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Abstract

Background: Lactobacillus species can contribute positively to general and oral health and are frequently acquired
by breastfeeding in infancy. The present study aimed to identify oral lactobacilli in breast and formula-fed 4 month-
old infants and to evaluate potential probiotic properties of the dominant Lactobacillus species detected. Saliva and
oral swab samples were collected from 133 infants who were enrolled in a longitudinal study (n=240) examining
the effect of a new infant formula on child growth and development. Saliva was cultured and Lactobacillus isolates
were identified from 16S rRNA gene sequences. Five L. gasseri isolates that differed in 16S rRNA sequence were
tested for their ability to inhibit growth of selected oral bacteria and for adhesion to oral tissues. Oral swab samples
were analyzed by qPCR for Lactobacillus gasseri.

Results: 43 (32.3%) infants were breastfed and 90 (67.7%) were formula-fed with either a standard formula (43 out
of 90) or formula supplemented with a milk fat globule membrane (MFGM) fraction (47 out of 90). Lactobacilli were
cultured from saliva of 34.1% breastfed infants, but only in 4.7% of the standard and 9.3% of the MFGM
supplemented formula-fed infants. L. gasseri was the most prevalent (88% of Lactobacillus positive infants) of six
Lactobacillus species detected. L. gasseri isolates inhibited Streptococcus mutans binding to saliva-coated
hydroxyapatite, and inhibited growth of S. mutans, Streptococcus sobrinus, Actinomyces naeslundii, Actinomyces oris,
Candida albicans and Fusobacterium nucleatum in a concentration dependent fashion. L. gasseri isolates bound to
parotid and submandibular saliva, salivary gp340 and MUC7, and purified MFGM, and adhered to epithelial cells.
L. gasseri was detected by qPCR in 29.7% of the oral swabs. Breastfed infants had significantly higher mean DNA
levels of L. gasseri (2.14 pg/uL) than infants fed the standard (0.363 pg/uL) or MFGM (0.697 pg/uL) formula.

Conclusions: Lactobacilli colonized the oral cavity of breastfed infants significantly more frequently than formula-
fed infants. The dominant Lactobacillus was L. gasseri, which was detected at higher levels in breastfed than
formula-fed infants and displayed probiotic traits in vitro.
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Background
Lactobacilli colonize the normal healthy gastrointestinal
tract, including the oral cavity [1]. Lactobacillus species
have health-promoting (probiotic) traits by altering the
biofilm microbial composition [2] or by stimulating the
host immune response [3]. Beneficial probiotic effects
come from the activity of viable organisms [4]. Probiotic
action of several Lactobacillus species and strains has
been associated with reduction of chronic inflammatory
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diseases [5,6] and weight regulation [7]. Lactobacilli can
cause dental caries through their highly acidogenic and
acid-tolerant characteristics [8], and are frequently detected
in deep carious lesions [9]. Recent studies, however, sug-
gest an additional beneficial role for oral lactobacilli [10].
Strains of Lactobacillus paracasei, Lactobacillus plantarum
and Lactobacillus rhamnosus from caries-free subjects
were found to inhibit in vitro growth of laboratory strains
and clinical isolates of the cariogenic species Streptococcus
mutans and Streptococcus sobrinus more efficiently than
Lactobacillus strains isolated from caries-active subjects
[11]. Further, in preschool children oral Lactobacillus acid-
ophilus was associated with lack of caries [12].
d Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:nelly.romani.vestman@odont.umu.se
http://creativecommons.org/licenses/by/2.0


Romani Vestman et al. BMC Microbiology 2013, 13:193 Page 2 of 12
http://www.biomedcentral.com/1471-2180/13/193
We recently reported that lactobacilli were detected in
saliva from 3 month-old breastfed but not formula-fed in-
fants [13], and preliminary findings indicated that Lacto-
bacillus gasseri was the dominant salivary Lactobacillus.
Early colonization of cariogenic pathogens, particularly
Streptococcus mutans, can increase the risk of childhood
caries [14]. If certain Lactobacillus strains can suppress S.
mutans, it becomes important in caries risk assessment to
determine which lactobacilli are acquired in infancy and
whether the colonizing strains or species have probiotic
potential. Few studies, however, have examined lactobacilli
in infants and probiotic activity of strains.
Breast milk provides nutrition for the infant, bacteria

that can impact the microbial composition of the gastro-
intestinal tract [15,16], and components that can influ-
ence bacterial attachment and growth in the mouth,
stomach and intestine [17-19]. The dominant constitu-
ents in milk are lipids, lactose, oligosaccharides and
proteins [20], and the major energy source in milk is tri-
glycerides and other fats. Fats are extruded from the
epithelial cell as globules that are enveloped by the epi-
thelial cell membrane, known as the “milk fat globule
membrane” (MFGM) [21]. MFGM is rich in phospho-
lipids, gangliosides, cholesterol and many biologically
active proteins [21]. The MFGM fraction participates in
cellular processes and defense mechanisms in the new-
born, including those involved in microbial acquisition
[22,23]. MFGM proteins comprise 1-4% of the total milk
protein [22], and includes seven major protein compo-
nents: alpha-lactalbumin, lysozyme precursor, beta-casein,
clusterin, lactotransferrin, polymeric immunoglobulin re-
ceptor precursor, and human milk fat globule EGF-factor
8 protein [23,24]. Many of these proteins are glycosylated
[23]. MFGM adheres to Lactobacillus reuteri [25], but
does not affect L. acidophilus or L. gasseri [26].
The aim of the present study was (i) to quantitate total

lactobacilli in saliva from 4 month-old breastfed and
formula-fed infants, (ii) to identify the dominant Lacto-
bacillus species and (iii) evaluate possible probiotic traits
of the most prevalent Lactobacillus species by analyzing
their adhesion to host exocrine secretions and tissues
(saliva, milk, purified human MFGM fraction, and epi-
thelial cells), and their effect on growth of selected oral
species in vitro. Here we report that oral lactobacilli are
detected more frequently in breastfed than formula-fed
infants, and that L. gasseri, the dominant species detected,
has probiotic traits.

Methods
Study group
Four month-old infants were recruited from an ongoing
study evaluating a novel infant formula (NCT00624689,
total n=240, PI M. Domellöf, Umeå University, Sweden).
Details of the parent study will be reported elsewhere
(unpublished data, Timby N, Hernell O, Lönnerdal B,
Domellöf M). Infants entering the parent study between
September 2009 and June 2012 were invited to partici-
pate in the current study that added oral microbial sam-
pling (saliva and oral mucosal swabs). Inclusion criteria
were: 0–2 months old, birth weight 2,500-4,500 g, full
term, and exclusively breast or formula-fed at the time of
recruitment. The exclusion criterion was chronic illness.
The parent study population aimed to recruit twice as
many formula- as breastfed infants. Formula-fed infants
received either a standard infant formula (Semper AB,
Sundbyberg, Sweden) or an infant formula containing
MFGM fraction (LACPRODAN® MFGM-10, Arla Foods
Ingredients, Viby, Denmark). Infant body weight and
length at birth and recruitment, vaginal or C-section deliv-
ery and use of antibiotics was obtained from medical re-
cords. Breast or bottle feeding information including type
of formula given to infants before recruitment and con-
sumption of probiotics products were obtained from in-
fant’s diet records.
The current study population of 133 infants, com-

prised 43 breastfed infants, 43 standard formula-fed in-
fants and 47 infants fed the MFGM enriched formula.
Saliva could not be collected from six infants (2 breast-
fed, and 4 MFGM formula-fed), and oral swabs were not
obtained from five infants (2 breastfed, 3 MFGM formula-
fed). One standard formula-fed infant had received antibi-
otics at birth and one MFGM enriched formula-fed infant
received antibiotics at 3 months of age. Twenty-five in-
fants had been given commercially available probiotic oral
drops (Semper Magdroppar, BioGaia AB, Lund, Sweden)
containing L. reuteri ATCC 17938 (~108 CFU in 5 drops)
at 1, 2, 3 or 4 months of age. Infants given probiotic drops
did not differ between the three feeding groups (p≥0.401).
The study was approved by the Regional Ethical Re-

view Board in Umeå, Sweden. All caregivers signed in-
formed consent when recruited.
Culture of salivary lactobacilli and characterization of
isolates
Whole saliva was collected from the infants and Lacto-
bacillus cultured using selective medium as previously
described [13]. Up to 30 isolates were selected from each
plate and were identified by comparing 16S rRNA gene
sequences to databases HOMD (http://www.homd.org)
and NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
qPCR for L. gasseri in mucosal swabs
The mucosa of the cheeks, the tongue and alveolar ridges
of the infants were swabbed using sterile cotton swabs
(Applimed SA, Chatel-St-Denis, Switzerland). Samples
storage, DNA purification and L. gasseri level quantifica-
tion by qPCR were as described previously [13,27].

http://www.homd.org
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Growth inhibition by L. gasseri
Cultural conditions and bacterial strains used in growth
inhibition tests
Lactobacillus isolates were maintained on de Man, Rogosa,
Sharpe Agar (MRS) (Fluka, Buchs, Switzerland) and grown
in MRS broth. S. mutans strains Ingbritt, NG8, LT11 and
JBP, S. sobrinus strains OMZ176 and 6715, Actinomyces
naeslundii genospecies 1 strains ATCC 35334 and ATCC
29952, and Actinomyces oris (previously A. naeslundii
genospecies 2) strains T14V and M4366 were maintained
on Columbia agar plates (Alpha BioScience, Baltimore,
Maryland, USA) supplemented with 5% horse blood (CAB)
and grown in Todd-Hewitt broth (Fluka). Fusobacterium
nucleatum strains ATCC 25586 and UJA11-a were
maintained on Fastidious Anaerobe Agar (FAA, Lab M,
Bury, UK) and grown in Peptone yeast extract broth (PY,
Sigma-Aldrich Co., St. Louis, Missouri, USA). Bacteria
were cultured anaerobically at 37°C for 48–72 h (mainten-
ance) or 24 h (growth). Candida albicans strains ATCC
10231, ATCC 28366, GDH3339, GDH18 and CA1957
were maintained on Difco™ Sabouraud Maltose Agar
(Becton, Dickinson and Company, Sparks, Nevada, USA)
for 20 h and grown in Difco™ Sabouraud Maltose broth
(Becton, Dickinson and Company) overnight under aerobic
conditions at 37°C.

Growth inhibition by agar overlay
Five L. gasseri isolates with single nucleotide differences
in the 16S rRNA gene from infants (isolate B1, B16, L10,
A241 and A271) and the L. gasseri type strain CCUG
31451 (Culture Collection University Göteborg, Göteborg,
Sweden) were tested for growth inhibition using an agar
overlay method [11,13]. Oral bacteria tested were S.
mutans, S. sobrinus, A. naeslundii, A. oris (top layers M17
agar (May and Baker, Dagenham, England), supplemented
with lactose)), F. nucleatum and C. albicans (top layers
same as species growth media). Agar plates without lacto-
bacilli were negative controls. Growth was scored: 0 = no
growth, complete inhibition; score 1 = moderate growth,
slight inhibition; and score 2 = same or more growth as
the control, no inhibition [11].

Adhesion and aggregation tests for L. gasseri
Saliva, milk and MFGM fractions
Parotid saliva from two healthy adult donors and sub-
mandibular/sublingual saliva from one adult donor were
collected into ice-chilled vials and used immediately or
stored in aliquots at −80°C. Sterile Lashley cups were used
for ductal parotid saliva collection and a custom made de-
vice for submandibular/sublingual saliva collection [28].
Breast milk from two healthy mothers was defatted [19]
and stored at −80°C. Saliva and defatted milk were diluted
1:1 in adhesion buffer (ADH; 50 mM KCl, 1 mM CaCl2,
0.1 mM MgCl2, 1 mM K2HPO4, 1 mM KH2PO4, pH 7.4)
and freeze-dried purified LACPRODAN® MFGM-10 di-
luted in ADH (1 mg/mL) were used in the experiments.

L. gasseri adhesion to host ligand coated hydroxyapatite
Following overnight culture on MRS agar, cells from L.
gasseri strains B1, B16, L10, A241 and A271, and CCUG
31451 were harvested and transferred to 80 μL phos-
phate buffered saline (PBS: 25 mM phosphate, 85 mM
NaCl, pH 7.4) with 100 μCi Trans [35S]-labeled-methio-
nine (ICN Pharmaceuticals Inc., Irvine, California, USA).
After overnight culture on CAB agar at 37°C in an anaer-
obic chamber, radiolabeled cells were harvested, washed
three times in ADH buffer, and bacterial concentration de-
termined by comparing the turbidity against a standard
curve. S. mutans strain Ingbritt was cultured and radio-
labeled as described [19].
Adhesion of L. gasseri to host ligands coated hydroxy-

apatite (HA) was performed as described [19,29]. Briefly,
5 mg HA beads (Macro-Prep Ceramic Hydroxyapatite
Type II, 80 μm, Bio-Rad, Hercules, California, USA)
were coated separately with human parotid saliva, sub-
mandibular/sublingual saliva, human defatted milk or
LACPRODAN-MFGM-10 during end-over-end agita-
tion for 1 h at room temperature. After washing and
blocking, coated beads were incubated with radiolabeled
L. gasseri (125 μl of ~1×109 cells) and the bacteria were
allowed to adhere for 1 h, after which the unbound bac-
teria were washed away. The numbers of attached lacto-
bacilli were determined by scintillation counting.
Bacterial adhesion inhibition [19] was tested in two sets

of experiments. First, L. gasseri strains were pre-incubated
separately with human parotid and submandibular/sub-
lingual saliva for 30 min at 37°C. After removal of L.
gasseri cells and HA coating with pre-incubated ligand,
radiolabeled S. mutans strain Ingbritt was allowed to
adhere as described above. In the second set of experi-
ments S. mutans was used for pre-incubation, and
radiolabeled L. gasseri allowed to adhere for 1 h. All ex-
periments were performed in triplicate and repeated on
two separate occasions.

L. gasseri aggregation
Equal volumes of a bacterial cell suspension (20 μL,
1×109 cells/mL) with parotid, submandibular/sublingual
saliva, defatted human milk or LACPRODAN® MFGM-
10 (1 mg/mL) were agitated on a glass slide for 5 min at
37°C. The size of visible aggregates was rated on a scale
from 0 to 4 under microscopic inspection [30].

L. gasseri adhesion to human epithelial cells
The adhesive capacity of L. gasseri was examined using
Human primary gingival epithelial HGEPp.05 purchased
from CellnTec (CellnTec Advanced Cell Systems AG,
Bern, Switzerland). Cells were cultured in CnT-24 cell
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culture medium (Celln Tec) at 37°C in a 5% CO2 incu-
bator. The adhesion assay was performed as previously
described [31]. Briefly, cells were seeded at different con-
centrations (0 - 105 cells/cm2) and cultured on 4-well
Lab-Tek™ II Chamber Slide™ System glass slides (Nunc,
Roskilde, Denmark) at 37°C in a 5% CO2 incubator. Cells
were then fixed in 30% acetone in methanol and the
slides were blocked with 1% BSA in PBST (25 mM phos-
phate, 85 mM NaCl, 0,05% Tween-20, pH 7.4) for 1 h.
L. gasseri strains were cultured on MRS agar for 24 h

at 37°C in an anaerobic chamber and labeled with
fluorescein isothiocyanate (FITC) [32]. Lactobacilli cell
density was adjusted to OD600 = 0.2 and stored at −80°C
until use. Before addition to the gingival epithelial cell
coated slides, the bacteria were diluted 4 times in 1%
BSA in PBST. After incubation for 2 h, the slides were
washed 300 times in PBST (buffer changed every 100
dips) and mounted for microscopy evaluation. All im-
ages were acquired using a Zeiss imager Z1 upright
microscopic (Carlzeiss, Stockholm, Sweden) and soft-
ware Zen 2011 with 400× optical magnification.

Salivary host ligands for L. gasseri
The presence of binding epitopes in salivary gp340 and
MUC7 were evaluated by Western blot [33] for five L.
gasseri isolates (B1, B16, L10, A241, A271) and strain
CCUG 31451. Briefly, 0.5 × 108 cells were suspended in 0.5
mL KCl buffer (50 mM KCl, 0.35 mM K2HPO4, 0.65 mM
KH2PO4, 1.0 mM CaCl20,1 mM MgCl2, pH 6.5) and
incubated under slow rotation for 1 h at room temperature
with 0.5 mL parotid or submandibular/sublingual saliva
diluted 1:1 in KCl buffer. Bacteria were separated from
unbound salivary components by centrifugation at
13,000 rpm for 10 min at room temperature. To release
the bound proteins, the bacterial pellets were boiled
with 2% sodium dodecyl sulfate (SDS) for 10 min (for
detection of MUC7 10 mM Dithiothreitol (DTT) was
also added) and separated on 5% Tris–HCl gel (BioRad
Laboratories, Hercules, Massachusetts, USA). Proteins
were transferred to a (polyvinylidene difluoride (PVDF)
membrane (Millipore, Bedford, Massachusetts, USA). The
membranes were blocked and epitopes detected with
monoclonal antibodies against gp340 (mAb143) [34] or
LUM7-2 [35]. Membranes were washed with TBS (gp340)
or PBS (MUC7) and incubated with HRP-conjugated anti-
mouse (SAB-100, Stressgen, Victoria, Canada) for gp340
or HRP-conjugated anti-rabbit (P0448, DAKO, Glostrup,
Denmark) for MUC7 and detected using Super Signal
west Dura Extended Duration Substrate (Thermo Scien-
tific, Rockford, IL, USA).

Data processing and statistical analyses
The power calculation for the parent study was based on
body weight as main outcome [36] with a statistical
power of 80% and a level of significance of 0.05% (un-
published data, Timby N, Hernell O, Lönnerdal B and
Domellöf M). Based on previous investigations [37], the
number of infants included in this study was sufficient
to detect a difference in bacterial colonization pattern.
Data handling and statistical analyses were performed

using PASW Statistics 20 (IBM Corporation Route 100,
Somers, New York, USA). Anthropometric measures for
infants were averaged, and means with 95% CI reported.
Differences between means were tested using analysis of
variance (ANOVA) followed by a Bonferroni post hoc
test. Differences between means for lactobacilli detected in
saliva and swabs were tested using generalized linear mod-
eling adjusted for delivery method and exposure to pro-
biotic drops at 4 months. L. gasseri detected in swabs was
additionally adjusted for amount of DNA. Categorical data
are presented as proportions (%) and differences between
groups were tested with a Chi2 test. A p-value <0.05 was
considered statistically significant.
Multivariate partial least squares analysis (PLS) was

performed (SIMCA P+, version 12.0, Umetrics AB, Umeå,
Sweden) as previously described [38,39]. Cross-validation
(Q2 values) was performed by a systematic prediction of
1/7th of the data by the remaining 6/7th of the data. The
importance of each variable in the model was displayed in
a loading scatter plot. R2- and Q2-values give the capacity
of the x-variables to explain (R2) and predict (Q2) the
outcome.

Results
Among the 133 infants, the proportions of boys and
girls, infants delivered vaginally, mean body weight and
length at birth and at 4 months of age (screening age)
did not differ significantly between infants fed breast
milk, the standard formula or the MFGM-enriched for-
mula (Table 1). This observation was not affected by ex-
clusion of infants given antibiotics or probiotic drops.

Total cultivable Lactobacillus in infant saliva
Lactobacilli were cultured from saliva of 34.1% (n=14) of
the breastfed infants compared with 4.7% (n=2) and 9.3%
(n=4) of the standard and MFGM enriched formula-fed
infants, respectively (p<0.001; Table 1). Partial least square
regression (PLS) identified a feeding method (breast-
feeding), L. gasseri in saliva, and L. gasseri (qPCR) in oral
swabs as significantly influential for total numbers of
lactobacilli/mL in saliva (dependent variable) (Figure 1A).
Exposure to probiotic drops and delivery mode were posi-
tively associated with presence of lactobacilli but to a
lower degree. The explanatory power of the model was
74.2% (R2=0.742) and the predictive power 61.4%
(Q2=0.614). Mean CFU/mL saliva of lactobacilli (log10),
standardized for the potential confounders probiotic
drops and delivery method, were significantly higher in



Table 1 Study population characteristics and Lactobacillus detection by feeding method

Breastfed (n=43) Standard formula (n=43) MFGM formula (n=47) p-value

Gender (boys/girls)1 18/25 23/20 25/22 0.216

Vaginal delivery (% yes)1 95.3 88.4 83.0 0.095

Weight (gram)2

At birth 3,610 (3,492-3,728) 3,481 (3,332-3,630) 3,552 (3,444-3,660) 0.352

At 4 months of age 6,742 (6,548-6,935) 6,850 (6,575-7,126) 6,859 (6,670-7,049) 0.704

Length (cm)2

At birth 50.5 (50.0-51.1) 50.3 (49.7-50.9) 50.6 (50.0-51.1) 0.739

At 4 months of age 63.9 (63.3-64.5) 63.7 (62.9-64.6) 64.3 (63.7-64.9) 0.522

CFU lactobacilli/mL of saliva (log10)
3 1.22 (0.20)a,b 0.15 (0.19)a 0.28 (0.19)b <0.001

% (n) with lactobacilli cultured in saliva1

Among all infants (n=127) 34.1% (14)a,b 4.7% (2)a 9.3% (4)b <0.001

Among infants who never had antibiotics
or probiotics (n=106)

33.3% (10)a,b 5.6% (2)a 11.8% (4)b 0.006

Among vaginally delivered infants (n=118) 35.9% (14)a,b 2.6% (1)a 8.3% (3)b <0.001

% (n) infants with salivary isolates of L. gasseri1 29.3% (12)a,b 2.4% (1)a 7.0% (3)b <0.001

L. gasseri by qPCR (pg/μL in mucosal swab samples)4 2.14 (0.74)a 0.31 (0.70)a 0.74 (0.68) 0.0974

1 Differences in proportions between feeding group numbers were tested with Chi2 test. Shared superscript letters (a and b) indicate differences between groups
when tested pairwise (p≤0.008).
2 Data are presented as mean (95% CI) and differences between group means were tested with ANOVA.
3 Data are presented as mean (SE). Means are adjusted for delivery mode and exposure to probiotic drops at 4 months using generalized linear modelling
(p=0.012, one sided test). Shared superscript letters (a and b) indicate groups that differ significant when tested pairwise (p-value≤0.01). The p-value between the
two formula groups was p=0.439.
4 Data are presented as mean (SE). Means are adjusted for delivery mode, exposure to probiotic drops at 4 months (yes/no) and amount of DNA using
generalized linear modelling. Shared superscript letter (a) indicates the groups that differ significantly when tested pairwise (one sided). Table 1 shows p-value
between groups (p=0.097). P-values for the breastfed versus the standard formula group was p=0.040 and breastfed versus MFGM formula group p=0.089, and
between the two formula groups p=0.329. 6.75×105pg/mL correspond to 5.9×107 CFU L. gasseri cells/mL. Employing number of bacteria/mL in the regression
model leads to identical results.
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breastfed infants than in standard and MFGM formula-
fed infants, (p≤0.001; Table 1). Presence and mean levels
of salivary lactobacilli were approximately twice as high
in the MFGM group than the standard formula group,
but the difference was not statistically significant. Re-
stricting the analyses to vaginally delivered infants and
those who never received antibiotics and/or probiotic
drops did not change findings (Table 1).

L. gasseri in saliva and oral swabs
307 putative Lactobacillus isolates from saliva were identi-
fied from 16S rRNA gene sequences as L. gasseri (78.8%),
Lactobacillus fermentum (8.7%), L. reuteri (7.2%), Lactoba-
cillus casei/rhamnosus (3.3%), L. paracasei (1.3%) and L.
plantarum (0.7%) (Figure 2). L. gasseri was detected in
88% of the Lactobacillus positive infants. The distribution
of Lactobacillus species detected in infants is in Table 2.
Only one Lactobacillus species was detected in most in-
fants (85%) (footnote Table 2).
L. gasseri was detected by qPCR in 29.7% of 128 oral

swabs analyzed. Generalized univariate analysis indicated
that breastfed infants had significantly higher mean levels
of L. gasseri in oral swabs than infants fed a standard
formula (p=0.04, footnote Table 1) but not the MFGM
formula. There was, however, no statistically significant
difference between the three feeding groups when ana-
lyzed together (p=0.097). Means were standardized for the
potential confounders of exposure to probiotic drops at 4
months, delivery mode and total DNA. In infants with
cultivable salivary lactobacilli, 42.1% were positive for L.
gasseri by qPCR in mucosal swabs (p=0.190), and 53.3%
were L. gasseri positive by qPCR in mucosal swabs and
from sequenced salivary isolates (p=0.033).
PLS modeling with feeding groups as dependent vari-

ables indicated that total Lactobacillius counts/mL of
saliva, L. gasseri in saliva, probiotic drops at 4 month
of age, and L. gasseri in oral swabs (qPCR) were influ-
ential (Figure 1B). The explanatory power of the model
was 13.4% (R2=0.134) and the predictive power 10.3%
(Q2=0.103).

L. gasseri growth inhibition on oral bacteria
Five L. gasseri isolates (B1, B16, L10, A241, A274) and the
L. gasseri type strain inhibited growth of F. nucleatum
strains ATCC 25586 and UJA11, A. naeslundii geno-
species1 strains ATCC 35334 and ATCC 29952, A. oris
(previously A. naeslundii 2) strains T14V and M4366, S.
mutans strains Ingbritt, NG8, LT11 and JBP, S. sobrinus



Figure 1 Variable importance for Lactobacillus counts and feeding groups. Partial least squares discriminant analysis identified variables
influential for (A) Total number of Lactobacillus/mL saliva and (B) Feeding groups. Characteristics associated with the outcome variables (red
circle symbol) were considered to be potential confounders and were adjusted for in statistical analysis.
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strains OMZ176 and 6715, and C. albicans strains ATCC
10231, ATCC 28366, GDH3339, GDH18 and CA1957, in
a concentration dependent fashion (Figure 3A). All L.
gasseri strains, inhibited F. nucleatum the most and C.
albicans the least.

L. gasseri binding to host receptors in saliva and milk
More L. gasseri B16 cells bound to hydroxyapatite coated
with submandibular/sublingual saliva (27.3% cells bound)
or parotid saliva (20.2% cells bound) than other strains.
There was less avid binding to purified bovine MFGM
fraction (13% cells bound), and binding to human milk
Figure 2 Distribution of Lactobacillus species in infant saliva.
Proportions of Lactobacillus species in 307 isolates from MRS agar.
Strains were identifed from 16S rRNA sequences.
did not exceed binding to the buffer control (Figure 3B).
The binding pattern was similar for all L. gasseri strains,
although the percentages of bound bacterial cells were
slightly lower for four isolates than the type strain and
isolate B16 (Table 3). Aggregation of L. gasseri cells by sal-
iva showed a similar adhesion pattern to saliva-coated
hydroxyapatite for all five isolates and the type strain
(Table 3). Aggregation by submandibular/sublingual saliva
was highest (score 3), followed by parotid saliva (score 2)
and MFGM (score 2) (Table 3) and human milk (score 1)
(data not shown).
Adhesion of S. mutans strain Ingbritt to parotid and

submandibular/sublingual saliva decreased significantly
after pre-incubation of saliva with L. gasseri strain B16
(Figure 3C). A similar pattern was observed for L. gasseri
binding after pre-incubation of saliva with S. mutans.
Gp340 (mw=340 kDa) was not detected by Western

blot analysis with mAb143 antibodies in L. gasseri isolate
B16 (Figure 4, upper panels A, lane 1), but gp340 was
detected in parotid (Figure 4, upper panels A, lane 2)
and submandibular saliva (Figure 4, upper panels A,
lanes 6). The levels of gp340 were reduced in both sa-
livas after incubation with L. gasseri (Figure 4, upper
panels A, lane 3 and 7). Furthermore, bound gp340 was
detected on L. gasseri (Figure 4, upper panels A, lanes 4
and 8) after incubation with saliva, and SDS treatment
released gp340 bound to L. gasseri (Figure 4, upper
panels A and B, lanes 5 and 9). Similar results were



Table 2 Lactobacillus species isolated from 4-month- old infants

Lactobacillus species Exposure to probiotics

(% of isolated colonies per infant)1 (age in months)

Sample Feeding mode L. gasseri L. fermentum L. reuteri L. casei/ L. rhamnosus L. paracasei L. plantarum 1 2 3 4

1 Breastfed 100 + +

2 Breastfed 100 + +

3-10 Breastfed 100

11 Breastfed 3.5 84 12.5

12 Breastfed 3.8 96.2

13,14 Breastfed 100 + + +

15 Standard formula 50 50

16 Standard formula 100

17-19 MFGM formula# 100

20 MFGM formula# 100
1 One species was found in 17 infants (85%), two species in two infants (samples 12, 15), and three species in one infant (sample 11).
# Formula supplemented with a milk fat globule membrane fraction.
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observed for S. mutans strain Ingbritt (Figures 4B, upper
panels). The six additional isolates of L. gasseri also ad-
hered to gp340 (Figures 4C and D, upper panels).
MUC7 (mw ≈150 kDa) was detected using Western

blot analysis with mAb LUM7-2 antibodies in subman-
dibular saliva (Figure 4, lower panels A and B, lane 6,
lower panel D lane 1) but not in parotid saliva (data not
shown). MUC7 levels were reduced in submandibular
saliva after incubation with L. gasseri (Figure 4, lower
panel A, lane 7) and S. mutans (Figure 4, lower panels B,
lane 7). MUC7 was detected bound to L. gasseri (Figure 4,
lower panel A, lane 8) and S. mutans (Figure 4, lower
panel B, lane 8) after incubation with submandibular
saliva. SDS treatment released the MUC7 bound to L.
gasseri (Figure 4, lower panel A, lane 9) and to S. mutans
(Figure 4, lower panels B, lane 9). Similar results were ob-
served for MUC7 binding to six additional isolates of L.
gasseri (Figure 4D, lower panel).

L. gasseri binds to human epithelial cells
Adherence of FITC-tagged L. gasseri strains was detected
by fluorescence microscopy as illustrated for strain A274
(Figure 5). All L gasseri strains were observed only adja-
cent to epithelial cells.

Discussion
In this study lactobacilli were detected more frequently
in breastfed than formula-fed 4 month-old infants in sal-
iva and mucosal swab samples as we previously observed
in a different population of infants [13]. L. gasseri was
the dominant Lactobacillus species detected, which was
identified from 16S RNA gene sequences of isolates.
Probiotic potential of L. gasseri was found to include
growth inhibition of F. nucleatum, A. naeslundii, A. oris,
S. sobrinus and C. albicans in addition to the previously
reported S. mutans and S. sanguinis [13]. Other charac-
teristics of L. gasseri were inhibition of adhesion to
hydroxyapatite in the presence of saliva, salivary gp40
and MUC7 suggesting possible mechanisms for pro-
biotic activity.
The infants sampled were recruited from a randomized

clinical trial of MFGM supplemented infant formula
compared with a standard formula and breastfeeding.
Compliance to the feeding regimens was acceptable
according to diet records obtained from the parent study.
Infants recruited into the parent study were between 0
and 2 months of age. The estimated intake of breast milk
at study enrollment was similar in the standard formula
and the MFGM formula groups. When infants were sam-
pled at 4 months of age, they had been exposed to either
formula or breast milk for two months [40,41]. The lack
of difference between the formula-fed groups suggests that
this period might not have been long enough or that the
different formulations do not induce changes in the oral
microbiota. Previous studies, however, have observed that
feeding mode, method of delivery, use of antibiotics and
probiotic products may influence the oral and intestinal
microbiota [2,13,40,42]. We accounted for these possible
confounders in the PLS analysis, and found they had only
marginally influential for feeding group allocations and
total lactobacilli counts.
L. gasseri was identified as the dominant Lactobacillus

species in the oral cavities of the 4 month-old infants. This
is consistent with previous studies on Lactobacillus detec-
tion in the oral cavity [13,16] and the infant gut [43,44].
L. gasseri is a member of the L. acidophilus complex,
which includes L. acidophilus, Lactobacillus amylovorus,
Lactobacillus crispatus, Lactobacillus gallinarum and Lacto-
bacillus johnsonii [45]. Strains belonging to the L. gasseri
complex have been extensively studied for “probiotic”



Figure 3 Probiotic traits of L. gasseri isolates. (A) Growth inhibition by L. gasseri. Growth of selected oral bacteria exposed to increasing
concentrations of L. gasseri strain (B16) isolated from saliva. —— completely inhibited growth (score 0), - - - - - partially inhibited growth
(score 1), and blank no effect on growth (score 2). (B) Adhesion to host ligand coated hydroxyapatite (HA). Adhesion of L. gasseri strain B16 to HA
in the presence of selected host ligands. Data are presented as mean ± SEM for percent bacteria binding of added cells. Host ligands were from
one adult donor of submandibular/sublingual saliva, two adult donors of parotid saliva and breast milk and purified MFGM (1 mg/mL).
Background binding to bovine serum albumin blocked beads (no saliva) was <6%. (C) Adhesion to saliva-coated hydroxyapatite after bacterial
pretreatment. Adhesion of L. gasseri strain B16 or S. mutans strain Ingbritt to parotid and submandibular/sublingual saliva before and after pre-
incubation with S. mutans strain Ingbritt or L. gasseri strain B16, respectively. Data are presented as mean ± SEM for percent bacteria binding of
added cells. Background binding to bovine serum albumin blocked beads (no saliva) was <6%.

Table 3 L. gasseri adhesion to saliva coated hydroxyapatite and aggregation in saliva

Parotid saliva Submandibular/sublingual saliva

L. gasseri Adhesion1 Aggregation2 Adhesion1 Aggregation2

Isolate B16 ++ ++ +++ +++

Isolate B1 + + ++ ++

Isolate L10 + ++ ++ +++

Isolate A241 + + ++ ++

Isolate A274 + ++ ++ +++

Type strain 31451T ++ ++ +++ +++
1 62.5×106 bacterial cells were added into each test well. + binding of <15% of added bacterial cells, ++ ≥15 to <20%, and +++ ≥20%.
2 – =aggregation score 0 (no visible aggregates), + aggregation score 1 (small uniform aggregates), ++ aggregation score 2 (more aggregates of slightly larger
size than 1), +++ aggregation score 3 (more and slightly larger aggregates than 2) [30]. Adhesion buffer was used a negative control (score 0) and S. mutans strain
Ingbritt as positive control (score +++) [18].
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Figure 4 Western blot detection of saliva gp340 and MUC7 after L. gasseri treatment. (A) Upper panel shows detection of gp340 (using
mAb143) and lower panel MUC7 (usig mAb LUM7-2) in parotid and submandibular/sublingual saliva alone or after incubation with L. gasseri
isolate B16; (B) upper panel shows detection of gp340 and lower panel MUC7 in parotid and submandibular/sublingual saliva alone or after
incubation with S. mutans strain Ingbritt. Numbers below lanes in panels A and B refer to the following contents: (1) Bacterial cells alone
(−ve control), (2) Parotid saliva alone (+ve control), (3) Parotid saliva after bacteria incubation, (4) Bacteria incubated in parotid saliva, (5) Bacteria
after SDS protein release, (6) Submandibular saliva alone (+ve control), (7) Submandibular saliva after bacteria incubation, (8) Bacteria incubated in
submandibular saliva, (9) Bacteria after SDS protein release. (C) upper panel depicts detection of gp340 in parotid saliva alone and after
incubation with five different L. gasseri isolates and the L. gasseri type strain; (D) upper panel depicts detection of gp340 and lower panel
detection of MUC7 in submandibular/sublingual saliva alone and after incubation with five different L. gasseri isolates and the type strain.
Numbers below lanes in panels C and D refer to the following contents: (1) Saliva alone (+ve control), (2) Saliva after L. gasseri CCUG31451T

incubation, (3) Saliva after L. gasseri isolate A241 incubation, (4) Saliva after L. gasseri isolate A274 incubation, (5) Saliva after L. gasseri isolate B1
incubation, (6) Saliva after L. gasseri isolate B16 incubation, (7) Saliva after L. gasseri isolate L10 incubation.
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traits, including attachment to epithelial cells, growth in-
hibition, replacement or binding inhibition of pathogens
and immunomodulation [46,47]. L. gasseri strains from
feces and human milk have been observed to (i) adhere
to intestinal epithelial cells and intestinal mucus (mainly
MUC2) [48,49], (ii) produce bacteriocins [50,51], (iii)
reduce mutagenic enzymes in feces [52], (iv) stimulate
macrophages and lymphocytes, (v) modulate the immune
Figure 5 Adhesion of L. gasseri to human epithelial cells. Field of view
fluorescently stained L. gasseri A274 (in green). Bacteria were detected only
using a Zeiss imager Z1 upright microscope. Bars in panels equal 20 μm.
systems through the toll receptors [53] and (vi) show
resistance to gastric and small intestine fluids [49]. In the
current report, salivary L. gasseri demonstrated several pro-
biotic traits including: attachment to the human gingival
epithelial cells HGEPp.05 and saliva, growth inhibition of
several oral species and reduced attachment of the cario-
genic S. mutans to saliva. Potential in vivo effects on the
microbiota as well as short and long term biological
containing differentiated human gingival epithelial cells (HGEP.05) and
in association with gingival epithelial cells. Images were captured
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processes remain to be demonstrated, but in vivo effects
might be anticipated as we observed growth inhibition at
L. gasseri concentrations as low as 103 CFU/mL, which
are the levels reported for human milk [6,16].
Studies have reported that breast milk contains L.

gasseri, L. salivarius and L. fermentum, of which L. gasseri
was the most prevalent species [15,16], but the prevalence
of L. gasseri detection has not been reported. We cultured
Lactobacillus species, predominantly L. gasseri, from ap-
proximately one third of breastfed infants with lower to
non-detectable levels from formula-fed infants. This is
consistent with our previous rapport [13]. Breast milk was
not collected from the mothers, so we do not know
whether detection of L. gasseri in infants reflects its pres-
ence in the mother’s milk. Other possible reasons for vari-
ability of L. gasseri detection in infants saliva include:
individuality in adhesion site blocking on L. gasseri (pre-
sumably by saliva because L. gasseri aggregated in saliva
but not in milk), and phenotypic host receptor variation.
Few studies have examined host receptors for, and
adhesion properties of, L. gasseri and lactobacilli in general
[54]. Binding of various lactobacilli species to saliva gp340
[33], peroxidase [33] and gastric and intestinal mucus
[46,48], blood group antigens and histone H3 [55] has
been reported. Most of these host receptors are heavily
glycosylated and several carry blood group antigens
[55,56], which is consistent with the present findings of
more avid binding of L. gasseri to submandibular/sublin-
gual saliva, gp340, MUC7 and MFGM. Interestingly, it
was reported recently [57] that the innate immunity pep-
tide LL37, which has been detected in the mouth on epi-
thelial cells and in submandibular/sublingual saliva [58],
alters the surface of L. crispatus with a possible influence
on its adhesive traits [57]. Since gp340 and MUC7 (here
identified as host receptors for L. gasseri binding) exist as
polymorphic variants [34,35], and phenotypic variation in
gp340 relates to S. mutans adhesion avidity (gp340 here
shown as shared host receptor for L. gasseri and S.
mutans), it seems possible that phenotypic host receptor
variation can influence L. gasseri colonization in breastfed
infants. This would suggest that bacterial acquisition in in-
fancy, and potential beneficial effects from probiotic prod-
ucts, may vary among individuals.
Pre-incubation of L. gasseri with saliva reduced detect-

able salivary gp340, and thus the observed S. mutans bind-
ing to gp340, suggesting that L. gasseri and S. mutans
share a binding epitope in saliva. Competitive binding has
previously been observed between S. mutans and other
lactobacilli species with gp340 [33]. L. gasseri strains have
also been shown to compete with, displace, and inhibit the
adhesion of the enteric pathogens Cronobacter sakazakii
and Clostridium difficile to intestinal mucus [48]. This
suggests that L. gasseri may play a similar role in the oral
cavity as has been observed in the gut. Although saliva
from adults was used in the present study, gp340 has been
detected in saliva in infants [19]. Saliva has been shown to
have a stable pattern of salivary proteins and glycoproteins
from early infancy, with the exception of albumin and the
mucins, with early dominance of MUC7 later followed by
MUC5B [59].
Infants fed the MFGM supplemented formula tended

to have higher oral levels of total lactobacilli and L.
gasseri than infants fed a standard formula. This could
reflect that MFGM provides a wide range of potential
carbohydrate binding epitopes on glycoproteins and gly-
colipids, and that L. gasseri bound to purified MFGM
coated on hydroxyapatite (present study). An increased
content of MFGM supplementation could potentially
foster acquisition of L. gasseri and/or other Lactobacil-
lus species in the gastro-intestinal tract, but this concept
needs further study.

Conclusions
Our study findings lead us to conclude that the oral
cavities of breastfed infants are colonized by lactobacilli
more frequently than formula-fed infants and that L.
gasseri is the dominant Lactobacillus species. L. gasseri
from infants has characteristics consistent with probiotic
properties, which could influence the composition of the
oral microbiota in infants.
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