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Abstract

Background: Bacteremia due to Salmonella spp. is a life-threatening condition and is commonly associated with
immune compromise. A 2009 observational study estimated risk factors for the ten most common non-typhoidal
Salmonella (NTS) serovars isolated from Thai patients between 2002–2007. In this study, 60.8% of Salmonella enterica
serovar Enteritidis isolates (n = 1517) were recovered from blood specimens and infection with Salmonella serovar
Enteritidis was a statistically significant risk factor for bacteremia when compared to other NTS serovars. Based on
this information, we characterized a subset of isolates collected in 2008 to determine if specific clones were
recovered from blood or stool specimens at a higher rate. Twenty blood isolates and 20 stool isolates were selected
for antimicrobial resistance testing (MIC), phage typing, PFGE, and MLVA.

Result: Eight antibiogrammes, seven MLVA types, 14 XbaI/BlnI PFGE pattern combinations, and 11 phage types
were observed indicating considerable diversity among the 40 isolates characterized. Composite analysis based on
PFGE and MLVA data revealed 22 genotypes. Seven of the genotypes containing two or more isolates were from
both stool and blood specimens originating from various months and zones. Additionally, those genotypes were all
further discriminated by phage type and/or antibiogramme. Ninety percent of the isolates were ciprofloxacin
resistant.

Conclusions: The increased percentage of bloodstream infections as described in the 2009 observational study
could not be attributed to a single clone. Future efforts should focus on assessing the immune status of
bacteriaemic patients and identifying prevention and control measures, including attribution studies characterizing
non-clinical (animal, food, and environmental) isolates.
Background
Salmonella enterica is a common cause of human gastro-
enteritis and bacteremia worldwide [1-3] and a wide
variety of animals, particularly food animals, have been
identified as reservoirs for non-typhoidal Salmonella [4].
Although approximately 2,600 serovars of Salmonella

enterica have been identified, most human infections are
caused by a limited number of serovars and in general these
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infections are self-limiting [1]. However, approximately 5%
of patients infected with non-typhoidal Salmonella, will
develop bacteremia. The very young, elderly, and those with
underlying disease are at a significantly higher risk for
developing bacteremia when compared to patients with
enteric salmonellosis. Bacteriaemic patients have higher
rates of hospitalization, often have prolonged courses of
illness and have higher case fatality rates [1,5].
Worldwide, Salmonella enterica serovars Enteritidis

and Typhimurium are consistently ranked as the two
serovars most frequently associated with human disease
[6]. However, these rankings may considerably vary by
geographic region and may change over time. A recent
study showed that in 2007, Salmonella serovar Enteriti-
dis accounted for 55% of all human Salmonella
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infections reported to the World Health Organization
Global Foodborne Infections Network Country Data
Bank [6]. In that same year, Salmonella serovar Enteriti-
dis only accounted for 16% of human salmonellosis cases
in Thailand [7].
In 2009, an observational study based on patient

data from 11,656 Salmonella isolates collected between
2002 – 2007 estimated risk factors for the ten most
common Salmonella serovars isolated from Thai
patients [7]. In the study, 60.8% of Salmonella serovar
Enteritidis isolates (n=1517) were recovered from blood
specimens and infection with Salmonella serovar Enteritidis
was a statistically significant risk factor for bacteremia (odds
ratio of 11.12; 95% CI 9.77 – 12.66) when compared to the
other NTS serovars. In comparison, approximately 6% of
Salmonella serovar Enteritidis isolates in the United States
are recovered from blood (CDC unpublished data).
A previous study described an apparently invasive clone

of a different Salmonella serovar in another region. How-
ever this study focused strictly on blood isolates [8]. For
this study, we felt it would be important to characterize
both blood and stool isolates. Characterization and
comparison of blood and stool isolates is crucial for
determining if there is a true increase in invasiveness or if
patients are simply becoming infected with a regionally
dominant clone.
The objective of this study was to characterize

Salmonella serovar Enteritidis isolates causing human
gastroenteritis and bacteremia in Thailand in a spatial
and temporal context in order to determine if blood-
stream infections are being caused by an invasive clone
of Salmonella serovar Enteritidis. Isolates were charac-
terized utilizing minimum inhibitory concentration
(MIC) determination for antimicrobial resistance, phage
typing, pulsed-field gel electrophoresis (PFGE), and
Multiple-Locus Variable number tandem repeat Analysis
(MLVA).
Methods
Bacterial isolates
The WHO National Salmonella and Shigella Centre in
Nonthaburi receives all presumptive positive Salmonella
isolates from all diagnostic laboratories throughout
Thailand. In 2008, 444 isolates were identified as
Salmonella serovar Enteritidis. Forty were selected for
further study. Twenty isolates were recovered from
blood specimens and 20 were recovered from stool
specimens (fecal specimens or rectal swabs). Patient log-
sheets were reviewed to insure that only one isolate per
patient was included the study. Isolates were selected to
insure geographic (Zones: 1, 3, 4, 10, 11, 12, & Bangkok
BKK), age (5 month to 89 years), and seasonal (all iso-
lates collected from January to December with exception
of August) distribution. An equal number of stool and
blood isolates were submitted from each zone.

Serotyping
Isolates were serotyped using slide agglutination. O and
H antigens were characterized by agglutination with
hyperimmune sera (S & A reagents lab, Ltd, Bangkok,
Thailand) and a serotype was assigned according to the
Kauffmann-White scheme [9]. At CDC, the serotype
was confirmed and PCR testing for the Salmonella sero-
var Enteritidis specific marker Sdf was performed [10].

Antimicrobial susceptibility testing
MIC testing was performed at National Food Institute
(DTU-Food) in Denmark using a commercially
prepared, dehydrated panel, Sensititre, from TREK
Diagnostic Systems Ltd. (East Grinstead, England). Anti-
microbials and resistance cut-off values or clinical break-
points used in the study were: ampicillin, AMP
(R> 8 mg/L); amoxicillin + clavulanic acid, AMC
(R ≥ 32 mg/L); apramycin, APR (R ≥ 32 mg/L); cefotax-
ime, CTX (R> 0.5 mg/L); ceftiofur, XNL (R> 2 mg/L);
chloramphenicol, CHL (R> 16 mg/L); ciprofloxacin, CIP
(R> 0.064 mg/L); colistin COL (R> 2 mg/L); florfenicol,
FFN (R> 16 mg/L); gentamicin, GEN (R> 2 mg/L); nali-
dixic acid, NAL (R> 16 mg/L); neomycin, NEO
(R> 4 mg/L); spectinomycin, SPT (R ≥ 64 mg/L);
streptomycin, STR (R> 16 mg/L); sulphamethoxazole,
SMX (R ≥ 256 mg/L); tetracycline, TET (R> 8 mg/L);
and trimethoprim, TMP (R> 2 mg/L). Epidemiological
cut-off values were interpreted according to current
EUCAST (http://www.eucast.org) and European Food
Safety Authority (EFSA) recommendations. Exceptions
were made for interpretation of AMC, SMX, and SPT,
where Clinical and Laboratory Standards Institute
(CLSI) guidelines and clinical breakpoints were used
[11-13]. Due to the absence of some epidemiological
cut-off values in the EUCAST system and clinical break-
points from CLSI, exceptions were made for the
interpretation of APR MIC values which were inter-
preted according to research results from DTU. Quality
control using E. coli ATCC 25922 was conducted
according to CLSI [12,13].

Phage typing
Phage typing was performed at the National Microbiology
Laboratory, Public Health Agency of Canada, Winnipeg,
MB, Canada using the Enteritidis phage typing scheme
provided by the Health Protection Agency, Colindale,
London, UK. This phage-typing scheme is composed of
17 Salmonella serovar Enteritidis specific phages. Isolates
with lytic patterns that did not match standard phage lytic
profiles were assigned an atypical phage type [14].
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Pulsed-field gel electrophoresis
PFGE was performed at DTU-Food using XbaI and BnlI
macrorestriction enzymes (Fermentas, Glen Burnie,
Maryland, United States) according to the CDC PulseNet
protocol [15]. The patterns were compared to the PulseNet
USA database and named following the standardized Pulse-
Net USA pattern naming scheme [16]. The electrophoresis
was performed with a CHEF DR III System (Bio-Rad
Laboratories, Hercules, CA, USA) using 1% SeaKem Gold
agarose in 0.5× Tris-borate-EDTA. Running conditions
consisted of increasing pulse times of 2.2 – 63.8 s for 20 h
at 6 V/cm on a 120 deg. angle in 14°C TBE buffer.

Multiple-locus variable-number tandem repeat analysis
MLVA was performed at the Centers for Disease Control
and Prevention (CDC) in the United States of America by
following the standardized PulseNet USA protocol for
Salmonella serovar Enteritidis (Laboratory standard operat-
ing procedure for PulseNet MLVA of Salmonellas serovar
Enteritis – Beckman Coulter 8000 platform. Accessed at:
www.pulsenetinternational.org and Laboratory standard
operating procedure for analysis of MLVA data of
Salmonella serovar Enteritidis in BioNumerics – Beckman
Coulter 8000 data. Accessed at: www.pulsenetinternational.
org)

Analysis of the composite data set
Analysis of PFGE data was performed at CDC. Com-
parisons were performed using Bionumerics software
version 5.01 (Applied Maths, Sint-Martens-Latem,
Belgium). The composite analysis was based on equal
weighting of XbaI, BlnI and MLVA data and
unweighted pair group method with arithmetic mean
(UPGMA) clustering.

Results
Description of the data sets
The 40 Salmonella serovar Enteritidis isolates selected
for the analysis were all paired based on source of
isolate. The pairs covered all months with exception
of August and the geographical zones; BKK (n = 14),
1 (n = 2), 3 (n = 2), 4 (n = 4), 10 (n = 12), 11 (n = 4),
and 12 (n = 2) (Figure 1).

Antimicrobial resistance
The MIC determination of the 40 Salmonella serovar
Enteritidis isolates revealed eight antimicrobial resist-
ance profiles. The most common profile exhibited resist-
ance to three antimicrobials: ampicillin, ciprofloxacin,
and nalidixic acid. Nineteen (48%) and nine (23%) iso-
lates belonged to the most common (AMP-CIP-NAL)
and the second most common (CIP-NAL) resistance
profiles, respectively (Table 1).
Ninety percent of the isolates (n = 36) were ciprofloxa-
cin resistant (MIC 0.25 – 2 mg/L), and of these, 83%
were also nalidixic acid resistant (MIC >64 mg/L). Seven
percent of the isolates exhibited resistance to ciprofloxacin
(MIC 1 mg/L) while susceptible to nalidixic acid (MIC
16 mg/L). Four strains (10%) were pansusceptible. Overall,
antimicrobial resistance was observed to ampicillin (60%),
tetracycline (8%), streptomycin (8%), colistin (5%), sulfa-
methoxazole (5%), trimethoprim (5%), and spectinomycin
(3%) (Table 1).
The most common antimicrobial resistance profile

(AMP-CIP-NAL), contained a mixture of stool 11/19
(58%) and blood 8/19 (42%) isolates. Profiles; AMP-CIP-
NAL, CIP-NAL, CIP-NAL-SMX-TET-TMP, AMP-CIP-
COL-NAL, AMP-CIP-STR contained both blood and
stool isolates. However, profiles AMP-CIP-SPE-STR,
CIP-NAL-TET, and pansuceptible were composed solely
of blood isolates. No profiles were present in all seven
geographic zones. However, profiles AMP-CIP-NAL and
CIP-NAL were observed in five out of seven zones
(Table 1).

Phage typing
Among the 40 isolates, 11 different phage types were
observed: 6a (n = 19), 1 (n = 8), 14c (n = 2), 21 (n = 2), 4b
(n = 1), 13 (n = 1), 35 (n = 1), 37 (n = 1), 911 (n = 1), three
atypical lytic patterns, and one untypable (Figure 1). Sig-
nificant variation in phage susceptibility was observed.
Susceptibility to 11 typing phages differentiated the two
most common phage types (6a and 11). Phage types 21,
35, & 37 differed by their susceptibility to four to six of
the typing phages.

Pulsed-field gel electrophoresis typing
Seven different previously known XbaI PFGE patterns
[JEGX01.0158 (n=16), JEGX01.0002 (n=7), JEGX01.0019
(n=6), JEGX01.0167 (n=2), JEGX01.0008 (n=1),
JEGX01.0325 (n=1), JEGX01.0653 (n=1)] were identified
among the 40 isolates in addition to six patterns which
were new to the PulseNet USA database. The isolates were
further subtyped using a second enzyme, BlnI, which
revealed seven different previously known BlnI PFGE pat-
terns [JEGA26.0010 (n=31), JEGA26.0017 (n=1),
JEGA26.0058 (n=1), JEGA26.0067 (n=1), JEGA26.0068
(n=1), JEGA26.0120 (n=1), JEGA26.0155 (n=1)] and two
additional patterns which were new to the PulseNet USA
database. In total 14 XbaI/BlnI PFGE pattern combinations
were detected (Figure 1).

Multiple-locus variable-number tandem repeat analysis
The 40 strains generated seven different MLVA types.
Variation was observed at loci VNTR-1 (n = 4), VNTR-2
(n = 2), VNTR-5 (n = 8) and VNTR-9 (n = 2). The most
common profile (5-5-1-10-3-3-11) contained 20 isolates.

http://www.pulsenetinternational.org
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Figure 1 A composite dendrogram based on PFGE and MLVA data containing 40 Salmonella serotype Enteritidis isolates from Thai patients.
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Table 1 Frequency of the resistance profile per variable; specimen and geographical zone among Salmonella enterica
serovar Enteritidis in Thai patients during 2008

Resistance profile No of
isolates

Specimen (No. (%)) Zone (No. (%))

Blood Faeces BKK 1 3 4 10 11 12

AMP-CIP-NAL 19 8 (42) 11 (58) 7 (37) 0 0 4 (21) 5 (26) 2 (11) 1 (5)

CIP-NAL 9 3 (33) 6 (67) 2 (22) 2 (22) 1 (11) 0 2 (22) 2 (22) 0

CIP-NAL-SMX-TET-TMP 2 1 (50) 1 (50) 1 (50) 0 0 0 1 (50) 0 0

AMP-CIP-COL-NAL 2 1 (50) 1 (50) 1 (50) 0 0 0 0 0 1 (50)

AMP-CIP-STR 2 1 (50) 1 (50) 1 (50) 0 0 0 1 (50) 0 0

AMP-CIP-SPE-STR 1 1 (100) 0 0 0 0 0 1 (100) 0 0

CIP-NAL-TET 1 1 (100) 0 1 (100) 0 0 0 0 0 0

Pan-susceptible 4 4 (100) 0 1 (25) 0 1 (25) 0 2 (50) 0 0

Total 40 20 (50) 20 (50) 14 (35) 2 (5) 2 (5) 4 (10) 12 (30) 4 (10) 2 (5)

Abbreviations: AMP, ampicillin; CIP, ciprofloxacin; COL, colistin; NAL, nalidixic acid; SPT, spectinomycin; STR, streptomycin; SMX, sulfamethoxazole; TET, tetracycline;
TMP, trimethoprim.
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(Figure 1). Three isolates displayed variation both at loci
VNTR-1 and VNTR-5 (allelic profile: 4-5-1-10-3-3-10),
one isolate displayed variation in three loci VNTR-1,
VNTR-5 and VNTR-9 (allelic profile: 8-5-1-10-2-3-7),
one isolated showed variation in four loci VNTR-1,
VNTR-2, VNTR-5 and VNTR-9 (allelic profile: 6-6-1
-10-2-3-6), and the remaining 15 isolates exhibited vari-
ation only at locus VNTR-5 (Figure 1).

Analysis of the composite data set
Composite analysis based on PFGE and MLVA data
grouped the 40 isolates into 22 genotypes. Seven geno-
types contained multiple isolates; 15 genotypes were
comprised of a single isolate. No single genotype was re-
sponsible for either gastroenteritis or bacteremia among
Thai patients. In Five instances, the same genotype was
isolated from both stool and blood in different zones
and time periods (Figure 1).

Discussion
Previous studies indicated that infection with Salmonella
serovar Enteritidis was a statistically significant risk fac-
tor for bacteremia among Thai patients [7,17,18]. The
goal of this study was to characterize Salmonella serovar
Enteritidis isolates obtained from blood and stool
specimens in Thailand in a spatial and temporal context
and determine if a particular clone is associated with
bacteremia based on the information described by
Hendriksen et al. [7]. Isolates selected to insure geographic,
seasonal, and age distribution. An equal number of stool
and blood isolates were tested from each geographic zone.
Patient logs were reviewed to insure that only one isolate
per patient was tested.
This study utilized multiple subtyping methods as

means to determine the relatedness of blood and stool
isolates. A composite analysis based on PFGE and MLVA
data revealed 22 unique genotypes among 40 isolates.
Five genotypes consisting of at least two isolates con-
tained an equal number of blood and stool isolates. All
of the seven multi-isolate genotypes contained multiple
phage types and/or antibiogrammes. These data indicate
that multiple Salmonella serovar Enteritidis strains are
circulating in the Thai population and that no specific
clones were associated with a higher risk of bacteremia.
Salmonella serovar Enteritidis is typically regarded as

a monophyletic serovar and the diversity observed
among the isolates in this study is noteworthy [19]. This
diversity may suggest that these strains originated from
multiple reservoirs. Comparison of these strains to food,
animal, and environmental isolates of Salmonella serovar
Enteritidis in Thailand may lead to the identification of
reservoirs and assist with the implementation of control
measures [20]. Although non-human data is limited, the
incidence of Salmonella serovar Enteritidis among Thai
chickens dramatically increased from 1.17% in 1991 to
10.37% in 1992 [21]. The increase continued peaking in
1994 with 33.8% of frozen chicken meat being contami-
nated with Salmonella serovar Enteritidis [17] and then
declined to 14.2% in 2002 [22]. Characterization of
poultry isolates and comparison of these isolates to
human Enteritidis isolates may provide additional insight
into the epidemiology of this organism.
In a risk factor analysis performed on the top 10

Salmonella serovars reported in Thailand between
2002–2007, Salmonella serovars I 4,5,12:i:- and Typhi-
murium were also isolated from blood at an increased
rate when compared to other NTS (28.6% and 28.2% re-
spectively) [7]. Several studies have shown that immuno-
compromised individuals are at a significantly higher
risk for the development of bacteremia due to Salmon-
ella serovars Enteritidis or Typhimurium. A previous
survey of bloodstream infections conducted in



Hendriksen et al. BMC Microbiology 2012, 12:92 Page 6 of 8
http://www.biomedcentral.com/1471-2180/12/92
Northeastern Thailand between 1989 and 1998 indicated
an increase in blood stream infections directly associated
with HIV infection and caused by Group D non-
typhoidal Salmonellae; primarily Salmonella serovar
Enteritidis. [23]. Several studies from other countries in
the region revealed similar epidemiology of Salmonella
serovar Enteritidis associated with bacteremia in HIV
patients [24-26].
The isolates characterized in previous studies were

typically resistant to co-trimoxazole, likely due to its
widespread use for Pneumocystis jiroveci prophylaxis in
HIV positive patients [2,27-29]. Although we do not
have information on the HIV status of the patients
included in this study, it is interesting to note that only
two out of 40 isolates characterized in this study were
resistant to co-trimoxazole. Thus, it would be of value to
ascertain the HIV status of the patients infected with
Salmonella serovar Enteritidis in Thailand.
We observed limited antimicrobial resistance among

the 40 Salmonella serovar Enteritidis isolates tested.
This was in agreement with the general perception that
Salmonella serovar Enteritidis is not a highly antimicro-
bial resistant serovar [30,31]. However, 83% of the tested
isolates exhibited resistance to ciprofloxacin and nali-
dixic acid. Of note, 7% of the isolates exhibited resist-
ance to ciprofloxacin and susceptibility to nalidixic acid.
This phenotype may indicate possible plasmid-mediated
quinolone resistance mechanism [32]. Quinolone resist-
ance in Salmonella serovar Enteritidis has previously
been described from Korea and Denmark and potential
loss of this first line therapeutic is cause for concern.
However, the reported data from Korea and Denmark
were far from the high percentages described in this
study with 90% resistance to ciprofloxacin [30,31]. The
data in this study may indicate the presence of selection
pressure from the use of fluoroquinolones. Such use
within reservoirs for Salmonella serovar Enteritidis such
as poultry, has previously been described [33]. This re-
sistance is problematic as fluoroquinolones, which have
been designated by the World Health Organisation as
highly critical for human health, are often the main
treatment for invasive salmonellosis in humans [31,33].
Phage types PT4, PT8, and PT 13 which are tradition-

ally associated with poultry and cause the majority of
human cases in the Western countries, were not identi-
fied [34,35]. Interestingly, uncommon phage types,
primarily PT6a and PT1, were identified. Despite their
“rarity”, these phage types have been previously identi-
fied in poultry from Thailand. In earlier reports, Phage
type 4 was the most common Salmonella serovar
Enteritidis phage type identified among human and
poultry isolates (73.9%, n = 138 and chicken meat/feces;
76.2%, n = 164). However, PT1 and PT6a were also
reported and accounted for 8.0%/3.7% and 0%/0.6% of
the isolates recovered from humans and chickens
respectively [36]. Also, as shown in previous studies
from Korea and Denmark, Salmonella serovar Enteritidis
PT1 appears to be previously associated with increased
rates of nalidixic acid resistance. [30,31].
PFGE has typically provided limited discrimination for

Salmonella serovar Enteritidis. However, the use of
multiple restriction enzymes increases the discriminatory
power of PFGE [19]. In this study, we used the enzymes
XbaI and BlnI for the analysis and fairly diverse patterns
were observed. These patterns are relatively rare and
seldom reported to the US PulseNet database (CDC un-
published data) indicating, as for the previously men-
tioned methods, that the Salmonella serovar Enteritidis
isolates in Thailand are distinct from strains circulating in
North America. MLVA has recently emerged as a
sequence-based alternative for PFGE and phage typing
[37]. However, as in this study, it is best used as a comple-
mentary technique to other methods in order to reach a
maximum discriminatory power for Salmonella serotype
Enteritidis. The 7 patterns observed among the Thai iso-
lates are all rare in the US PulseNet database (CDC, un-
published data) supporting the conclusions made based
on PFGE and phage typing data.

Conclusion
This study indicates that multiple subtypes of Salmon-
ella serovar Enteritidis are circulating in Thailand and
no single strain appears to be associated with a dispro-
portionate number of blood stream infections. Previous
studies have associated immunocomprimised condi-
tions or malaria with an increased risk of bloodstream
infections due to Salmonella enterica serovars Enteriti-
dis and Typhimurium. Future efforts should focus on
assessing the immune status of bacteriaemic patients
and identifying prevention and control measures,
including attribution studies characterizing non-clinical
(animal, food, and environmental) isolates.
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