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Abstract

Background: Hydrogen peroxide (H,O,) and hypochlorous acid (HOCI) are reactive oxygen species that are part of
the oxidative burst encountered by Salmonella enterica serovar Typhimurium (S. Typhimurium) upon internalization
by phagocytic cells. In order to survive, bacteria must sense these signals and modulate gene expression. Growing
evidence indicates that the ArcAB two component system plays a role in the resistance to reactive oxygen species.
We investigated the influx of H,O, and HOCI through OmpW and the role of ArcAB in modulating its expression
after exposure to both toxic compounds in S. Typhimurium.

Results: H,0, and HOCI influx was determined both in vitro and in vivo. A S. Typhimurium ompW/ mutant strain
(AompW) exposed to sub-lethal levels of H,O, and HOCI showed a decreased influx of both compounds as
compared to a wild type strain. Further evidence of H,0, and HOCI diffusion through OmpW was obtained by
using reconstituted proteoliposomes. We hypothesized that ompWW expression should be negatively regulated upon
exposure to H,O, and HOCI to better exclude these compounds from the cell. As expected, gRT-PCR showed a
negative regulation in a wild type strain treated with sub-lethal concentrations of these compounds. A
bioinformatic analysis in search for potential negative regulators predicted the presence of three ArcA binding sites
at the ompW promoter region. By electrophoretic mobility shift assay (EMSA) and using transcriptional fusions we
demonstrated an interaction between ArcA and one site at the ompW promoter region. Moreover, gRT-PCR showed
that the negative regulation observed in the wild type strain was lost in an arcA and in arcB mutant strains.

Conclusions: OmpW allows the influx of H,O, and HOCI and is negatively regulated by ArcA by direct interaction
with the ompWW promoter region upon exposure to both toxic compounds.

Background

Hydrogen peroxide (H,O,) and hypochlorous acid (HOCI)
are reactive oxygen species that are part of the oxidative
burst encountered by S. Typhimurium upon internalization
by phagocytic cells. Under acidic conditions, such as those
found inside the phagosome, H,O, is generated spontan-
eously by the reaction of two superoxide anion (O3) mole-
cules [1]. Moreover, S. Typhimurium encodes both

* Correspondence: csaavedra@unab.cl

"Equal contributors

"Laboratorio de Microbiologfa Molecular, Facultad Ciencias Bioldgicas,
Universidad Andres Bello, Santiago, Chile

Full list of author information is available at the end of the article

( BioMed Central

periplasmic and cytoplasmic superoxide dismutases that
catalyze O, dismutation to generate H,O, and molecular
oxygen [2-4]. HOCI is produced by the action of myelo-
peroxidase (MPO) in a reaction that depends on H,O,, Cl
“and acidic conditions [5,6]. Taken together, H,O, and
HOCI react with thiol and heme groups, copper and iron
salts generating the reactive hydroxyl radical (OH). As a
consequence, they produce lipid peroxidation, chlorination
of tyrosine residues, oxidation of iron centers, protein
cross linking and DNA damage [5-8].

In order to enter Gram negative bacteria, H,O, and
HOCI must be able to cross the outer membrane (OM)
and even though several biological membranes are
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permeable to H,O,, studies in E. coli and Saccharomyces
cerevisiae showed that this compound cannot diffuse freely
[9,10]. For HOC], diffusion through the OM is reported to
be limited [11]. One possibility for H,O, and HOCI influx
through the OM is diffusion through porins. In this con-
text, we recently reported that OmpD, S. Typhimurium
most abundant OM porin, allows H,O, diffusion [12].
OM porins are organized as homo-trimers (classic porins)
or monomers (small porins) forming aqueous channels
that allow the influx of hydrophilic solutes with a molecu-
lar weight <600 Da [13]. Classic porins, including OmpC
and OmpF, form [-barrels with 12-22 transmembrane
segments while small porins (OmpW) are composed of 8—
10 [14,15]. The crystal structure of OmpW from E. coli
revealed that it forms an 8-stranded [-barrel and functions
as an ion channel in lipid bilayers [16,17]. In Vibrio cho-
lerae, OmpW was described as an immunogenic 22 KDa
protein [18] and its expression is altered by factors such as
temperature, salinity, nutrient availability and oxygen
levels [19]. Additionally, several studies show that porins
are regulated by ROS. Due its oxidant nature and diffusion
through the OM, regulation of porin expression must be
tightly regulated as a mechanism of controlling OM per-
meability. Accordingly, S. Typhimurium ompD and ompW
expression is regulated in response to H,O, and paraquat
[12,20], respectively, and S. Enteritidis and Typhimurium
exposure to HOCI results in lower levels of ompD, ompC
and ompF transcripts [21].

The cellular response to oxidative stress is regulated at
the transcriptional level by activating the SoxRS and
OxyR regulons in response to O, and H,O,, respectively
[22,23], however, several studies have provided evidence
for a role of the ArcAB two component system in the re-
sistance to ROS induced damage [12,24-26]. ArcA is es-
sential for S. Enteritidis, Typhimurium and E. coli
resistance to ROS [24,26,27]. ArcB is a sensor member
of the histidine kinase family that is anchored to the
inner membrane [28]. In response to oxygen availability,
ArcB autophosphorylates in an ATP dependant intramo-
lecular reaction at position His-292 [29,30] and transfers
the phosphate group to the cytoplasmic response regula-
tor ArcA [31-33], which binds to promoter regions regu-
lating gene expression [34,35]. ArcB activity is regulated
in response to oxygen conditions by the redox state of
both the ubiquinone and menaquinone pools [29,36-38].
However, recent studies in E. coli show that the system
is regulated by the degree of aerobiosis but not by the
redox state of the ubiquinone pool, challenging the idea
that the system is inhibited by oxidized quinones [39].

In this work we provide further evidence of the role of
the ArcAB two component system in the response to
ROS under aerobic conditions and show that this system
mediates regulation of ompW expression in response to
a novel signal, HOCI. First we demonstrate, both in vivo
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and in vitro, that OmpW mediates diffusion of H,O, and
HOCI and that exposure of S. Typhimurium to these
compounds results in a negative regulation of ompW. By
EMSA and using transcriptional fusions, we demonstrate
that the global regulator ArcA binds to the ompW pro-
moter region. Furthermore, we show that ompW nega-
tive regulation observed in wild type cells treated with
H,0, and HOCI was not retained in an arcA or arcB
mutant strain, indicating that the ArcAB two component
system mediates ompW negative regulation in response
to HyO, and HOCL These results further expand our
knowledge in both the mechanisms of ROS resistance
and the role of ArcAB in this process.

Results and discussion

The OmpW porin facilitates H,0, and HOCI diffusion
through the OM and reconstituted proteoliposomes
Hydrogen peroxide and hypochlorous acid are ROS gen-
erated by phagocytic cells and in order to enter Gram-
negative bacteria they must be able to cross the OM.
Even though several biological membranes are permeable
to HyO,, studies in E. coli and S. cerevisiae demonstrate
that this compound cannot diffuse freely [9,10]. Add-
itionally, the dielectric properties of H,O, are compar-
able to those of water and this compound has a slighter
larger dipolar moment, further limiting its diffusion
through the OM lipid bilayer. For HOCI, diffusion
through the OM is also reported to be limited [11].
Therefore, H;O, and HOCI must be channeled through
the lipid bilayer and one possibility is the influx through
porins. We recently demonstrated that the most abun-
dant OM protein in S. Typhimurium, OmpD, allows
H,0, diffusion and is regulated by ArcAB [12]. Little is
known about the diffusion of HOCI, but genetic evidence
has suggested that in E. coli porins might be used as
entry channels for hypothiocyanate ions (OSCN™), a
molecule with a similar chemical structure generated by
lactoperoxidase using thiocyanate and H,O, as an oxi-
dant [40]. In one study, ompC and ompF knockout
mutants showed an increased resistance to OSCN~, how-
ever, a direct role of porins in mediating HOCI diffusion
was not evaluated.

To assess whether OmpW allows the diffusion of H,O,
and HOC], scopoletin and dihydrorhodamine (DHR)-123
probes, respectively, were used to measure uptake of both
toxic compounds separately in a wild type, AompW and a
genetically complemented AompW (pBAD-ompW) strain
as described in methods. The AompW strain showed an
increase in extracellular fluorescence levels after exposure
to HO, and HOCI resulting in higher extra/intracellular
ratios (24 and 4-fold, respectively) as compared to the wild
type strain, indicating that in the absence of OmpW the
influx of both toxic compounds is decreased. Genetic
complementation of AompW resulted in nearly identical
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levels of both extra and intracellular fluorescence as those
observed in the wild type strain, suggesting that OmpW is
necessary for H,O, and HOCI uptake (Figure 1A and C).
Even though OmpW appears as a direct responsible for
the influx of the compounds, a pleiotropic effect cannot be
ruled out at this point because the absence of OmpW in
the mutant strain could be producing a remodeling of the
membrane organization.

To establish a direct contribution of OmpW in H,O, and
HOCI transport, we used reconstituted proteoliposomes.
OmpW-proteoliposomes showed a decrease in H,O, and
HOCI extra/intraliposomal ratios (3.5 and 5-fold respect-
ively) when compared to free liposomes (Figure 1B and D).
Proteoliposomes with S. Typhimurium OmpA porin were
used as a negative control as previously described [12]. As
expected, OmpA-proteoliposomes showed similar levels to
those of free liposomes, indicating that OmpW facilitates
H,0, and HOCI uptake.

Since OmpW channels both toxic compounds across
the lipid bilayer, we hypothesized that a AompW strain
should be more resistant to both toxic compounds when
compared to the wild type strain. As shown in Figure 2,
exposure of AompW to H,O, 4 mM or HOCI 5 mM
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resulted in an increase in the number of colony forming
units (CFU) after 60 min of treatment. However, at
longer periods the CFU count between strains 14028s
and AompW was similar. At 30 min post-treatment with
either of the toxic compounds, strain AompW showed an
increase from 1x10° CFU/ml to approximately 6x10’
CFU/ml. In contrast, the CFU/ml count for strain
14028s remained almost unaltered at 1x10°, resulting in
a 1.5-logy-fold increase in growth for AompW. A similar
result was observed after 60 min of treatment where the
ompW mutant strain showed an increase from 6x10’ to
1.5x10° CFU/ml while the wild type strain changed from
1x10° to 8x10” CFU/ml. Our results suggest that the ab-
sence of OmpW in the mutant strain represents an ad-
vantage at short time points due to a decreased
permeability towards both H,O, and HOCI. At longer
periods, OM permeability should be reduced because ex-
posure to both toxic compounds results in a negative
regulation of S. Typhimurium porins including OmpD,
OmpC and OmpF [12,21]. One important possibility that
cannot be ruled out at this time is that in the AompW
strain, the expression of other porins or the OM lipid
composition might be altered, therefore changing OM
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Figure 1 OmpW facilitates H,0, and HOCI diffusion through the outer membrane and reconstituted proteoliposomes. A and C. H,0,
and HOCI levels were measured indirectly by specific fluorescence assays in the wild type (14028s), mutant (AompW) and genetically
complemented strains (AompW/pBAD-omplWV + arabinose). Exponentially growing cells were exposed to H,0, (A) or NaOCl (C) for 5 min and
fluorescence was determined in the extracellular (extra) and intracellular fractions. B and D. Free liposomes (L), proteoliposomes reconstituted
with S. Typhimurium OmpW (PL OmpW) or OmpA (PL OmpA) proteins were incubated with H,O, (B) or NaOCI (D) for 5 min and fluorescence
was determined in the extraliposomal (extra) and intraliposomal fractions. AU indicates arbitrary units. Values represent the average of four
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Figure 2 Bacterial concentration of S. Typhimurium 14028s and
AompW exposed to H,0, or NaOCI. Cultures of 14028s and
AompW were grown to OD ~ 04 and treated with H,O, 4 mM or
NaOCl 5 mM in LB medium. Time of treatment is indicated. Bacterial
concentrations were determined by plating. The values are the
concentrations of surviving bacteria after exposure to H,O, or NaOCl.
Experiments were performed in triplicate. Error bars indicate SD.

permeability. For example, a study conducted in E. coli
showed that an ompC knockout mutant had increased
levels of OmpA [40], however, changes in permeability
were not evaluated. Furthermore, this has not been eval-
uated in a S. Typhimurium or E. coli AompW strain.

Our data supports the proposed model where OmpW
allows the influx of small polar molecules, like H,O, and
HOCL The crystal structure of OmpW from E. coli
revealed that the cross-section of the barrel has approxi-
mate dimensions of 17 x 12 A along the length of the bar-
rel and although the interior of the channel has a
hydrophobic character, the observed single channel activ-
ities shows that polar molecules traverse the barrel [17].
Taken together, these results provide biochemical and gen-
etic evidence indicating that both toxic compounds are
channeled through OmpW. From our knowledge, this is
the first direct evidence of HOCI diffusion through porins.
Furthermore, preliminary analyses indicate that H,O, and
HOCI channeling is common for S. Typhimurium OmpD,
OmpC and OmpF porins (unpublished data).

Hydrogen peroxide and hypochlorous acid exposure
results in ompW negative regulation

Since the OmpW porin channels H,O, and HOCI through
the OM and exposure to these molecules is detrimental to
bacteria, we hypothesized that ompW should be negatively
regulated when S. Typhimurium is exposed to H,O, and
HOCI. To study this effect, wild type S. Typhimurium cells
were grown to mid-log phase, exposed to H,O, or HOCI
and ompW mRNA levels were measured by qRT-PCR. As
seen in Figure 3, exposure to H,O, and HOCI resulted in
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lower levels of ompW transcripts (0.27 + 0.04 and 0.156 +
0.079, respectively) relative to control untreated cells. In
agreement with our results of ompW negative regulation,
similar results were observed by Wang et al. (2010) who
showed that S. Enteritidis and Typhimurium cells exposed
to HOCI results in modulation of ompD, ompC, ompF
(negatively) and ompA (positively) expression. Further-
more, Calderén et al. (2011) demonstrated that the S.
Typhimurium ompD gene is negatively regulated in re-
sponse to HyO,. Therefore, our and all the published data
suggest that in the presence of OCl™ or H,O, there might
be a general lowering in the concentration of porins in the
outer membrane, in order to diminish the permeability.
To assess the specificity of our assay, we evaluated ompD,
ompC and arcB transcript levels as positive (ompD and
ompC) and negative controls (arcB). The arcB gene was
used as a negative control based on our microarray ana-
lysis which shows that it remains unaltered under these
conditions and between strains 1408s and AarcA (unpub-
lished data). Our results indicate that after exposure to
both toxic compounds, arcB transcript levels remain un-
changed while those of ompD and ompC are lowered as
compared to untreated cells (Figure 3). Therefore, all the
evidence indicates that OM permeability is tightly regu-
lated in response to ROS and could represent a novel
mechanism of resistance when bacteria are exposed to
these toxic compounds.

ArcA binds the ompW promoter region

In addition to the soxRS and oxyR systems, several stud-
ies have provided evidence that the ArcAB two compo-
nent system plays an important role in the resistance to
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Figure 3 Effect of H,0, and HOCI on ompW expression. Wild
type (14028s) exponentially growing cells were treated with H,0,
(1.5 mM) or NaOCl (530 uM) for 20 min and ompW, ompD, ompC
and arcB mRNA levels were measured by gRT-PCR. Control cells
received no treatment. 16S rRNA levels were used for normalization.

Values represent the average of four independent experiments + SD.
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ROS induced damage. For example, ArcA is essential for
S. Enteritidis and Typhimurium resistance to ROS
[24,27] and E. coli mutant strains of the sensor ArcB and
the regulator ArcA, show an increased susceptibility to
H,0O, [26]. However, neither of these studies identified
genes directly regulated by the system under oxidative
stress. We recently demonstrated that ArcA negatively
regulates the expression of S. Typhimurium ompD after
H,0, exposure by direct interaction with its promoter
region [12]. To determine if ArcA mediates ompW
down-regulation in response to H,O, and HOCI, a
search for putative ArcA binding sites at the ompW pro-
moter region was performed using Virtual Footprint 3.0
[41]. The analysis predicted the presence of three ArcA
binding sites (ABS) located at positions -61 to -70
(ABS-1, forward orientation), -230 to -239 (ABS-2) and
-286 to —295 (ABS-3, both in reverse orientation) rela-
tive to the experimentally determined transcription start
site [42]. Comparison with the extended core region 5'-
GTTAATTAAATGTTA-3" described by Evans et al.
(2011) further revealed that only ABS-1 presented a high
degree of identity (14 out of 15 nucleotides) with the
consensus sequence. To confirm or rule out a direct
interaction between ArcA and the predicted binding
sites, deletions of the promoter region were generated by
PCR (schematized in Figure 4B) and used to perform
non-radioactive EMSAs with ArcA and phosphorylated
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ArcA (ArcA-P). The purity of the protein was assessed by
PAGE and ArcA was the dominant product. Electrophor-
etic mobility shift with ArcA-P was only observed when
incubated with fragments that included ABS-1 (Figure 4C
and D, W1 and W4). No shifts were observed in fragments
that include both ABS-2 and ABS-3 (W3, even at three-
fold excess) or control fragments that did not include any
ABS (W2 and W5). Non-phosphorylated ArcA only gener-
ated electrophoretic mobility shifts at higher concentra-
tions (over 1200 nM) where the negative controls were
also retarded as a result of non-specific binding (Figure 3E).
Taken together our bioinformatic and EMSA analyses in-
dicate that ArcA-P binds to the omp W promoter region at
a site located between positions —80 and -41 and suggests
that this site is ABS-1 which is located between positions
-70 to -55.

Evaluating ArcA binding site 1 (ABS-1) functionality

To further confirm that ABS-1 (Figure 4A) was the func-
tional ArcA binding site mediating ompW negative regu-
lation in response to ROS, we constructed
transcriptional fusions of the ompW promoter region.
We generated two different fusions which included the
whole promoter from positions +1 to —600, with respect
to the translation start site. One construction contained
the native promoter (pompW-lacZ) while substitutions
that mutated ABS-1 (shown in red and underlined,

> +1
TCACGCTTTTATAACCATAACGATGGAGCGGGTATG

A GTTCTAAATTAATCTGGATCAATAAAT |GTTAAATTAAAGAAC) ARATGTGAT CTGTATTAGATCACTTATTACT TCAT TGTGGGTATATTCA
TTAATTAAATGTTA

-35 -10

ABS-3 ABS-2 ABS-1 > +1
B — — —
] I T T T |~
-300 -250 -200 -150 -100 -50 +130

-300 w1

-40 w2

-300 -81 W3

-120 +40 W4

-40 +40 W5

Figure 4 ArcA binding to the ompW promoter region. A. S. Typhimurium ompW promoter region. Black and red boxes indicate predicted
ArcA binding sites. -10 and —35 boxes are underlined. The transcription start site is shown in bold and indicated as +1. The translation start site is
underlined and in red. The consensus ArcA binding site is shown under the promoter sequence. B. Schematic representation of the ompW
promoter region. Positions relative to the transcription start site are indicated. ArcA binding sites are indicated as in the text. PCR products used in
EMSAs are shown and names of each fragment are indicated. C,D and E. EMSA of the ompW promoter region. A 3-fold excess (60 ng) of
fragments W2 and W3 were incubated with W1 (C) and the fragment W4 was incubated with W5 (D) and increasing amounts of phosphorylated
ArcA as indicated on the top of each gel. (E) W1, W2 and W3 were incubated with increasing amounts of non-phosphorylated ArcA.




Morales et al. BMC Microbiology 2012, 12:63
http://www.biomedcentral.com/1471-2180/12/63

Figure 5A) were included in the second construction
(pompW/ABS1-lacZ). The constructions were trans-
formed into the wild type strain and [-galactosidase ac-
tivity was measured in response to treatment with H,O,
and HOCL.

The activity of the constructions was compared to the
untreated 14028s strain with the wild type fusion. Treat-
ment of this strain with H,O, and HOCI resulted in
lower activity levels (0.58 +0.008 and 0.53 +0.095, re-
spectively), in agreement with qRT-PCR experiments.
However, a 5 nucleotide substitution of the most con-
served residues at ABS-1 site (pompW/ABS1-lacZ)
resulted in no regulation after exposure to either of the
toxic compounds (1,09 + 0.104 and 0,93 + 0.061), indicat-
ing that they are relevant for the transcriptional activity
of ompW in response to H,O, and HOCI (Figure 5B).
Furthermore, these results are in agreement with EMSAs
which indicate that ArcA only binds to fragments con-
taining ABS-1.

The ArcAB two component system mediates ompW
negative regulation

To establish a direct relationship between ompW nega-
tive regulation and ArcA-P binding to its promoter re-
gion, ompW expression was evaluated by qRT-PCR in a
AarcA strain exposed to H,O, and HOCI. The negative
regulation observed in the wild type strain was not
retained in an arcA mutant treated with either of the
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toxic compounds and ompW transcript levels were simi-
lar as those observed in untreated cells. Genetic comple-
mentation of AarcA restored the negative regulation
observed in wild type cells exhibiting lower ompW
mRNA levels (0.161 +0.068 and 0.488 +0.027, respect-
ively) as compared to untreated cells (Figure 6A and C).
Growth of the genetically complemented strain in the
presence of glucose (non-induction) resulted in similar
ompW mRNA levels between treated and untreated cells
(data not shown). As controls, we measured ompD,
ompC and arcB transcript levels after exposure to H,O,
and HOCI in a AarcA strain. Transcript levels of ompD
were measured since its expression is regulated by ArcA
under ROS conditions [12]. Our results indicate that nei-
ther ompD or arcB transcript levels were decreased after
exposure to H,O, or HOCI while those of ompC
remained regulated in a AarcA strain treated with either
of the toxic compounds (Figure 6A), confirming that
ArcA mediates ompD regulation under ROS conditions
and showing that the expression of ompC is ArcA inde-
pendent and regulated by different mechanisms which
remain unsolved to the date, and are under study in our
laboratory. Furthermore, our bioinformatic analyses in
search for ArcA motifs predicted binding sites in the
promoter regions of ompW and ompD, but not for ompC
([12], data not shown).

To determine whether the negative regulation by ArcA
was dependant on its cognate sensor ArcB, ompW
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indicates ABS-1. -35 is indicated. (B) Expression of the wild type and mutagenized regulatory region of ompW in S. Typhimurium. Strain 14028s
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Figure 6 ArcAB-dependant expression of ompW. ompW, ompD,
ompC, arcB and arcA mRNA levels were measured by gRT-PCR in a
(A) AarcA, (B) AarcB and (C) AarcA/pBAD-arcA and AarcB/pBAD-arcB.
arcB and arcA were used as negative controls in (A) and (B),
respectively. Exponentially growing cells were treated with H,O, 1.5
mM or NaOCl 530 uM for 20 min and transcript levels were
measured. Genetically complemented cells were grown in the
presence of arabinose 1 mM. Control cells received no treatment.
16S rRNA levels were used for normalization. Values represent the
average of three independent experiments + SD.

mRNA levels were evaluated in a AarcB strain. In con-
trast to the negative regulation observed in wild type
cells, ompW mRNA levels were further increased in a
AarcB strain after exposure to HOCI (3.37 £ 1.09). Tran-
script levels after treatment with H,O, were similar as
those observed in untreated cells (Figure 6B). One possi-
bility for this result is that in the absence of ArcA, ArcB
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might phosphorylate (i.e ArcB-OmpR, [43]) one or more
response regulators, either unspecifically or due to cross-
talk, which could bind to the promoter region and there-
fore prevent binding of positive regulators like SoxS,
which has been demonstrated to regulate ompW and is
up-regulated in response to HOCI [20,44]. This could re-
sult in constant ompW transcript levels as shown in
Figure 6A. On the other hand, in the absence of ArcB no
phosphorylation occurs and SoxS or other positive regu-
lator(s) might have free accessibility to the ompW pro-
moter and therefore increase its expression (Figure 6B),
although this possibility has not been evaluated in this
study. Genetic complementation of AarcB restored the
negative regulation observed in wild type cells exposed
to H,O, and HOCI (0.19 + 0.04 and 0.24 + 0.11, respect-
ively, Figure 6C). The ompD and ompC transcripts levels
remained down-regulated after exposure to H,O, and
HOCI in the AarcB strain, while the negative control
arcA remained unaltered (Figure 6B).

The ArcA regulon in anaerobically grown S. Typhi-
murium was recently determined [27]. Interestingly, nei-
ther ompD nor ompW expression was down-regulated in
an ArcA dependant manner, suggesting that the ArcA
regulon under anaerobic and aerobic ROS conditions
could be different. Even in E. coli, ompW expression is
suggested to be regulated by FNR in response to oxygen
availability [39]. The difference between the ArcA regu-
lons under aerobic and ROS conditions might be
explained by studies suggesting that the mechanism of
ArcA activation under aerobic conditions is different
from those classically described. E. coli mutant strains in
residue H-717 of ArcB are able to phosphorylate and ac-
tivate ArcA through the transfer of the phosphate group
from residue His-292 under aerobic conditions [45] and
Loui et al. (2009) suggested that H,O, resistance is inde-
pendent of ArcA phosphorylation at residue Asp-54. To
the date, the detailed molecular mechanism of ArcAB
activation in response to ROS remains unsolved. There-
fore, further experiments to unveil the molecular mech-
anism by which the S. Typhimurium ArcAB two
component system is activated are needed and under
way in our laboratory.

Conclusion

We provide both genetic and biochemical evidence indicat-
ing that the OM porin OmpW mediates the influx of H,O,
and HOCI. The results revealed that the S. Typhimurium
ompW gene is negatively regulated upon exposure to both
toxic compounds. Furthermore, we demonstrate that the
response regulator ArcA mediates ompW negative regula-
tion in response to H,O, and HOCI via a direct inter-
action with the upstream region of ompW. Taken together,
with our previous observation that OmpD mediates influx
of H,O, and is negatively regulated by ArcA in response



Morales et al. BMC Microbiology 2012, 12:63
http://www.biomedcentral.com/1471-2180/12/63

to H,O,, these results further expand our knowledge
regarding the coordinated regulatory mechanisms of
ROS resistance and the role of ArcAB in this process.

Methods

Bacterial strains and growth conditions

Bacterial strains used in this work are listed in Table 1.
Cells were grown aerobically with agitation in LB medium
at 37°C. Solid media consisted of agar (20 g 1”") and plates
were incubated at 37°C. Dilutions (1:100) of overnight cul-
tures were used to initiate growth. When necessary, growth
media was supplemented with the appropriate antibiotics
(see below).

Strain construction and genetic complementation

S. Typhimurium arcB gene was interrupted by gene dis-
ruption as previously described [46]. Strain 14028s (wild
type) harboring plasmid pKD46 was grown in the pres-
ence of arabinose (10 mM) and ampicillin (100 pg ml™")
to ODggp ~ 0.4, made electrocompetent and transformed
with a PCR product generated with plasmid pKD3 as
template and primers 5° ATTGGGTATTATGTGC-
GAAGTTGTGGTGAAGGAATCCTCTTGTAGGCTGGA

Table 1 Bacterial strains used in this study
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GCTGCTTCG 3’ (WarcBF) and 5" GGTGTTGGCGCAG-
TATTCGCGCACCCCGGTCAAACCGGGGCATATGAA-
TATCCTCCTTAG 3’ (WarcBR). Transformants were
selected on LB plates supplemented with chloram-
phenicol (20 pg ml™") and confirmed by PCR using pri-
mers 5° GCTACGCATATTTCGCACAA 3’ (arcBF) and
5" GCGCCTTTGACATCATCATA 3’ (arcBR).

Genetic complementation of the AarcB strain was per-
formed using plasmid pBAD-arcB. To generate this plas-
mid, S. Typhimurium arcB gene was amplified by PCR
using primers 5° ATGAAGCAAATTCGTATGCTG 3’
(pBADarcBF) and 5° TCATTTTTTTTCCGCGTTTGC-
CACCC 3’ (pBADarcBR) and cloned into plasmid pBAD-
TOPO TA® (Invitrogen) according to manufacturer’s
instructions. Insertion was verified by DNA sequencing.

Bacterial survival after exposure to oxidative stress

Bacteria were cultured in 5 ml of LB medium at 37°C
overnight with shaking. Antibiotics were added as appro-
priate. 1:1000 dilutions of the overnight cultures were
grown in 25 ml to OD ~ 0.4 and H,O, 4 mM or NaOClI
5 mM (final concentration) were added. In all the assays
the cultures were grown aerobically at 250 rpm. Aliquots

Strain Relevant characteristic(s) Source

S. Typhimurium

14028s wild type strain G. Mora

14028s/pompW-lacZ 14028s transformed with a derivative of plasmid This work
placZ-Basic carrying the ompW promoter
(nt =600 to +1)

14028s/pompW/ABS1-lacZ 14028s transformed with a derivative of plasmid This work
placZ-Basic carrying the ompW promoter
(nt =600 to +1) with substitution GTTAA to TCCGG
into position =70 to —66

AompW ompW-kan C. Saavedra

DAompW/pBAD-ompW AompW strain complemented with pBAD vector C. Saavedra
carrying the S. Typhimurium ompW gene

AarcA arcA:zcam 2]

AarcA/ pBAD-arcA AarcA strain complemented with pBAD vector [12]
carrying the S. Typhimurium arcA gene

AarcB arcB:cam This work

AarcB/ pBAD-arcB AarcB strain complemented with pBAD vector This work
carrying the S. Typhimurium arcB gene

E. coliTop10 F- mcrA A(mrr-hsdRMS-mcrBC) ©80lacZAM15 Invitrogen
AlacX74 recA1 araD139 A(ara-leu)7697 galu
galK rpsL (StrR) endA1 nupG

Top10 pBAD-ompW Top10 transformed with the pBAD vector carrying C. Saavedra
the S. Typhimurium ompW gene

Top10 pBAD-ompA Top10 transformed with the pBAD vector carrying C. Saavedra
the S. Typhimurium ompA gene

Top10 pBAD-arcB Top10 transformed with the pBAD vector carrying This work
the S. Typhimurium arcB gene

BL21 pET-TOPOArcA BL21(DE3) transformed with the pET-TOPO101ArcA 2]

vector carrying the S. Typhimurium arcA gene
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of cultures were withdrawn at the different time points,
diluted and plated in triplicate. Bacterial cultures were
enumerated by counting the number of CFU after over-
night incubation to determine the bacterial concentrations.

Construction of transcriptional fusions with reporter gene
lacz

The native ompW promoter region from positions +1 to
-600 (with respect to the translation start) site was ampli-
fied by PCR with primers ompW_pLacZ_-600F_ATG 5’
CGGGGTACCCCCGATATCGAAAATTCGCG 3 and
ompW_pLacZ -1R_ATG 5" CCCAAGCTTACCCGCTC-
CATCGTTATGGT 3’ using genomic DNA from S.
Typhimurium (strain 14028s). The restriction sites (Kpnl
and Hindlll, respectively) at the ends of the DNA frag-
ment were introduced by the PCR primers (underlined
sequences) and digested with the corresponding enzymes.
The digested PCR product was cloned into the multiple
cloning site (MCS) of the B-galactosidase reporter vector
pLacZ-Basic (GenBank accession no. U13184), Clontech,
generating plasmid pompW-lacZ. To generate plasmid
pompW/ABS1-lacZ, primers ompW_pLacZ -600F_ATG
with Mut_sit_arcAR 5° TGTTCTTATAATGCGGAATT-
TATTGATCCAG 3’ and ompW_pLacZ_-1R_ATG with
Mut_sit_arcAF 5° CTGGATCAATAAATTCCGGAAT-
TATAAGAACA 3’ were used to generate overlapping
PCR products spanning the whole length of the ompW
promoter. Mutation of ABS-1 was generated by incorpor-
ating substitutions in primers Mut_sit_arcAF and
Mut_sit_arcAR (underlined sequences). The resulting
PCR products were used as templates in a second reac-
tion with primers ompW_pLacZ -600F_ATG and
ompW_pLacZ -1R_ATG to generate the mutated
ompW promoter, which was digested and cloned into
the MCS of plasmid pLacZ-Basic. Constructions were
confirmed by DNA sequencing. The generated con-
structs were transformed into wild type strain 14028s.
To evaluate activity, cells at ODggp ~ 0.4 were grown for
20 min in the presence of H,O, (1.5 mM) or NaOCI (530
uM). Control cells received no treatment. 3-galactosidase
activity was determined as previously described [20].

Protein purification
His-tagged ArcA used in EMSAs was purified as previ-
ously described [12]. Briefly E. coli BL21 cells harboring
plasmid pET-TOPO-arcA were grown in 500 ml of LB
medium supplemented with amplicillin (100 ug ml™) to
ODgoo ~ 0.4 and protein overexpression was carried out
by adding 1 mM IPTG and further growth for 6 h. Pro-
tein was purified by affinity chromatography as described
by Georgellis et al., (1997).

Outer membrane proteins used in proteoliposomes were
purified as described by Calderén et al. (2011). E. coli
Topl0 cells carrying pBAD-ompA or pBAD-ompW were
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grown in 500 ml to ODgy ~ 0.6 at 37°C and overexpres-
sion was performed for 5 h in the presence of 1 mM
arabinose. His-tagged porins were purified by affinity
chromatography using HisTrap HP columns (Amersham)
according to the manufacturer’s instructions.

Plasmid pBAD-ompW was generated amplifying the
coding region of S. Typhimurium omp W by PCR using
primers 5" ATGAAAAAATTTACAGTGGC 3’ (pBAD-
ompWF) and 5° GAAACGATAGCCTGCCGAG 3’
(pBAD-ompWR) and cloned into plasmid pBAD-TOPO
TA® (Invitrogen) according to the manufacturer’s instruc-
tions. Insertion was verified by DNA sequencing.

RNA isolation and ompW mRNA detection

Overnight cultures were diluted (1:100) and cells were
grown to ODggg ~ 0.4. Genetically complemented cells
(AarcA/pBAD-arcA and AarcB/pBAD-arcB) were grown
in the presence of arabinose (1 mM) and ampicillin (100
ug ml™). At this point, H,O, (1.5 mM) or NaOCI (530
uM) was added and cells were grown for 20 min. Control
cells received no treatment. After exposure to the toxic
compounds, 4 ml were withdrawn from the culture and
used to extract total RNA using GenElute Total RNA
purification Kit® (Sigma). Total RNA treatment with
DNase I and ¢cDNA synthesis was performed as previ-
ously described [19].

Relative quantification of ompW mRNA was performed
using Brilliant II SYBR Green QPCR Master Reagent Kit
and the Mx3000P detection system (Stratagene). 16S
rRNA was used for normalization. Specific primers were
5" ATGAAAAAATTTACAGTGG 3" (RTompWF) and 5’
GAAACGATAGCCTGCCGA 3’ (RTompWR) for the
ompW gene; 5° GTAGAATTCCAGGTGTAGCG 3’
(16SF) and 5" TTATCACTGGCAGTCTCCTT 3’ (16SR)
for 16S rRNA gene (16S). The reaction mixture was car-
ried out in a final volume of 20 ul containing 1 pl of
diluted ¢cDNA (1:1000), 0.24 ul of each primer (120 nM),
10 pl of 10 x Master Mix, 0.14 pl of diluted ROX (1:200)
and 8.38 pl of H,O. The reaction was performed under
the following conditions: 10 min at 95°C followed by 40
cycles of 30 s at 95°C, 30 s at 53°C and 45 s at 72°C. Finally
a melting cycle from 53 to 95°C was performed to check
for amplification specificity. Amplification efficiency was
calculated from a standard curve constructed by amplify-
ing serial dilutions of RT-PCR products for each gene.
These values were used to obtain the fold change in ex-
pression for the gene of interest normalized with 16S levels
according to [47]. Experiments were performed in three
biological and technical replicates.

DNA binding assays

Non-radioactive EMSAs were performed as described
[48]. Briefly, increasing amounts of purified ArcA
(phosphorylated and unphosphorylated) were incubated
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with 20 or 60 ng of PCR product(s) in binding buffer (100
mM Tris-Cl [pH 7.4], 100 mM KCl, 10 mM MgCl,, 10%
glycerol, and 2 mM dithiothreitol) for 20 min at 30°C. Re-
action mixtures were immediately loaded on prerun 4%
native polyacrylamide gels. The DNA-protein complexes
were visualized by ethidium bromide staining. PCR frag-
ments used in EMSAs were generated by PCR using reverse
primer 5 ACCCGCTCCATCGTTATGGT 3’ (ompWR) in
combination with 5° GAGCAGACAAATATTTGCAT 3’
(300WF) or 5" TATTAGATCACTTATTACTT 3’ (170WF)
to generate fragments W1 and W2, respectively. Fragment
W3 was generated using primers 300WF and 5" GATCCA-
GATTAATTTAGAAC 3'. Fragments W4 and W5 were
generated by using reverse primer 5° AATTTTTTCA-
TACCCGCTCC 3’ in combination with primers 5’
CCTATAACCAGGATTTTCAA 3" and 170WF, respect-
ively. ArcA phosphorylation was carried out as
described by Linch and Lin (1996). Briefly purified ArcA
was incubated with 50 mM disodium carbamoyl phos-
phate (Sigma) in a buffer containing 100 mM Tris-Cl
(pH 7.4), 10 mM MgCl,, 125 mM KCI, for 1 h at 30°C
and used immediately in EMSA assays.

In vivo and in vitro determination of hydrogen peroxide
and hypochlorous acid diffusion

In vivo diffusion of H,O, was assessed as previously
described [12]. For HOCI detection, overnight cultures
were diluted and cells were grown to ODggo ~ 0.5. Two ml
of bacterial culture were centrifuged for 5 min at 4500 x g
and resuspended in 1 ml of 100 mM phosphate buffer (pH
7.2). A 200 pl aliquot was incubated for 5 min with 530
pM NaOCI and constant agitation. Following, cells were
vacuum filtered using polycarbonate filters of 0.025 pm
(Millipore) and pass through was collected (extracellular
fraction). Bacteria retained in the filter were recovered with
1 ml of 50 mM phosphate buffer (pH 7.2) and disrupted by
sonication (intracellular fraction). Both fractions (190 pl)
were incubated separately with dihydrorhodamine-123 to a
final concentration of 5 uM as previously described [49].
The fluorescent product, rhodamine-123, was measured by
fluorescence detection with excitation and emission wave-
lengths of 500 and 536 nm, respectively. HOCI and H,O,
uptake was determined as the extracellular/intracellular
fluorescence ratio. The background fluorescence from a
bacterial suspension not exposed to either of the toxic
compounds was subtracted and results were normalized by
protein concentration.

Proteoliposomes were prepared as described [50] with
modifications [51]. For in vitro diffusion, proteoliposomes
were incubated with 1.5 mM H,O, or 530 uM NaOCl for
5 min, vacuum filtered and pass through was recovered
(extraliposomal fraction). Proteoliposomes were recovered
from the filters with 2 ml of 50 mM phosphate buffer (pH
7.2) and disrupted by sonication (intraliposomal fraction).
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Fluorescence was measured in both fractions as described
above and H,O, or HOCI uptake was determined as the
extraliposomal/intraliposomal fluorescence ratio.
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