
mately 80 μL. Then, the hemolymph was serially diluted
and plated on Sabouraud dextrose agar supplemented with
chloramphenicol (100 mg/L). Plates were incubated aerob-
ically at 37°C for 24 h, and colonies were counted in each
pool (CFU/pool). The groups exposed to aPDT were com-
pared to the control groups by Student t test. Difference in
the number of CFUs were considered statistically signifi-
cant at P < 0.05. The experiments were repeated at least
twice and representative experiments are presented. Three
polls per group were performed in each experiment.

Results
We previously described the utility of the G. mellonella
model host to assess antibacterial PDT efficacy against
E. faecium [19]. In this study we explored the potential of
this model using antifungal therapy against one of the
most common opportunistic fungal pathogens C. albicans.
Briefly, after 90 min of Candida infection, G. mellonella
larvae were treated with PDT mediated by MB and red
light according to the methods described.
As a first step in exploring the optimal dose–response

to MB mediated-PDT, we evaluated 10 groups of larvae
that were infected with the wild-type strain of C. albicans
(Can14) and received MB (1 mM) injection. We gradually
increased the light exposure time. More specifically, eight
groups were exposed to red light at different fluences (0.9,
1.8, 3.6, 5.4, 7.2, 10.8, 14.4 and 18 J/cm2, corresponding to
30, 60, 120, 180, 240, 360, 480 and 600 s of irradiation),
while two control groups received injection of PBS or MB
with no light exposure. After irradiation, the survival rate
of G. mellonella was assessed 24 h post C. albicans infec-
tion. The best survival rate was reached with the lowest
dose and 30 s of irradiation time (data not shown).
As a second step, a finer evaluation to establish the

optimum light dosimetry was performed. Eight further
groups were employed to analyze the photodynamic ef-
fects at 15, 30, 45, 60, 75, 90, 105 and 120 s of irradiation
(0.45, 0.9, 1.35, 1.8, 2.25, 2.7 and 3.6 J/cm2) and once again
0.9 J/cm2 (30 s of irradiation) provided the best survival
rate (Figure 1).
As a third step, a further comprehensive experimental

procedure was designed to assess the effects of aPDT, me-
diated by the optimum dose (1 mM MB and red light at
0.9 J/cm2), on host curve survival when infected by the
wild-type strain C. albicans Can14 and the fluconazole
resistant isolate C. albicans Can37. We observed that MB-
mediated aPDT, prolonged the larval survival when com-
pared to non-PDT treated larvae, however a statistically
significant difference between PDT and control groups
was observed only for C. albicans Can14 (Figure 2).
Since it was observed that fluconazole resistant strain

(Can37) showed reduced sensitivity to PDT, we evaluated
the number of CFU within the hemolymph to determine
if the fungal burden was reduced even if survival was not
significantly increased. We compared the hemolymph bur-
den of aPDT-treated larvae with non-treated larvae and a
significant reduction in the CFU number was observed
post-PDT treatment (Figure 3). These results confirmed
that aPDT was able to reduced fungal cell viability (0.2
Log) immediately upon light exposure, suggesting that
singlet oxygen and other ROS were produced, leading to
cell damage [21,22].
The reduced fungal burden indicates that the aPDT

treated cells are potentially damaged and thus the sur-
vival might be altered by the addition of another cell
membrane directed bombarding compound, a struc-
ture important for the maintenance of cell wall integ-
rity. Hence, we investigated the effects of combined
treatment of aPDT with fluconazole, a compound that



Figure 1 Dose–response 24 h after aPDT in G. mellonella infected by C. albicans Can14. Larvae were infected with 1x106 CFU/larva of C.
albicans Can14. The best survival rate was found when the fluence of 0.9 J/cm2 was applied.
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targets P450 and affects ergesterol synthesis, a major com-
ponent of the cell membrane. This antifungal agent is used
extensively because of its low host toxicity to treat fungal
infections. One of the mechanisms that can be used by C.
albicans to develop resistance to fluconazole is related to
the overexpression of cell membrane multidrug efflux sys-
tems [23,24]. Based on the hypothesis that aPDT could
damage the cell membrane of C. albicans, producing in-
creased membrane permeability [25] and possibly damaging
efflux pumps, we used G. mellonella-C. albicans system to
assess the sequential combination of PDT with fluconazole.
G. mellonella were inoculated with 1.41 × 106 CFU/larva to
infect the larvae with the fluconazole-resistant C. albicans
strain (C. albicans Can37). Larvae treated only with PDT or
only with fluconazole did not show significantly prolonged
larval survival. The sequential combination with flucona-
zole, before or after PDT, significantly increased larvae sur-
vival in both assays (Figure 4). These results suggest that
aPDT increases the susceptibility of C. albicans Can37 to
fluconazole.

Discussion and conclusion
In this study we used the invertebrate model G. mellonella
for the in vivo study of antifungal PDT. We verified that
aPDT prolonged the survival of G. mellonella caterpillars
infected by C. albicans and reduced the fungal burden in
the hemolymph of these animals. In addition, we used a
fluconazole-resistant C. albicans strain to test the combin-
ation of aPDT and fluconazole. The data presented here
demonstrated that aPDT increased the susceptibility of C.
albicans to fluconazole.
The increased numbers of fungal infections and the sub-

sequent need for high-cost and time-consuming develop-
ment of new antimicrobial strategies and anti-infectives
has emerged as a major problem among infectious dis-
eases researchers and clinicians [6,26]. Antimicrobial PDT
is one of the most promising alternative countermeasures
for cutaneous or mucosal infections, caused by either bac-
teria or fungi [6,26].
Antifungal PDT is an area of increasing interest, as re-

search is advancing in answering fundamental questions
regarding the photochemical and photophysical mecha-
nisms involved in photoinactivation; producing new,
potent and clinically compatible PS; and in understand-
ing the effect of key microbial phenotypic multidrug re-
sistance, virulence and pathogenesis determinants in
photoinactivation. The novel concept of developing the
non-vertebrate infection model in G. mellonella to ex-
plore the efficacy of antifungal PDT provides many
competitive advantages [6].



Figure 2 Killing of G. mellonella by C. albicans exposed to antimicrobial PDT. In the aPDT group, the larvae received the PS injection 90 min
after the infection with C. albicans. In order to allow a good dispersion of the PS into the insect body, we waited at least 30 additional min after
the PS injection prior to the light irradiation. A control group received PS without light exposure. Larvae were maintained at 37°C. a) C. albicans
Can14 wild-type strain SC5314, b) C. albicans Can37 clinical isolate from oropharyngeal candidiasis and fluconazole resistant.
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The use of the invertebrate model host has significant
benefits when compared to mammalian animals: there
are no ethical or legal concerns, no need for specialized
feeding or housing facilities, the management of the ani-
mal is very easy and no anesthesia is needed, animals are
inexpensive, and the use of large sample numbers in the
same group are possible [27-30]. G. mellonella has been
used to study host-pathogen interactions as an alterna-
tive host model to small mammals such as mice and rats
[9,27-29,31-40].
Our laboratory pioneered the use of G. mellonella as a

suitable invertebrate model host to study aPDT against
Enterococcus faecium [19]. In the present study this ap-
proach to investigating aPDT was successfully expanded
to include fungal pathogens. The optimal dose–response
to MB mediated-PDT was evaluated and 0.9 J/cm2

showed the best survival of G. mellonella caterpillars, as
was found in the E. faecium study. The same limited
non-toxic dosage of aPDT to G. mellonella was applied
to treat larvae infected by strains of Candida albicans.
During the G. mellonella killing assays, groups infected by

C. albicans that received aPDT treatment demonstrated
prolonged survival when compared to groups that did not
received treatment. However a statistically significant differ-
ence between PDT and control groups was observed only
for C. albicans Can14 wild-type strain. When the infection
was induced by a fluconazole resistant strain (Can37), a sta-
tistically significant difference between these groups was not
observed. Despite the fact that PDT has been described as a
potent agent against both antimicrobial-resistant and sensi-
tive microorganisms [6] we observed that a fluconazole-
resistant C. albicans strain was less sensitive to aPDT.
This difference has also been described in an in vitro

study performed by Dovigo et al. [41]. These authors



Figure 3 Number of fungal cells in G. mellonella hemolymph
immediately post exposed to antimicrobial PDT treatment.
Larvae were infected with 1.41x106 CFU/larva of C. albicans Can37
and were maintained at 37°C. After 90 min post-infection, the PS
was injected. We waited an additional 30 min prior to light
irradiation. After light irradiation, the bacterial burden was measured
immediately. Fungal burden was quantified from pools of three
larvae hemolymph. aPDT exposed groups resulted in a significant
fungal burden reduction when compared to the control group that
was not exposed to light. Bars and error bars represent, respectively,
the mean and standard deviation of three pooled larvae per group.
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observed that fluconazole-resistant strains of C. albicans
and C. glabrata showed reduced sensitivity to aPDT in
comparison with reference strains susceptible to flucona-
zole, suggesting that resistance mechanisms of microor-
ganisms to traditional antifungal drugs could reduce
PDT effectiveness. According to Prates et al. [23], the re-
sistance of Candida strains to fluconazole usually in-
volves overexpression of cell membrane multidrug efflux
systems belonging to the ATP-binding cassette (ABC) or
the major facilitator superfamily (MFS) classes of trans-
porters. The authors showed that the overexpression of
both systems reduced MB uptake by fungal cells, as well
as the killing effect of aPDT, suggesting that ABCs and
MFSs are involved in the efficiency of aPDT mediated
by MB and red light. In addition, Arana et al. [42] demon-
strated that subinhibitory concentrations of fluconazole in-
duced oxidative stress and a transcriptional adaptative
response that was able to generate protection of C. albicans
against subsequent challenges with oxidants. The mecha-
nisms of protection against oxidative stress of fluconazole
resistant C. albicans strain may have enhanced the resist-
ance of C. albicans to oxidative damage caused by PDT.
In this study, we also evaluated the effects of aPDT on

fungal cells in the hemolymph of G. mellonella larvae
infected by fluconazole resistant C. albicans (Can37). Al-
though this C. albicans strain had not shown a significant
increase in survival rate in G. mellonella, it was observed
that aPDT caused a reduction of the number of fungal cells
in the hemolymph (0.2 Log) with a statistically significant
difference between aPDT and control groups. In addition,
these data demonstrated that aPDT was able to reduce
fungal cell viability immediately upon light exposure,
suggesting that C. albicans cells were sensitive to aPDT,
by the lethal oxidative damage of the singlet oxygen path-
way, in the experimental candidiasis in the G. mellonella
model. At the moment, all the aPDT studies performed
in vivo were developed in vertebrate models of rats and
mice using fluences of light much higher than the dose
used in our work [43-45]. Using an oral candidiasis mice
model, Costa and colleagues [44] found a reduction of
0.73 Log in the fungal cells recovered after erythrosine-
and LED-mediated aPDT when a fluence of 14 J/cm2 was
applied. Dai et al. [45] also demonstrated that aPDT, with
the combination of methylene blue and red light (78 J/
cm2), reduced (0.77 Log of CFU) the fungal burden in skin
abrasion wounds in mice infected with C. albicans.
Patients with fungal infections are often treated with

azole antifungal drugs, however Candida resistance to
azoles has been detected in recent years. Several mecha-
nisms of resistance have been reported including the
overexpression of cell membrane multidrug efflux pumps
previously cited, an alteration in the chemical structure of
the demethylase enzyme, and the incorporation of alterna-
tive sterols to ergosterol within the cell membrane [23,24].
Giroldo et al. [25] suggested that MB-mediated aPDT
caused damage to the cell membrane of the C. albicans
cells. If the hypothesis that aPDT could affect the cell
membrane is valid, the sequential use of aPDT with flu-
conazole could have a dual action on treating the infec-
tion. Conventional antimicrobial therapy could have aPDT
as an adjunct or as an alternative [15]. The combination of
PDT with antimicrobials has been used with success when
compared to either isolated approach [19,26,46]. Kato
et al. [43] verified that after exposure to sublethal aPDT,
the minimal inhibitory concentration (MIC) of fluconazole
against C. albicans was reduced compared to non-aPDT
treated strains.
Of note, we observed that the G. mellonella larvae sur-

vival after infection by the fluconazole resistant C. albicans
strain, was prolonged when fluconazole was administered
before or after aPDT, in comparison to the use of flucona-
zole or PDT alone. We believe that due to the per-
meabilization of the fungal cell membrane by the sublethal
PDT dose, fungal cells become more susceptible to flucon-
azole action. In addition, it has been suggested that the use
of azoles can increase the oxidative stress promoted by
PDT by contributing to ROS formation themselves [26].
Arana et al. [42] demonstrated that fluconazole was able to
induce oxidative stress in C. albicans in a dose- and time-
dependent manner, suggesting that ROS play a role in the
mechanism of action of azoles. The exact mechanism in-
volved in increasing the survival of larvae infected by the
fluconazole resistant C. albicans strain and exposed to



Figure 4 Killing of G. mellonella larvae after infection by C. albicans Can37 fluconazole resistant. The larvae received an injection of
1.4x106CFU/larva and were maintained at 37°C. a) administration of fluconazole (14 mg/kg) or PBS (Control), b) antimicrobial PDT or only MB
(Control), c) administration of fluconazole followed by aPDT in a combined therapy or PBS (Control), d) administration of aPDT followed by
fluconazole in a combined therapy or PBS (Control), e) administration of aPDT or fluconazole + PDT, f) administration of aPDT or fluconazole +
PDT. There was no significant difference on larvae survival when treatment was done only by injecting of fluconazole (P = 0.584) or aPDT alone
(P = 0.102). The combined treatment by application of aPDT followed or before fluconazole injection resulted in significantly lower death rates
when compared to a control groups (P = 0.0010 to aPDT followed by fluconazole, and P = 0.0018 when aPDT was applied after fluconazole
injection). A significant difference in survival was observed for combined treatment compared to aPDT alone (P = 0.0062 for aPDT followed by
fluconazole, and P = 0.0068 when aPDT was applied after fluconazole injection).
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combined therapy of PDT and fluconazole remains to be
clarified. Thus, comprehensive experiments are needed to
better understand whether this process could be useful to
treat antimicrobial resistant fungal infections.
In summary, the results obtained in this study showed

that G. mellonella is a suitable model host to study the anti-
fungal PDT in vivo. It is known that the G. mellonella
model is not restricted to studies that examine aspects of
the pathogenesis of fungal infections or antimicrobial ther-
apies, but also can be used to the study of host defenses
against fungal pathogens [30]. The insect immune response
demonstrates a number of strong structural and functional
similarities to the innate immune response of mammals
and, in particular, insect haemocytes and mammalian neu-
trophils have been shown to phagocytose and kill patho-
gens in a similar manner [47]. Recent studies demonstrated
that PDT can stimulate host defense mechanisms. Tanaka
et al. [21] used a murine methicilin-resistant Staphylococcus
aureus (MRSA) arthritis model and verified that the
MB-mediated PDT exerted a therapeutic effect against a
bacterial infection via the attraction and accumulation of
neutrophils into the infected region. Neutrophils are among
the first cells recruited to the illuminated area and their
main function is to release enzymes for killing infectious
organisms and secrete cytokines and other chemicals that
promote inflammation [48]. In this study, the effects of
aPDT on the immune system of G. mellonella were not in-
vestigated. Therefore, future studies need to be developed
to understanding the action of aPDT and methylene blue in
the haemocyte density and in the expression of a variety of
antimicrobial peptides involved in immune responses of G.
mellonella.
The key conclusion is that the G. mellonela - C. albicans

system is a suitable model to study antifungal PDT and to
explore combinatorial aPDT-based treatments. Thus, this
invertebrate animal model host provides a novel approach
to assess the effects of in vivo PDT, alone or in combin-
ation with antifungal compounds, on fungal infections
without the difficulties of mammalian models.
Authors’ contributions
Conceived and designed the experiments: JCJr, CPS, XT, BBF, MRH, EM.
Performed the experiments: JCJr, CPS, XT, YW. Analyzed the data: JCJr, JCJ,
AOCJ, GPT, MRH, EM. Contributed reagents/materials/analysis tools: MRH, EM.
Wrote the paper: JCJr, JCJ, MRH, GPT, EM. All authors read and approved the
final manuscript.
Acknowledgments
José Chibebe Junior thanks CAPES (PDEE 2507-11-0) for the scholarship
during the PhD Program at Harvard Medical School. Xiaojiang Tan was
supported by Science and Technology Planning Project of Guangdong
Province, P.R. China (2011B080701091). Juliana C Junqueira thanks São Paulo
Council of Research - FAPESP, Brazil (grant 12/19915-6). Research conducted
in the Mylonakis Laboratory was supported by NIH (RO1 AI050875 to EM).
Research conducted in the Hamblin Laboratory was supported by NIH (RO1
AI050875 to MRH) and US Air Force MFEL Program (FA9550-04-1-0079).
George P Tegos was supported by the NIH (grant 5U54MH084690-02).
Author details
1Department of Biosciences and Oral Diagnosis, Univ Estadual Paulista/
UNESP, São José dos Campos, SP 12245000, Brazil. 2Division of Infectious
Diseases, Massachusetts General Hospital, Boston, MA 02114, USA.
3Department of Restorative Dentistry, Faculty of Pindamonhangaba,
Pindamonhangaba, SP 12422970, Brazil. 4Wellman Center for Photomedicine,
Massachusetts General Hospital, Boston, MA 02114, USA. 5Center for Lasers
and Applications, Nuclear and Energy Research Institute, São Paulo, SP
05508000, Brazil. 6Huiqiao Department, Nanfang Hospital, Southern Medical
University, Guangzhou 510515, People’s Republic of China. 7School of
Pharmacy, Second Military Medical University, Shanghai 200433, China.
8Department of Pathology and Center for Molecular Discovery, University of
New Mexico, Albuquerque, NM 87131, USA. 9Department of Dermatology,
Harvard Medical School, Boston, MA 02114, USA. 10Harvard-MIT Division of
Health Sciences and Technology, Cambridge, MA 02139, USA. 11Warren
Alpert Medical School, Brown University/Rhode Island and Miriam Hospitals,
Providence, RI 02903, USA.

Received: 18 April 2013 Accepted: 17 September 2013
Published: 1 October 2013
References
1. Chabrier-Rosello Y, Giesselman BR, De Jesus-Andino FJ, Foster TH, Mitra S,

Haidaris CG: Inhibition of electron transport chain assembly and function
promotes photodynamic killing of Candida. J Photochem Photobiol B 2010,
99:117–125.

2. Thein ZM, Seneviratne CJ, Samaranayake YH, Samaranayake LP: Community
lifestyle of Candida in mixed biofilms: a mini review. Mycoses 2009, 52:467–475.

3. Junqueira JC, Fuchs BB, Muhammed M, Coleman JJ, Suleiman JM, Vilela SF,
Costa AC, Rasteiro VM, Jorge AO, Mylonakis E: Oral Candida albicans
isolates from HIV-positive individuals have similar in vitro biofilm-
forming ability and pathogenicity as invasive Candida isolates. BMC
Microbiol 2011, 11:247.

4. Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, Aziz H,
Mylonakis E, Perfect JR, Whitesell L, et al: Harnessing Hsp90 function as a
powerful, broadly effective therapeutic strategy for fungal infectious
disease. Proc Natl Acad Sci USA 2009, 106:2818–2823.

5. Douglas LJ: Candida biofilms and their role in infection. Trends Microbiol
2003, 11:30–36.

6. Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St Denis TG, Ribeiro MS,
Mylonakis E, Hamblin MR, Tegos GP: Concepts and principles of
photodynamic therapy as an alternative antifungal discovery platform.
Front Microbiol 2012, 3:120.

7. Niimi M, Firth NA, Cannon RD: Antifungal drug resistance of oral fungi.
Odontology 2010, 98:15–25.

8. Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR,
Mylonakis E: Characterization of plant-derived saponin natural products
against Candida albicans. ACS Chem Biol 2010, 5:321–332.

9. Fuchs BB, Eby J, Nobile CJ, El Khoury JB, Mitchell AP, Mylonakis E: Role of
filamentation in Galleria mellonella killing by Candida albicans. Microbes
Infect 2010, 12:488–496.

10. Zhang X, De Micheli M, Coleman ST, Sanglard D, Moye-Rowley WS: Analysis
of the oxidative stress regulation of the Candida albicans transcription
factor, Cap1p. Mol Microbiol 2000, 36:618–629.

11. Williams DW, Kuriyama T, Silva S, Malic S, Lewis MA: Candida biofilms and oral
candidosis: treatment and prevention. Periodontol 2000 2011, 55:250–265.

12. Kusch H, Engelmann S, Albrecht D, Morschhauser J, Hecker M: Proteomic
analysis of the oxidative stress response in Candida albicans. Proteomics
2007, 7:686–697.

13. Wang Y, Cao YY, Jia XM, Cao YB, Gao PH, Fu XP, Ying K, Chen WS, Jiang YY:
Cap1p is involved in multiple pathways of oxidative stress response in
Candida albicans. Free Radic Biol Med 2006, 40:1201–1209.

14. Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo AI, Eisman B,
Nombela C, Pla J: The Hog1 mitogen-activated protein kinase is essential
in the oxidative stress response and chlamydospore formation in
Candida albicans. Eukaryot Cell 2003, 2:351–361.

15. Chabrier-Rosello Y, Foster TH, Mitra S, Haidaris CG: Respiratory
deficiency enhances the sensitivity of the pathogenic fungus
Candida to photodynamic treatment. Photochem Photobiol 2008,
84:1141–1148.



Chibebe Junior et al. BMC Microbiology 2013, 13:217 Page 9 of 9
http://www.biomedcentral.com/1471-2180/13/217
16. Fuchs BB, Tegos GP, Hamblin MR, Mylonakis E: Susceptibility of
Cryptococcus neoformans to photodynamic inactivation is associated
with cell wall integrity. Antimicrob Agents Chemother 2007, 51:2929–2936.

17. Denis TGS, Dai T, Izikson L, Astrakas C, Anderson RR, Hamblin MR, Tegos GP:
Antimicrobial photoinactivation as an evolving and emerging discovery
strategy against infectious disease. Virulence 2011, 2:509–520.

18. Desalermos A, Fuchs BB, Mylonakis E: Selecting an invertebrate model
host for the study of fungal pathogenesis. PLoS Pathog 2012, 8:e1002451.

19. Chibebe Junior J, Fuchs BB, Sabino CP, Junqueira JC, Jorge AOC, Ribeiro MS,
Gilmore MS, Rice LB, Tegos GP, Hamblin MR, Mylonakis E: Photodynamic
and antibiotic therapy impair the pathogenesis of Enterococcus faecium
in a whole animal insect model. Plos One 2013, 8:e55926.

20. Gillum AM, Tsay EY, Kirsch DR: Isolation of the Candida albicans gene for
orotidine-5-phosphate decarboxylase by complementation of S. cerevisiae
Ura3 and E. coli PyrF mutations. Mol Gen Genet 1984, 198:179–182.

21. Tanaka M, Mroz P, Daí T, Huang L, Morimoto Y, Kinoshita M, Yoshirara Y,
Nemoto K, Shinomiya N, Seki S, Hamblin MR: Photodynamic therapy can
induce a protective innate immune response against murine bacterial
arthritis via neutrophil accumulation. Plos One 2012, 7:e39823.

22. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan
J, Peng Q: Photodynamic therapy. J Natl Cancer Inst 1998, 90:889–905.

23. Prates RA, Kato IT, Ribeiro MS, Tegos GT, Hamblin MR: Influence of multidrug
efflux systems on methylene blue-mediated photodynamic inactivation of
Candida albicans. J Antimicrob Chemother 2011, 66:1525–1532.

24. Rautemaa R, Ramage G: Oral candidosis–clinical challenges of a biofilm
disease. Crit Rev Microbiol 2011, 37(4):328–336.

25. Giroldo LM, Felipe MP, Oliveira MA, Munin E, Alves LP, Costa MS:
Photodynamic antimicrobial chemotherapy (PACT) with methylene blue
increases membrane permeability in Candida albicans.
Lasers Med Sci 2009, 24:109–112.

26. Snell SB, Foster TH, Haidaris CG: Miconazole induces fungistasis and
increases killing of Candida albicans subjected to photodynamic therapy
(dagger). Photochem Photobiol 2011, 88:596–603.

27. Aperis G, Fuchs BB, Anderson CA, Warner JE, Calderwood SB, Mylonakis E:
Galleria mellonella as a model host to study infection by the Francisella
tularensis live vaccine strain. Microbes Infect 2007, 9:729–734.

28. Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM: Virulence of serotype
M3 Group A Streptococcus strains in wax worms (Galleria mellonella
larvae). Virulence 2011, 2:111–119.

29. Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC Jr, Mylonakis E: Galleria
mellonella as a model system to study Acinetobacter baumannii pathogenesis
and therapeutics. Antimicrob Agents Chemother 2009, 53:2605–2609.

30. Fuchs BB, Mylonakis E: Using non-mammalian hosts to study fungal
virulence and host defense. Curr Opin Microbiol 2006, 9:346–351.

31. Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, Lemos
JA: The collagen-binding protein Cnm is required for Streptococcus
mutans adherence to and intracellular invasion of human coronary
artery endothelial cells. Infect Immun 2011, 79:2277–2284.

32. Champion OL, Cooper IA, James SL, Ford D, Karlyshev A, Wren BW, Duffield
M, Oyston PC, Titball RW: Galleria mellonella as an alternative infection
model for Yersinia pseudotuberculosis. Microbiology 2009, 155:1516–1522.

33. Desbois AP, Coote PJ: Wax moth larva (Galleria mellonella): an in vivo
model for assessing the efficacy of antistaphylococcal agents.
J Antimicrob Chemother 2011, 66:1785–1790.

34. Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, Actis LA: Role of
Acinetobactin-mediated iron acquisition functions in the interaction of
Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells,
Galleria mellonella caterpillars, and mice. Infect Immun 2012, 80:1015–1024.

35. Jander G, Rahme LG, Ausubel FM: Positive correlation between virulence
of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 2000,
182:3843–3845.

36. Lebreton F, Le Bras F, Reffuveille F, Ladjouzi R, Giard JC, Leclercq R, Cattoir V:
Galleria mellonella as a model for studying Enterococcus faecium host
persistence. J Mol Microbiol Biotechnol 2011, 21:191–196.

37. Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E: Use of the Galleria
mellonella caterpillar as a model host to study the role of the type III
secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun
2003, 71:2404–2413.

38. Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB,
Ausubel FM, Diener A: Galleria mellonella as a model system to study
Cryptococcus neoformans pathogenesis. Infect Immun 2005, 73:3842–3850.
39. Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, Horsburgh MJ:
Comparative genomics and transduction potential of Enterococcus
faecalis temperate bacteriophages. J Bacteriol 2010, 192:1122–1130.

40. Michaux C, Sanguinetti M, Reffuveille F, Auffray Y, Posteraro B, Gilmore MS,
Hartke A, Giard JC: SlyA is a transcriptional regulator involved in the
virulence of Enterococcus faecalis. Infect Immun 2011, 79:2638–2645.

41. Dovigo LN, Pavarina AC, Mima EG, Giampaolo ET, Vergani CE, Bagnato VS:
Fungicidal effect of photodynamic therapy against fluconazole-resistant
Candida albicans and Candida glabrata. Mycoses 2011, 54:123–130.

42. Arana DM, Nombel C, Pla J: Fluconazole at subinhibitory concentrations
induces the oxidative- and nitrosative-response genes TRR1, GRE2 and
YHB1, and enhances the resistance of Candida albicans to phagocytes. J
Antimicrob Chemother 2010, 65:54–62.

43. Kato IT, Prates RA, Sabino CP, Fuchs BB, Tegos GP, Mylonakis E, Hamblin MR,
Ribeiro MS: Antimicrobial photodynamic inactivation inhibits Candida
albicans virulence factors and reduces in vivo pathogenicity. Antimicrob
Agents Chemother 2012, 57:445–451.

44. Costa AC, Campos-Rasteiro VM, Da Silva Hashimoto ES, Araujo CF, Pereira
CA, Junqueira JC, Jorge AO: Effect of erythrosine- and LED-mediated
photodynamic therapy on buccal candidiasis infection of
immunosuppressed mice and Candida albicans adherence to buccal
epithelial cells. Oral Surg Oral Med Oral Pathol Oral Radiol 2012, 114:67–74.

45. Dai T, Arce VJB, Tegos GP, Hamblin MR: Blue dye and red light, a
dynamic combination for prophylaxis and treatment of cutaneous
Candida albicans infections in mice. Antimicrob Agents Chemother 2011,
55:5710–5717.

46. Di Poto A, Sbarra MS, Provenza G, Visai L, Speziale P: The effect of
photodynamic treatment combined with antibiotic action or host
defence mechanisms on Staphylococcus aureus biofilms. Biomaterials
2009, 30:3158–3166.

47. Fallon JP, Troy N, Kavanagh K: Pre-exposure of Galleria mellonella larvae to
different doses of Aspergillus fumigatus conidia causes differential
activation of cellular and humoral immune responses. Virulence 2011,
2:413–421.

48. Huang YY, Tanaka M, Vecchio D, Garcia-Diaz M, Chang J, Morimoto Y,
Hamblin MR: Photodynamic therapy induces an immune response
against a bacterial pathogen. Expert Rev Clin Immunol 2012, 8:479–494.

doi:10.1186/1471-2180-13-217
Cite this article as: Chibebe Junior et al.: Selective photoinactivation of
Candida albicans in the non-vertebrate host infection model Galleria
mellonella. BMC Microbiology 2013 13:217.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Microbial strains and culture conditions
	Fungal inocula preparation
	Inoculation of G. mellonella with C. albicans strains
	Chemicals and photosensitizer
	Antimicrobial photodynamic therapy
	Antifungal administration
	G. mellonella survival assays
	Persistence of C. albicans in the hemolymph of G. mellonella

	Results
	Discussion and conclusion
	Authors’ contributions
	Acknowledgments
	Author details
	References

