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Abstract

apoptosis.

process in yeast.

Background: During the past years, yeast has been successfully established as a model to study mechanisms of
programmed cell death regulation. Saccharomyces cerevisiae commits to cell death showing typical hallmarks of
metazoan apoptosis, in response to different stimuli. Gup1p, an O-acyltransferase, is required for several cellular
processes that are related to apoptosis development, such as rafts integrity and stability, lipid metabolism including
GPI anchor correct remodeling, proper mitochondrial and vacuole function, bud site selection and actin dynamics.
Therefore, we hypothesize that apoptotic process would be affected by GUP! deletion.

Results: In the present work we used two known apoptosis inducing conditions, chronological aging and acetic
acid, to assess several apoptotic markers in gup1A mutant strain. We found that this mutant presents a significantly
reduced chronological lifespan as compared to Wt and it is also highly sensitive to acetic acid treatment. In
addition, it presents extremely high levels of ROS. There were notorious differences on apoptotic markers between
Wt and guplA mutant strains, namely on the maintenance of plasma membrane integrity, on the
phosphatidylserine externalization, on the depolarization of mitochondrial membrane and on the chromatin
condensation. Those suggested that the mutant, under either condition, probably dies of necrosis and not from

Conclusions: To Gup1p has been assigned an important function on lipid rafts assembly/integrity, lipid metabolism
and GPI anchor remodeling. Our results provide, for the first time, the connection of the integrity of yeast lipid rafts
and apoptosis induction and/or signaling, giving new insights into the molecular mechanisms underlying this

Background

Apoptosis is the most common process of pro-
grammed cell death (PCD) in eukaryotes. It is vital
for the fast elimination of useless or injured cells, and
for the differential development of tissues and organs.
In humans the malfunction of this process leads to
severe diseases, namely neurodegenerative disorders,
AIDS and cancer. The existence of PCD processes in
lower eukaryotes or bacteria was for long disregarded
due to the absence of obvious benefits for unicellular
organisms. Nonetheless, numerous works contributed
to evidence PCD occurring in single cell organisms
[1-4], as well as to the establishment of yeast as a
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good model to study mechanisms of apoptotic regula-
tion [5,6]. Multicellular aggregates of microbial cells,
like colonies or biofilms, are spatially organized and
require the specialization of cells differentially loca-
lized to ensure supply of nutrients and water to the
whole cell ensemble [7]. The growing concept that
microbial multicellular aggregates form functional and
higher organized structures, as a kind of proto-tissue,
supports the notion that PCD may be a much more
spread and conserved mechanism of cellular altruistic
behaviour.

The characteristic apoptotic markers, as DNA frag-
mentation, phosphatidylserine externalization, chromatin
condensation, release of cytochrome C, and/or caspases
activation are also valid to assess apoptotic yeast cells
[1,8]. Furthermore, an increasing list of homologues of
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apoptotic regulators in metazoans has been identified in
yeast, such as Ycalp, the proposed yeast caspase [9];
Aifp, the apoptosis inducing factor [10]; EndoG, an
endonuclease which regulates not only life but also death
in yeast [11]; Nmalllp, a yeast HtrA-like protein [12];
Birlp, an inhibitor-of-apoptosis protein [13] and Ybh3p,
a yeast protein that interacts with Bcl-xL and harbours a
functional BH3 domain [14]. Additionally, the expression
in S. cerevisiae of the mammalian Bcl-2 family and PKC
isoforms [15], led to the same phenotypes observed in
mammalian cells, providing evidence that apoptosis is an
evolutionarily conserved mechanism. Several agents can
induce yeast PCD, like hydrogen peroxide, UV radiation,
the absence of nutrients, hyper-osmotic stress, acetic
acid [8] and aging [6]. Aging in yeast can be studied
assessing either replicative or chronological lifespan.
Replicative lifespan is defined as the number of daughter
cells a single yeast mother cell produces before senes-
cence; chronological lifespan is defined by the length of
time cells can survive in a non-dividing, quiescence-like
state [16]. Chronological aged yeast cells also exhibit typ-
ical apoptotic markers. During chronological aging, the
old yeasts die and release certain substances (nutrients)
into the medium in order to promote survival of other
aged cells, yet fitter ones [6].

On the other hand, it has been demonstrated that
apoptotic S. cerevisiae cells display changes in the ex-
pression of some genes associated with the sphingolipids
metabolism [17], which is consistent with changes in the
proportions of the various sphingolipid types in dying
cells [18]. Carmona-Guitierrez and co-authors [19]
observed the apoptosis induction by external addition of
C2-ceramide, whereas Barbosa and co- authors reported
changes in sphingolipids during chronological aging,
namely a decrease of dihydrosphingosine levels and an
increase of dihydro-C(26) -ceramide and phyto-C(26)
-ceramide levels [20]. Also, a role in apoptosis and aging
of Ydclp ceramidase was described [18], and a yeast
homologue of mammalian neutral sphingomyelinase 2
was associated with apoptosis [21]. Moreover, some
intermediates in sphingolipids biosynthesis act as signal-
ling molecules and growth regulators [22,23]. Neverthe-
less, modest attention has been paid to the involvement
of sphingolipids in yeast PCD.

In S. cerevisiae, sphingolipids are mainly located in the
plasma membrane, being more concentrated along the
sphingolipid-sterol rich domains [24], commonly named
rafts. These domains play fundamental roles in connecting
the plasma membrane to the cytoskeleton, ER and Golgi,
and therefore in the correct protein sorting and trafficking
through exocytosis/endocytosis [25]. Moreover, rafts
harbour signalling molecules besides sphingolipids, like
kinases, PI2P (phosphatidylinositol-3,4-diphosphate), and
GPI  (glycosylphosphatidylinositol)-anchored  proteins
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[25,26]. The latter, are proteins attached to the plasma
membrane via a lipid anchor that contains either a cera-
mide or diacylglycerol [27]. Guplp is a membrane-bound
O-acyltransferase [28,29] involved in lipid metabolism,
rafts integrity and assembly [30] and GPI anchor remodel-
ling [31]. This protein was primarily identified associated
with phenotypes on glycerol metabolism and transport
[32], but has further been implicated in a vast number of
distinct processes, namely cell wall structure, composition
and biogenesis [33], plasma membrane assembly and com-
position [30,34], cytoskeleton polarization and bud site se-
lection [35], and telomere length [36], all of which directly
or indirectly associated with apoptosis. This work presents
evidence that cells lacking GUPI are not able of undergo-
ing apoptosis, as revealed by the analysis of several apop-
totic markers (mainly lack of membrane integrity and of
phosphatidylserine externalization). Instead the mutant
appears to be experiencing a necrotic cell death process,
upon both chronological aging and acetic acid induction.
This result adds to the growing view that as in higher
eukaryotes, lipids are involved in signalling PCD in yeast.

Results

GUPI is involved in a wide range of cellular processes,
some of which are associated directly or indirectly with
apoptosis, such as rafts integrity and lipids metabolism
[17,18,21,30,31,34], cytoskeleton polarization [35,37], and
telomere length [36,38]. In the present work, we assess
apoptotic markers for gupIA mutant strain and compare
them with Wt, under two different conditions documen-
ted to induce apoptosis in yeast: chronological aging and
acetic acid [8,39].

gup 1A mutant cells exhibit a reduction in chronological
lifespan
Yeast chronological lifespan is described as the length of
time a population remains viable in the non-dividing/sta-
tionary phase [40,41]. Chronologically aged yeast cells
die exhibiting specific markers of apoptosis [6,40]. We
checked the survival of gupIA chronologically aged cells
in comparison to Wt, continuously for 30 days through-
out stationary phase until complete death of the culture.
The growth curve (Figure 1 insert) showed an apparent
similar growth rate for both strains during exponential
phase, as well as an almost coincident transition to dia-
uxic and stationary phases. On the other hand, the sur-
vival curve (Figure 1) showed that gupIA mutant cells
died considerably sooner than Wt. After day 3 the sur-
vival rate of guplA mutant started to decrease, reaching
50% around day 7, and in day 11 we observed that only a
small number of gupIA mutant cells stayed alive. Con-
versely, Wt strain begins to die around day 8, reaches
50% survival at day 12 and on day 19 the culture was
practically dead.
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Figure 1 Deletion of GUPT decreases chronological lifespan. Wt (m) and gup14 mutant (A).cells were inoculated in YNB medium and survival
monitored by cfu. for 30 days (100% represents the 1,000 plated cells counting using a Neubauer chamber). The growth curve in YNB for both
strains is presented in the insert. Data represent mean + SD of at least 3 independent experiments.
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Chronological aged gup7A mutant seems to be incapable
of dying by apoptosis but rather by necrosis

In order to investigate whether chronologically aged Wt
and guplIA mutant cells die by apoptosis, we analyzed
several apoptotic markers in exponentially growing and
chronologically aged cultures on both strains [6,42]. We
choose 6 hours growth to assess exponential cells, and
day 7 or day 12 to test chronologically aged cells of
guplA mutant and Wt, respectively.

In yeast, as in mammalian cells, the maintenance of
plasma membrane integrity during cell death is an indi-
cator of apoptosis. In this work, we evaluated the integ-
rity of plasma membrane, in exponential and aged Wt
and guplA mutant strains, by PI staining. In gupIA mu-
tant, we observed a substantial increase in the number of
cells stained with PI over time, until every cell presented
PI positive. Still, although the pattern is identical, in Wt
the percentage of PI positive cell was proximally 2-fold
less (Figure 2A). Yet, the percentages of PI positive cells
can be over evaluated since apoptotic cells can become
leaky during further cultivation, increasing PI positives.
To distinguish this secondary necrosis from primary ne-
crosis further tests were performed.

Phosphatidylserine has an asymmetric distribution in
the lipid bilayer of the cytoplasmic membrane [43]. The
exposure of phosphatidylserine at the outer surface of the
cytoplasmic membrane occurs at the early stages of apop-
tosis [44], when membrane integrity is still retained. We
checked this through the FITC-coupled Annexin V reac-
tion followed by flow cytometry of co-labeled Annexin V/
PI cells. We observed that gupiA mutant aging cells pre-
sents a significant percentage (53%) of necrotic cells

(Ann (-)/PI(+)). In contrast, in Wt cells the exposure of
phosphatidylserine (Ann (+)/PI (-)) increased in aged
cells (less than 1% to ~12%) (Figure 2B).

In order to evaluate the mitochondrial membrane
depolarization, DiOC4 was used. At a concentration of
20 ng/ml this dye accumulates specifically at mitochon-
drial membranes and can be observed by fluorescence
microscopy. Nonetheless, cells that have low mitochon-
drial membrane potential will fail to accumulate DiOCq
[37]. Both gupIA mutant and Wt exponential cells
stained with DiOCg revealed intact mitochondrial net-
works, confirming a normal polarization of mitochon-
drial membranes (Figure 2C left panels). Aged cells (7
and 12 days in gupIA mutant and Wt, respectively),
showed a decrease in green fluorescence of approxi-
mately 40% in Wt and 50% in guplA mutant, reflecting a
reduction in mitochondrial membrane potential
(Figure 2C right panels). Moreover, some cells exhibited
a strong green fluorescence all over the cell, mainly in
guplA mutant strain, suggesting that these cells possibly
had the plasma membrane altered, which in turn
resulted in the accumulation of DiOCg on the cytosol
(Figure 2C right panels).

Finally, we evaluated chromatin condensation through
DAPI staining (Figure 2D). Moderate chromatin conden-
sation upon DAPI staining was observed in 80% of old
guplA mutant cells, which can be visualized by the fluor-
escent semicircles formed by the chromatin fragments
(Figure 2D right panels). Regarding Wt aged cells, we
observed some cells with chromatin condensation, but
we also detected cells without stained nucleus or even
with multiples nucleus (Figure 2D right panels). These
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Figure 2 Analysis of apoptotic markers in Wt and gup1A chronologically aged cells. (A) Graphic representation of the percentage of cells
displaying positive PI staining. (B) Phosphatidylserine externalization assessed by cytometric analysis of Annexin V labelling. Graphic representation
of the percentage of cells displaying Ann V (+)/PI (=) (black bars), Ann V(+)/PI (+) (grey bars) and Ann V(=)/PI (+) (white bars). (C) Representative
photos of DiOCg staining exponential phase and aged cells. (D) Representative photos of DAPI staining of exponential phase and aged cells. For
flow cytometry and fluorescence microscopy assays a minimum of 35,000 and 300 cells were counted, respectively. Data represent mean + SD of
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are probably due to an endomitosis process [45,46]. In
contrast, in exponentially growing cultures, both Wt and
guplA mutant cells presented integral chromatin mir-
rored as single round fluorescent circles in the middle of
the cell (Figure 2D left panels).

gup1A mutant cells are sensitive to acetic acid

In a previous work, it was described that gupIA mutant
cells were sensitive to weak acids [33]. However, the con-
centrations of acetic acid that induce apoptosis in yeast
are considerably higher than the ones studied at that
time (50 mM). Therefore, we investigated guplA mutant
and Wt sensitivity to a wide range of acid concentrations
(50, 80 and 100 mM). With the lowest concentration of
acetic acid (50 mM), no effect was observed; however,
when the concentration was increased both strains were
affected, being guplA mutant strain the most sensitive
one. At the highest concentration tested, 100 mM of
acetic acid, the difference between the two strains was
more obvious, with guplA mutant showing growth only
until the second dilution, whereas Wt presents growth
up to the fourth dilution (Figure 3A). Additionally, we
determined the death kinetics of both strains treated
with 160 mM of acetic acid (Figure 3B), as commonly
assayed to evaluate apoptosis induced by acetic acid [4].
For that, Wt and gupIA mutant cells at exponential

growth phase were exposed to acetic acid, and the sur-
vival rate measured by c.fu. counts. In both cases, the
yeast cells died in response to acetic acid, but the cell
death patterns were different. Until 60 min of acetic acid
treatment, no significant difference was found between
Wt and guplA mutant strains, presenting around 90%
and 85% cell viability, respectively. These percentages
progressively decreased in both strains, being this reduc-
tion more accentuated in the gupIA mutant strain. After
120 min in the presence of acetic acid, only 15% of
guplA mutant cells remained alive, whereas Wt pre-
sented a survival rate of around 75%. At the last time-
point analyzed, 180 min, the dissimilarity among strains
sharpened up; only a few cells of guplA mutant strain
were viable, whereas Wt strain displayed a survival rate
of around 55% (Figure 3B).

Acetic acid induces cell death by necrosis similar to that
triggered by chronological aging in the gup1A mutant
strain

In order to assess whether cell death induced by acetic
acid treatment followed a programmed process of apop-
tosis, we analyzed several apoptotic markers. The first
marker analyzed was PI staining to estimate the loss of
membrane integrity. Acetic acid treatment led to a pro-
nounced increase of guplA mutant PI positive cells,
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Figure 3 Loss of GUPT confers sensitivity and reduces survival in presence of acetic acid. (A) Sensitivity of Wt and gup1A mutant cells to
several increasing concentrations of acetic acid by Dropout assay. Cultures were grown to mid-exponential phase in YNB medium, and ten-fold
serial dilutions were spotted onto YNB plates supplemented with acetic acid. All plates were incubated at 30°C for 48 h. (B) Survival curve of Wt
(m) and gupTA (A) cultures during acetic acid treatment. Exponential cells were treated with 160 mM acetic acid for 180 min and viability
determined by cf.u. at the indicated time points (100% survival corresponds to the total cfu. at time zero). Data represent mean + SD of at least

3 independent experiments.

reached nearly 100% after 180 min of treatment, while
in the Wt strain this percentage did not exceed 10%
(Figure 4A). In addition, we examined the phosphatidyl-
serine exposure by simultaneously FITC- coupled
Annexin V/PI staining (Figure 4B). Similarly to what was
observed with the aging experiment, a substantial in-

observed after treatment with acetic acid (180 min treat-
ment). In opposition, Wt strain presents an increase
(8%) in apoptotic cells (Ann (+)/PI(-)) after the treat-
ment with acetic acid (Figure 4B).

Yeast mitochondria undergo both structural and func-
tional changes after the incubation with acetic acid [47],

crease (72%) in necrotic cells (Ann (-)/PI(+)) were including mitochondrial membrane depolarization. In
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Figure 4 Analysis of apoptotic markers in cells treated with acetic acid. Wt and gup1A mutant cells were exposed to 160 mM acetic acid for
180 min. (A) Graphic representation of the percentage of cells displaying positive PI staining. (B) Phosphatidylserine externalization assessed by
cytometric analysis of Annexin V labelling. Graphic representation of the percentage of cells displaying Ann V (+)/PI (=) (black bars), Ann V(+)/PI
(+) (grey bars) and Ann V(=)/PI (+) (white bars). (C) Representative photos of DiOCg staining untreated cells and cells after 180 min at acetic acid
treatment. (D) Representative photos of DAPI staining untreated cells and after 180 min acetic acid treatment. For flow cytometry and
fluorescence microscopy assays a minimum of 35,000 and 300 cells were counted, respectively. Data represent mean + SD of 3 independent
experiments.
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order to evaluate this phenomenon, DiOCy4 staining was
used to visualize mitochondrial membranes (Figure 4C).
Just before apoptosis induction with acetic acid, most of
Wt and gupIA mutant cells presented intact mitochon-
drial networks (Figure 4C left panels). After the treat-
ment, it was possible to visualize depolarization of
mitochondrial membranes in approximately 40% and
30% of guplA mutant and Wt cells, respectively, mir-
rored by the absence of fluorescence (Figure 4C right
panels). Furthermore, we observed a considerable num-
ber of guplA mutant cells displayed an increase in
DiOC¢ green fluorescence, similarly to the results
obtained when the apoptotic inductor was chronological
aging (Figure 4C right panels).

Additionally, we checked for chromatin condensation
during acetic acid treatment by staining cells with DAPI
(Figure 4D). Nearly no chromatic condensation was
observed in both guplA mutant and Wt untreated cells,
as reflected by the single round fluorescent circles in the
center of the cells (Figure 4D left panels). Yet, after the
treatment with acetic acid, we observed a significant in-
crease in guplA mutant cells exhibiting moderate chro-
matin condensation along the nuclear envelope (~90%).
In Wt, ~25% of cells presented chromatin condensation
(Figure 4D right panels).

gup1A mutant cells accumulate large amounts of ROS

during chronological aging and acetic acid treatment

It is well documented that the loss of mitochondrial
membrane potential can lead to increased production of
ROS in higher eukaryotes, which is seen as an apoptotic-
related process in yeasts [3,46]. On the other hand, sev-
eral points of evidence indicate that, in yeast, the accu-
mulation of ROS is a major factor determining aging
[48,49] and triggering PCD [3,39,50]. The accumulation
of ROS is commonly measured by incubating cells with
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the ethidium. ROS were measured on both chronologic-
ally aged and acid acetic treated gupIA mutant and Wt
cells. Regarding chronological assay, this covered expo-
nential, stationary and death phases (Figure 5A). A sig-
nificantly higher increase of ROS levels over time was
observed in guplA mutant in comparison to Wt cells.
The biggest difference was on day 6 (stationary phase),
when the percentage of guplA mutant cells exhibiting
ROS accumulation was the twice (~80%) that of Wt cells
(~40%). The mutant reached 100% of cells with ROS ac-
cumulation on day 10, while Wt took 17 days to reach
that state (Figure 5A). Still regarding gupIA mutant, the
100% ROS was maintained till the end of experiment
(more five days), which is in agreement with the
observed death of these strain cells (Figure 1 - after 12
days more than 99% death). The difference between Wt
and guplA mutant strains was also extremely notorious
in acetic acid treated cells (Figure 5B). Soon after acetic
acid addition, gupIA mutant exhibited ROS accumula-
tion in ~ 8% of the cells, whereas Wt presented less than
1%. This difference was accentuated with time. At one
hour treatment guplA mutant cells with ROS accumula-
tion was higher than 30% and Wt cells less than 5%.
Two hours treatment led to a substantial rise of ROS
positive gupIA mutant cells (~85%) compared with only
~10% of Wt. At the end of the treatment, almost all
guplA mutant cells exhibited ROS accumulation, in clear
contrast with the ~15% of ROS accumulation displayed
by Wt strain (Figure 5B).

Discussion

The finding of an endogenous PCD process with an
apoptotic phenotype has turned yeast into a powerful
model for apoptosis research [39,51,52]. In fact, S. cerevi-
siae commits to cell death showing typical features of
mammalian apoptosis, in response to different stimuli.

dihydroethidium (DHE), which is oxidized (by ROS) to However, how cell compounds participate in the
N
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Figure 5 GUP1 deletion promotes substantial ROS accumulation. Cells from chronological lifespan assay (A) and from acetic acid treatment
(B) were analyzed for accumulation of ROS using DHE staining by flow cytometry. At least 35,000 cells were analyzed. Data represent mean + SD
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processes leading to cell death in yeast remains to be
established. Guplp, an O-acyltransferase, is required for
several cellular processes that are related to apoptosis de-
velopment, namely, rafts integrity and stability, lipid me-
tabolism including GPI anchor correct remodeling,
proper mitochondrial and vacuole function, and actin
dynamics [30,31,33,35,37,42,53-56].

In this work we used two known apoptosis-inducing
conditions, chronological aging [6] and acetic acid [4], to
assess several apoptotic markers in gupIA mutant strain.
We found that, when compared with Wt, gupIA mutant
presents a significant reduced chronological lifespan,
showing almost no viability after 11 days incubation.
Chronologically aged yeast cultures were shown to die
exhibiting typical apoptotic markers [6]. Accordingly, we
showed that chronologically aged Wt cells predominantly
commit to an apoptotic death, as revealed by a) PI nega-
tive cells; b) phosphatidylserine externalization; c¢)
depolarization of mitochondrial membrane; and d) chro-
matin condensation. Yet, gupIA mutant aged cells seem
to be incapable of undergoing apoptosis. Instead, these
cells appeared to be experiencing a necrotic cell death
process. The guplA mutant aged culture exhibited a
higher number of cells with loss of membrane integrity,
and did not reveal an increase of phosphatidylserine ex-
posure on the surface of the plasma membrane. Such
observations discredit the possibility that these cells are
dying through an apoptotic process, being more likely
that the reduction in lifespan is due to a necrotic death.
Furthermore, both loss of mitochondrial membrane po-
tential and moderate chromatin condensation that we
observed in this mutant have already been described in
necrotic phenotypes [57,58]. Lately, several points of evi-
dence suggest that necrotic cell death also occurs in yeast.
Moreover, that can occur under normal physiological
conditions or in the presence of cell death inducing sub-
stances, and not necessarily resulting from brutal chem-
ical or physical damage, as previously thought [11].

We also used acetic acid as an apoptotic inducer of cell
death in both Wt and gupIA mutant strains. Our results
revealed that acetic acid induces a cell death process
similar to that observed in aging cultures. These results
are in accordance with the hypothesis proposed in a pre-
vious work, in which the toxicity of acetic acid produced
during aging was suggested as the major cause of
chronological aging in yeast [59]. Reinforcing such idea
are the acidified cultures that we observed during aging,
probably resulting from acetic acid production and re-
lease to the medium (data not shown). Moreover, it was
also reported that the signaling of acetic acid-induced
apoptosis is linked to amino-acid metabolism as well as
to the TOR pathway [60], as it happens in the aging
process [61]. A necrotic death induced by acetic acid was
already observed in other yeast mutants, namely in
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mutants in class C VPS genes that code for proteins es-
sential for vacuolar and endossomal vesicle function
[42].

Accumulation of ROS has predominantly been asso-
ciated to yeast apoptosis under numerous conditions
[62-64]. Some studies have addressed a fundamental role
of ROS on the execution apoptotic death, after treatment
with low doses of hydrogen peroxide [3] and on the
superoxide-mediated altruistic program of aging [65].
Interestingly, however, many studies have suggested a
crucial involvement of ROS during necrosis of mamma-
lian cells [66] as well as in yeast necrosis [42,64]. This
evidence is in accordance with our results. We observed
a significant difference in ROS accumulation between
Wt and guplA mutant strain in both chronological aging
and acetic acid treatment. gupIA mutant cells, which
present a necrotic phenotype, have an extremely higher
accumulation of ROS. If ROS can contribute, apart from
its role on apoptosis, to the necrotic cell death in yeast
as well, or if it is rather a byproduct that accumulates as
a result of cellular demise, remains to be elucidated.

Guplp has been described to have an important func-
tion on lipid rafts assembly/integrity [30]. In the litera-
ture, rafts have been increasingly implicated on
regulation of apoptotic signaling in mammalian cells
[54,67]. In response to intra or extracellular stimuli, lipid
rafts can include or exclude proteins to variable extents.
This favors specific protein-protein interactions and
modulates the activity of signalling apoptotic cascades.
Moreover, in mammalian cells a number of proteins
involved in apoptotic signals have been found to locate
in lipid rafts, namely Fas/CD95 receptor [68] and the
pro-apoptotic protein of Bcl-2 family, Bad [69]. Our
results showed that the PCD processes in S. cerevisiae is
altered by GUPI deletion and reinforce the importance
of lipid rafts on the regulation of apoptotic signaling in
yeast. Moreover, our findings point to that these mem-
brane domains seem to be indispensable for a proper de-
velopment of PCD, under aging and acetic acid
conditions, namely in the switch from a necrotic to an
apoptotic death phenotype.

Conclusions

We demonstrate that gupIA mutant strain present a sig-
nificantly reduced chronological lifespan comparing to
Wt. Moreover, this mutant showed to be highly sensitive
to acetic acid. Yet, while chronologically aged and acetic
acid treated Wt cells die exhibiting apoptotic markers,
guplA mutant cells under the same conditions seems to
be incapable of undergoing apoptosis. Instead, these cells
appeared to be experiencing a necrotic cell death
process. In addition, those cells also present extremely
high levels of ROS. Being guplA mutant affected in lipid
rafts integrity/assembly, lipid metabolism and GPI
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anchor remodeling we propose that the integrity of rafts
may be essential for apoptosis induction and/or signal-
ing. This provides for the first time the possible partici-
pation of lipid rafts in yeast apoptosis, giving new
insights into the molecular mechanisms underlying this
particular process of PCD, and highlighting the complex
network of cellular structures that interact, cooperate
and compete to regulate cell death.

Methods

Strains and growth conditions

The Saccharomyces cerevisiae strains used in this study
were W303-1A [70] and BHY54 [32]. Yeast batch cul-
tures were grown aerobically in minimal medium (0.67%
(wt/v) YNB (Difco)) with 2% (wt/v) glucose and adequate
quantities of auxotrophic requirements [71]. Incubation
was performed at 30°C, 200 rpm, orbital shaking and air/
liquid ratio 3/1. Yeast strains maintenance was done on
rich medium (YPD (Difco) with 2% agar), grown at 30°C
for 48 h and kept at 4°C up to 5 days.

Chronological lifespan

For chronological lifespan experiments, pre-inoculum
cultures grown overnight on YNB were used to start
batch cultures at 0.05 (ODgoonm) in fresh YNB medium.
At the stipulated time points, culture aliquots were taken
to assess growth through ODgo and colony forming
units (c.fu.), and for apoptotic assays. c.f.u. were deter-
mined plating 1,000 cells, counted on a Neubauer cham-
ber, on YPD agar, as previously described [6]. Colonies
were counted after 48 h incubation at 30°C. No further
colonies appeared after that incubation period.

Sensitivity to acetic acid

Dropout tests were performed from mid-exponential
YNB cultures containing approximately 1 x 10° cells/ml.
Ten-fold serial dilutions were made, and 5 pl of each
suspension was applied on YNB medium supplemented
with different acetic acid concentrations (50, 80 and 100
mM). Results were scored after 48 h incubation at 30°C.

Acetic acid treatment

Yeast strains were grown until exponential phase (ODggg
= 0.5-0.6) on YNB medium. Then the cultures were col-
lected and resuspended to a final concentration of 10’
cells ml™" in fresh YNB adjusted to pH 3.0 with HCI and
containing 160 mM acetic acid. Incubation took place
for 180 min at 30°C as previously described [4,72]. At
determined time points, 40 pl from a 10™* cell suspen-
sion were inoculated onto YPD agar plates and c.fu.
were counted after 48 h incubation at 30°C. The percent-
age of viable cells was estimated considering 100% sur-
vival the number of c.f.u. obtained in time 0.
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Apoptotic markers

PI, Annexin V, DAPI and DiOCg staining were per-
formed both in cells treated with acetic acid and in aging
cells as previously described, with some modifications
[1,3,4,37].

Membrane integrity was assessed by PI (Propidium
Iodide) staining. Cells were harvested, washed and resus-
pended in PBS (137 mM NaCl; 2.7 mM KCl; 100 mM
Na,HPO,; 2 mM KH,PO,; pH 7.4) containing PI (4 pg/
ml) (Sigma). The samples were incubated for 10 min at
room temperature in the dark and analyzed in an Epics®
XL™ (Beckman Coulter) flow cytometer. At least 20,000
cells from each sample were analyzed.

Phosphatidylserine exposure was detected by an FITC-
coupled Annexin V reaction with the ApoAlertAnnexin
V Apoptosis Kit (CLONTECH Laboratories). For that,
cells were primarily harvested and washed in digesting
buffer (1.2 M sorbitol; 0.5 mM MgCly; 35 mM K,HPOy;
pH 6.8). To promote the drug course through cell wall,
an incubation step with Zymolyase (20 T) at 30°C was
performed. Phase-contrast microscopy was used to
monitor that step, preventing this way damage to the
unfixed spheroplasts. Cells were subsequently centri-
fuged (10 min at 1500 rpm) and resuspended in 200 pl
of binding buffer (1.2 M sorbitol; 10 mM HEPES/NaOH,
pH 7.4; 140 mM NaCl; 2.5 mM Cacl,). To 40 pl of this
cell suspension, 2 pl Annexin V (1 pg/ml) and 1 pl PI (4
pug/ml) were added, and the mixture incubated for 20
min at room temperature in the dark. Finally, extra 400
ul of binding buffer were added to the mixture just prior
to analysis in an Epics® XL™ (Beckman Coulter) flow cyt-
ometer. At least 20,000 cells from each sample were
analyzed.

For evaluation of mitochondrial potential the probe
DiOCgq (3,3"dihexyloxacarbocyanine iodide) (Invitrogen)
was used. Cells were harvested, washed, and resuspended
in DiOCg buffer (10 mM MES; 0.1 mM MgCly; 2% (wt/
v) glucose, adjusted to pH 6 set with Ca(OH),) contain-
ing DiOCq¢ (20 ng/ml). Cells were visualized by light mi-
croscopy (LM) after 30 min at room temperature in the
dark. At least, 300 cells selected randomly were counted
per sample. The number of cells counted with mitochon-
drial depolarization (cells without fluorescence) was
indexed to our 100% (300 cells).

Chromatin condensation was assessed by DAPI (4,6-
diamino-2-phenylindole dihydrochloride) (Sigma) stain-
ing. Cells were harvested, washed, fixed for 45 min with
3.7% formaldehyde, permeabilized with a solution of 70%
(v/v) ethanol for 30 min, sonicated for 5 sec and after-
wards stained with DAPI (1 pg/ml). Cells were visualized
by LM after 5 min at room temperature in the dark. At
least 300 cells selected randomly were counted per sam-
ple. The number of cells counted with chromatin con-
densation was indexed to our 100% (300 cells).
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Stained cells were visualized in a Leica Microsystems
DM-5000B epifluorescence microscope with appropriate
filter settings using a 100x oil-immersion objective.
Images were acquired with a Leica DCF350FX digital
camera and processed with LAS AF Leica Microsystems
software.

Assessment of ROS

To visualize accumulation of ROS cells were harvested
by centrifugation, resuspended in PBS in the presence of
DHE (Dihydroethidium) (4 pg/ml), and further incubated
in the dark for 30 min at room temperature. To quantify
the number of cells displaying high ROS levels, at least
20,000 cells were counted in an Epics® XL™ (Beckman
Coulter) flow cytometer.
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