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Abstract

Background: Immunomagnetic separation (IMS) and immunoassays are widely used for pathogen detection.
However, novel technology platforms with highly selective antibodies are essential to improve detection sensitivity,
specificity and performance. In this study, monoclonal antibodies (MAbs) against Internalin A (InlA) and p30 were
generated and used on paramagnetic beads of varying diameters for concentration, as well as on fiber-optic sensor
for detection.

Results: Anti-InlA MAb-2D12 (IgG2a subclass) was specific for Listeria monocytogenes and L. ivanovii, and
p30-specific MAb-3F8 (IgM) was specific for the genus Listeria. At all bacterial concentrations (10°-108 CFU/mL)
tested in the IMS assay; the 1-um diameter MyOne beads had significantly higher capture efficiency (P < 0.05) than
the 2.8-um diameter M-280 beads with both antibodies. The highest capture efficiency for MyOne-2D12 (49.2% for
10° CFU/mL) was significantly higher (P <0.05) than that of MyOne-3F8 (16.6 %) and Dynabeads anti-Listeria
antibody (9 %). Furthermore, capture efficiency for MyOne-2D12 was highly specific for L. monocytogenes and L.
ivanovii. Subsequently, we captured L. monocytogenes by MyOne-2D12 and MyOne-3F8 from hotdogs inoculated
with mono- or co-cultures of L. monocytogenes and L. innocua (10-40 CFU/qg), enriched for 18 h and detected by
fiber-optic sensor and confirmed by plating, light-scattering, and gPCR assays. The detection limit for L.
monocytogenes and L. ivanovii by the fiber-optic immunosensor was 3 x 10° CFU/mL using MAb-2D12 as capture
and reporter antibody. Selective media plating, light-scattering, and gPCR assays confirmed the IMS and fiber-optic
results.

Conclusions: IMS coupled with a fiber-optic sensor using anti-InlA MAb is highly specific for L. monocytogenes and
L. ivanovii and enabled detection of these pathogens at low levels from buffer or food.
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Background

The foodborne pathogen Listeria monocytogenes causes
listeriosis—a severe illness that ranges from mild gastro-
enteritis to invasive infection in immunocompromised
people, neonates, and the elderly [1]. In pregnant
women, it causes premature births, miscarriages, and
neonatal sepsis or fetal deaths. L. monocytogenes is ubi-
quitous and found in food-processing environments
[2,3] and food products, including ethnic soft cheese
[4,5], sliced lunch meats [6] and frankfurters, and sea-
food [7]. It has been implicated in numerous food out-
breaks and recalls, including a large outbreak involving
cantaloupe in the US, which caused 29 deaths and 1
miscarriage [8]. Listeriosis has an estimated 19% fatality
rate and ranks third among all fatalities resulting from
foodborne infections in the USA [9]. Therefore, many
countries have established a “zero tolerance” policy to-
wards L. monocytogenes in RTE foods [10]. Food recalls
have increased each year, placing an economic burden
on food manufacturers and growers. Rapid and accurate
detection methods may alleviate some of these
problems.

The genus Listeria consists of 8 species: L. monocyto-
genes, L. ivanovii, L. seeligeri, L. welshimeri, L. innocua,
L. grayi, and two new species, L. marthii [11] and L.
rocourtiae [12]. L. monocytogenes and L. ivanovii are
pathogenic to humans and animals [13]. Many virulence
and structural genes or gene products in Listeria could
be used as targets for antibody- or nucleic acid-based
assay development [14]. L. monocytogenes expresses sev-
eral virulence proteins [15], including Internalin A
(InlA), which promotes bacterial adhesion and invasion
of the host cell [15]. InlA possesses N-terminal leucine-
rich repeats that facilitate anchoring to the bacterial cell
wall, while the most distal extracellular domain binds to
E-cadherin, which is crucial for host cell-cell adhesion
and maintenance of tissue architecture.

Both pathogenic and non-pathogenic Listeria species
can be found in the same environment or food [16].
However, when an enrichment step is used, the non-
pathogenic species may overgrow and outcompete L.
monocytogenes [17-19], leading to false-negative results.
L. innocua is the most frequently found bacteria in
Listeria-contaminated foods [17,20], thus presenting a
challenge for the specific capture and detection of
pathogenic Listeria [21]. Hence, it is essential to develop
methods that are capable of detecting pathogenic species
in the presence of non-pathogenic species.

Immunological approaches to detect pathogens in food
are attractive; however, assay performance depends on
the quality and specificity of the antibodies used [14,22].
For detection of Listeria, two types of assay specificities
are desired: Listeria genus- or L. monocytogenes-specific
tests. Anti-Listeria antibodies available from research
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laboratories or commercial vendors are associated with
problems of low affinity [23], reaction to heterologous
antigens [24,25], lack of reaction towards all serotypes of
L. monocytogenes [23,26-28], lack of reaction due to
physiological stress induced by growth media or assay
parameters [29,30], and lack of compatibility with cer-
tain bioassay platforms [14,22,31]. Thus, there is a need
for continued efforts to produce high-quality antibodies.

The recovery of low numbers of pathogens from com-
plex food matrices also impedes their rapid and sensitive
detection [31,32]. Antibodies are routinely used as affin-
ity ligands to separate and concentrate the target analyte
from sample matrices using paramagnetic beads (PMBs)
[31-34] and also as recognition or reporter molecules on
immunoassay platforms [31,35,36]. The PMB-captured
cells may be presumptively identified by plating them on
selective or differential media [37], or their identity may
be confirmed by PCR [38,39], flow cytometry [40], or
cytotoxicity assay [41]. The use of a biosensor to detect
cells captured by immunomagnetic separation (IMS) is
an attractive approach due to increased speed, accuracy,
and detection of a low number of targets [34,42,43].

Fiber-optic sensors utilize laser excitation to generate
an evanescent wave in order to quantify biomolecules
immobilized on an optical waveguide [31,44,45]. A cap-
ture antibody is immobilized on the waveguide and a
fluorescent (Cyanine 5 or Alexa Fluor 647)-labeled sec-
ond antibody is used as a reporter for the target analyte.
Once the laser beam (635 nm) travels through the op-
tical waveguide, it undergoes total internal reflection,
and the fluorophore on the reporter antibody bound to
the analyte is excited, thereby generating an evanescent
wave. The signal is propagated back up to the fiber and
is detected in real time by a fluorometer. This format
has been successfully applied to many foodborne micro-
organisms and toxins, however, the limit of detection
largely depends on the antibody and the reagents used
[31,44,46-48].

In the present study, monoclonal antibodies (MAbs)
against L. monocytogenes and Listeria spp. were gener-
ated, characterized, and employed to concentrate L.
monocytogenes using PMBs. Finally, MAbs were used on
the fiber optic sensor to detect L. monocytogenes from
inoculated food products (soft cheese and hotdogs). In
parallel, gPCR and light-scattering sensor methods were
performed to confirm the results.

Results

MADb production and characterization by ELISA and
Western blotting

We selected 11 stable hybridomas, of which 7 (2F2, 2A2,
3B3, 3B7, 4E8, 2D12, and 4E4) reacted with both rInlA
and L. monocytogenes cells, and 4 (4E5, 4C1, 2A12, and
3F8) reacted with L. monocytogenes, L. innocua, and L.
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seeligeri. After another round of screening of MAbs-
2D12, -3B7, -4E4, and -3F8 against rInlA or L. monocy-
togenes cells (serotypes 4b, 4a, 1/2a, and 1/2b) by ELISA,
we chose MAb-2D12 (subclass IgG2a) and MAb-3F8
(subclass IgM) for future use.

An ELISA (Figure la) revealed that, among the anti-
InlA antibodies, MAbs-2D12 and -3B7 strongly reacted
(A450 = 1.0 or higher) with L. monocytogenes 4b cells,
while MAb-4E4 gave slightly lower reaction values
(A450 =0.75-0.9). The Listeria genus-specific MAb-3F8
gave strong ELISA values (A4s0=0.8-1.5) when tested
against other Listeria spp., without producing significant
cross-reactions with other bacterial species (Figure 1b).

In the Western blot, MAb-2D12 reacted with an
80-kDa protein band (InlA) from L. monocytogenes and
L. ivanovii, but it did not react with other Listeria spp.,
including L. marthii or L. rocourtiae (Figure 2a). MAb-
2D12 was reactive with all 13 serotypes; however, a
relatively weak reaction with 2 strains of serotype 1/2c
(ATCC 19112 and ATCC 7644) was observed. MAb-2D12

e N
(a)
2.0 1
1.8 1 BMADb-2D12
1.6 1 EMAb-3B7
1.4
OMAb-4E4

BMADb-3F8

Absorbance at 450 nm
o
[e¢]

P A
& & & & \“QO o MR
FFS S vV e
& &F o$ o$
¢ & & .&o‘\
(b)
€ 1.81
S 161 O MAb-3F8
0 14
Q1.
1.2
® 74
(0]
8 0.8 1
o 0.6
£ 044
3 024
2 o
P 2 a2 ° @ LD RN e >
2 NN SO E S O
F e F T E S
FFE ST TV e,
() () A\
& & (\0& (\Oé\
RN S
SEE

Figure 1 Indirect ELISA using (a) MAbs 2D12, 3B7, 4E4, and 3F8
or (b) MAb-3F8 against different bacterial strains and purified
rInlA. Several 96-well microtiter plates were coated with live
bacteria (~1 x 10° CFU/mL) for 16 h at 4 °C. Data are the mean + SD
of 3 independent assays performed in duplicate.
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also reacted with a 66-kDa band from serotype 3c
(SLCC 2479), which is presumably a truncated InlA-
protein variant (Figure 2b) [49]. MAb-2D12-reactive InlA
was distributed in the secreted, cell wall, and intracel-
lular protein fractions of bacteria (Figure 2c). Immuno-
fluorescence microscopy confirmed the specific binding
of anti-InlA antibody (MAb-2D12) to the surface of
L. monocytogenes cells, but it did not react with L.
innocua (Additional file 1: Figure S1).

MADb-3F8 showed a strong reaction with a single pro-
tein band of ~30 kDa (p30) from all Listeria spp. with
the exception of L. welshimeri (Figure 3a). In addition,
this MAb showed strong reactions with protein prepara-
tions from all 13 serotypes of L. monocytogenes
(Figure 3b).

Bacterial capture using antibody-coated paramagnetic
beads (PMBs)

PMBs with MAb-2D12 had higher capture efficiency
than those with MAb-3F8. Using the same antibody, the
smaller-sized (1-um) MyOne beads displayed significantly
higher capture efficiency than the Dynabeads M-280
(2.8 pum) for L. monocytogenes 4b (F4244) and L. ivanovii
(ATCC19119) (Table 1, Figure 4). The capture efficiency
curve with different concentrations of L. monocytogenes
cells (10°-10° CFU/mL) was bell-shaped; the highest
capture (peak) was obtained at 10° CFU/mL, while
the lowest capture was obtained at concentrations of
10° CFU/mL and at 10’-10® CFU/mL (Figure 4). At ini-
tial L. monocytogenes concentrations of 10% 10° and
10° CFU/mL, MyOne-2D12 captured 33.5%, 49.2%, and
42.3% of cells, respectively, while M-280-2D12 captured
15%, 33.7%, and 14.2%, respectively. These values were
significantly different (P <0.05) from MAb-3F8 conju-
gated to MyOne or M-280 (Table 1). A similar trend was
seen for L. ivanovii, but the values obtained were lower
than those for L. monocytogenes. Therefore, the capture
efficiency depends on antibody performance, bead size,
and initial bacterial concentration.

All subsequent IMS experiments were performed
using MyOne beads. The fluorescence microscopic
image in Figure 4b shows the capture of L. monocyto-
genes by MyOne-2D12. The capture efficiency of
MyOne-2D12 and MyOne-3F8 was evaluated with bac-
teria grown in the recommended enrichment broths,
LEB or FB. MyOne-2D12 showed significantly higher
(P<0.05) capture of L. monocytogenes and L. ivanovii
than other Listeria spp., and the capture efficiency was
similar for LEB or FB (Figure 5). The capture efficiency
for MyOne-2D12 was comparable for the L. monocyto-
genes serotypes tested, including 4b (36.9%), 1/2a (27%),
and 1/2b (28%), as well as for a strain of L. ivanovii
(21.6%), and negligible capture of other Listeria spp.
was observed (Figure 5a). MyOne-3F8 displayed similar



Mendoncga et al. BMC Microbiology 2012, 12:275 Page 4 of 15
http://www.biomedcentral.com/1471-2180/12/275

s N
— ~
(a) £ s 3
5 5 2 5 8
o o O
- g 2 Q
I - O o @,-\88‘(!0
a o O« < [ =
S > L EQ ~ a R § O = L
L 5 & < v I S0 ¥ E OO0 =
= © 9 = uw =z w < = =~
o 8 8 5 5 T 2eL =PG5S
‘1"“"‘1“:‘,’:'— g::NV%<EE
o o o o © £ O 2 3 o= & =
cE € € € o6 t = e 0 8 2 5 § T
6 66 63835 L 5§55 20 F2g
EgeeeEfsi grEgge s
e e e N I > SR S S S (R
R 250
100
- "
E — ¥,

i1

—~
3
<
N
il
L - o
c £ O
SUEEEI
- ¥ ¢ o
- £ 88
13 'gE._
o 4 4
InlAm | .=
o o~ © K © T g =
32 5:zag R
S O 0 o Q@ o o = © N &
o m N g T ¥ O~ O - 0O
~a QO OO0 3 0 Q Et A S O O O
S F¥O00Q0J 000 509 T B 3 B
2 LEEJYEEESO ¥ <= E <
< < N L < < < = A ros = =
g o T &2 Q4L &8 %)
88 g0 oo0ovoa= - & 5 &
- s ®®® I I F < T~ g = & =
InlA
(c)
—
= ©
s g Q
T = =2 <=
cE ¢ 9 3
s = g £
Q=EE
5 © £
n O £ =

100
—
= . - s

Figure 2 Western blot analysis showing reaction of anti-InlA antibody (MAb-2D12) to bacterial cell wall proteins. (a) Coomassie
blue-stained SDS-PAGE (10 %) gel and corresponding Western blot. (b) Western blot with proteins from all 13 serotypes of L. monocytogenes.

(c) Distribution of InlA in cell fractions (4b; F4244): supernatant, cell wall, and intracellular.
. J

capture efficiency for all Listeria spp. tested, irrespective  determined by plating followed by BARDOT-based
of the enrichment broths used (Figure 5b). When the  colony identification. MyOne-2D12 captured ~10* CFU/
capture efficiency of MyOne-2D12, MyOne-3F8, and mL (9.5%) of bacteria, of which most colonies (~80%)
Dynabeads anti-Listeria was compared against a Listeria  were confirmed to be L. monocytogenes by BARDOT
panel, MyOne-2D12 captured the most pathogenic Lis- (Figure 6a, Additional file 2: Figure S2). MyOne-3F8
teria. For all other Listeria spp., both MyOne-3F8 and  captured ~2.1 x 10° cells (2.75%), and ~50% were con-
Dynabeads anti-Listeria had similar values (Figure 5c). firmed to be L. monocytogenes. Dynabeads anti-Listeria
Thus, MyOne-2D12 is highly specific for the capture of  captured ~2.9 x 10> CFU/mL (3.3%), of which 40% were
pathogenic Listeria, and MyOne-3F8 and Dynabeads L. monocytogenes.
anti-Listeria displayed similar capture efficiency for all We also investigated the capture efficiency of bacteria
Listeria spp. tested. from inoculated food matrices. Hotdogs were inoculated
The capture efficiency of PMBs for L. monocytogenes  with ~10 CFU/g each of L. monocytogenes 4b and L.
in a co-culture with L. innocua was also determined innocua as a mono- or co-culture and enriched for 18 h
(Figure 6). The bacteria were grown in FB, mixed (1:1; at 37°C. MyOne-2D12 showed higher capture of L.
100 pL) in PBS to achieve concentrations of ~1x  monocytogenes (12%) than L. innocua (1%) in the mono-
10° CFU/mL each and the capture efficiency was cultures, but in the co-culture experiment the total
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Figure 3 Western blot showing reaction of MAb-3F8 with cell
wall proteins from (a) Listeria spp. and (b) serotypes of L.
monocytogenes. Proteins were resolved by SDS-PAGE (15 %) before
immunoblotting. MAb-3F8 reactive protein (p30) is a 30-kDa protein

present in all Listeria spp.

bacterial capture dropped to 3.5%. MyOne-3F8 captured
3.7% of the L. monocytogenes cells in the monoculture
experiment, while the commercial Dynabeads anti-
Listeria captured only 1.8% (Figure 6b). Dynabeads
anti-Listeria also captured a numerically (not statistically)
higher percentage of L. innocua (4.2%) compared with
L. monocytogenes (1.8%) (Figure 6b). Overall, these data
show that MyOne-2D12 captured 10-fold more L.
monocytogenes than L. innocua, while MyOne-3F8
captured 1.5-fold more L. monocytogenes than L. innocua.
Dynabeads anti-Listeria had the highest capture effi-
ciency for L. innocua from hotdogs.

The capture of Listeria was also investigated with soft
cheese made from goat’s milk in a co-culture experiment
(Figure 6c; Additional file 2: Figure S2). Cheese samples
were inoculated with L. monocytogenes 4b (~27 CFU/g)
and L. innocua (32 CFU/g) and enriched in FB for 18 h
until the total count reached ~1.7 x 10° CFU/mL. The
bacterial capture using MyOne-2D12 was 4.67 + 0.46%,
while MyOne-3F8 (0.37%) and Dynabeads anti-Listeria
(1.2%) showed significantly (P < 0.05) lower capture effi-
ciency (Figure 6¢ and Additional file 2: Figure S2a). Cap-
ture of L. monocytogenes colonies on BHI agar plates
was verified by a light-scattering sensor, with L. monocy-
togenes and L. innocua producing distinct scatter pat-
terns (Additional file 2: Figure S2b).
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Specificity and limit of detection of the fiber-optic sensor
The specificity and limit of detection (LOD) of the fiber
optic sensor were analyzed by using MAb-2D12 as cap-
ture antibody and Cy5-labeled MAb-2D12 as a reporter.
The sensor generated strong signals against L. monocyto-
genes and L. ivanovii, with a maximum signal of 22,560
pA. In contrast, non-pathogenic Listeria produced a
maximum signal of 3,000-4,200 pA (Figure 7a), and
non-Listeria bacteria, including Salmonella Typhimur-
ium; E. coli O157:H7; and background food contaminant
isolates, Staphylococcus aureus, S. epidermidis, Entero-
bacter cloacae, and Lactococcus lactis [50], produced sig-
nals of ~2,500 pA (Figure 7b). Similar results were
obtained when MADb-3F8 was used as the capture and
MADb-2D12 as the reporter molecule (Figure 7a,b). In the
mixed cultures containing L. monocytogenes, L. innocua,
and E. coli O157:H7 (~10° CFU/mL of each), the signals
for MAb-2D12 and MADb-3F8 were 15,440 + 1,764 pA
and 8,440 + 569 pA, respectively, which were significantly
(P <0.05) higher than the values obtained for L. innocua
(2,725 +2,227 pA) or E. coli (1,589+662 pA) alone
(Figure 7b). The background control (PBS only) values
ranged from 504— 650 pA. Therefore, both fiber-optic
sensor configurations, 2D12-2D12 and 3F8-2D12, are
highly specific for pathogenic Listeria, and specificity was
contributed primarily by anti-InlJA MAb-2D12. Other
combinations did not produce satisfactory results (data
not shown).

The LOD was also evaluated by using pure cultures of
L. monocytogenes and L. ivanovii serially diluted in PBS
(Figure 7c and 7d). Using MAb-2D12 as the capture
molecule, the signals increased proportionately as the
bacterial concentration increased until a cell concentra-
tion of 1x10° CFU/mL was reached, which gave the
maximum signal (22,560 pA), almost reaching the
threshold of the Analyte 2000 fluorometer. The lowest
cell concentration that was considered positive (within
the detection limit) was 3 x 10*> CFU/mL for L. monocy-
togenes (6,252 1,213 pA) and 1x 10> CFU/mL for L.
ivanovii (8,657 £4,019 pA). These values were at least
2-fold higher than those produced by the samples with
10" cells or PBS (blank). When MADb-3F8 was used
as capture antibody, the LOD for L. monocytogenes
(16,156 + 6,382 pA) and L. ivanovii (13,882 + 5,250 pA)
was ~1 x 10° CFU/mL (Figure 7d).

IMS coupled with a fiber-optic sensor for detection of

L. monocytogenes

Bacteria captured by MyOne-2D12 or MyOne-3F8 were
detected by the MAb-2D12-coated fiber-optic sensor
(with MAb-2D12 as a reporter) and yielded signals of
18,230 + 1,840 pA and 13,280 + 2,890 pA, respectively
(Figure 8). The MAb-3F8 fiber optic sensor (with MAb-
2D12 as a reporter) produced signals of 11,225 + 2,860
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Table 1 Inmunomagnetic bead-based capture of Listeria cells®
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Bacteria Concentration (CFU/ml)

Percent captured bacteria + SD

M-280 (MAb-2D12)

MyOne (MAb-2D12)

M-280 (MAb-3F8)

MyOne (MAb-3F8)

L. monocytogenes F4244  10° 1354327
10* 15.1+47"
10° 337 +47%
10° 143+13M
107 10.1 £4.2M
108 32+14%

L. ivanovii SE98 10° 51+1.1%
10* 38+08%
10° 88+48"
10° 90+19"
107 52+34%
108 28 +04%

L. innocua F4248 10° 20+ 108
10* 1.7 £06%°
10° 1302
10° 02+0.1%°
107 03+03%
108 0.01 +0.0°%°

L. marthii BAA-1595 10° 23+05%
10* 1.5+0.2%°
10° 0.5 +0.0%°
10° 06+0.1%
107 02+08%
108 2.8+04%

93+25M
336+30°
492 +35"
423+ 15"
138+23"
45+09%
20+14%
164 +76™
322436
346+56
100+1.17%
2.1 +04%
15+07%
27 +05°°
24+15%
07 +06°
08+06°
02+0.1%°
20+04%°
06+03°%°
20+04%°
13+07%
03+02°°
002 +00%

108 +29M

635+ 19%
85+36™
4442150
13+0°%
35+06%
38+14%
34+15%
26+05%
38+07%
11+03%
21+07%
24+12%

133 £44M
87408
32+19%
30+24%
26+26%
22+00%
40+08%°
53+11%
73411
25+18%
1.1+03%

20+00%
11.0+10M
16,6+ 86"
82+ 24
40+03%
10+02%
20+14%
73+15%
11.2+58%
6.1 +1.15°
26+07%
15+05%
35+07%
108+ 23"
142416
90+23"
6.1 +23%
10+02%
45+07%
7756
180+ 3.6™
55+30%
32+05%
20+03%

“Bacteria were grown in TSB-YE for 18 h at 37 °C. The data are average of 3 experiments analyzed in duplicate. Values labeled with different letters (A, B, C, D or a,

b, ¢, d) in a row or in a column are significantly different at P < 0.05.
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Figure 4 (a) Capture efficiency of MAb-coated paramagnetic beads from a cell suspension containing variable concentrations of
L. monocytogenes. Data are the mean + SD of three independent assays performed in duplicate. (b) Photomicrograph showing capture of
GFP-expressing L. monocytogenes using MyOne-2D12 (anti-InlA MAb). Beads, red arrow; bacteria, blue arrow; bar=1 um.
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pA and 8,890 £ 1,900 pA, respectively (Figure 8a). The
fiber optic signal value for MyOne-2D12 and -3F8 cap-
tured L. monocytogenes was about 2 to 3-fold higher
than the signals obtained from the LOD concentrations
(3 x 10> CFU/ml) (Figure 7). These data indicate that
L. monocytogenes detection using MAb-2D12 for IMS
and a fiber optic sensor gave better results compared
with those obtained using MAb-3E8.

In soft cheese-containing co-culture of L. monocyto-
genes and L. innocua, both MyOne-2D12 and MyOne-
3F8 captured bacteria and produced signals of 13,026 +
2,710 pA and 12,620 + 4,554 pA, respectively (Figure 8b).
Bacteria captured with Dynabeads anti-Listeria gave
the lowest fiber-optic signals (Figure 8b). In Listeria-
inoculated hotdog samples, only MyOne-2D12 was used
for IMS and assayed by fiber optic sensor. The signal

from the sample containing both L. monocytogenes
and L. innocua was 8,376 + 2,448 pA, while that from
L. monocytogenes- and L. innocua-inoculated food was
8,552 +4,363 pA and 2,549 +1,358 pA, respectively
(Figure 8c). For both food samples, the fiber optic signal
values for MyOne-2D12 and -3F8 captured L. mono-
cytogenes but not the L. innmocua were higher than
the signals obtained from the LOD cell concentrations
(3x 10> CFU/ml) (Figure 7). Therefore, the IMS and
fiber optic sensor can be used together for detection of
L. monocytogenes from enriched food samples, even in
presence of L. innocua or other bacteria.

Real-time gPCR for validation
Real-time qPCR targeting hlyA was used to quantify
PMB-captured Listeria from hotdogs and goat’s cheese
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artificially contaminated with L. monocytogenes and L.
innocua (Table 2). When IMS was applied to the cheese
samples followed by qPCR, MyOne-2D12 showed cell
counts that were 4 times higher than those of MyOne-
3F8 and Dynabeads anti-Listeria. In hotdog samples,
MyOne-2D12 produced cell counts that were 2-3 times
higher than those of the other 2 types of beads.

Discussion

The recovery of low numbers of target pathogens from
complex food matrices is a challenge for sensitive detec-
tion methods [31,32]. IMS using PMBs is used to separ-
ate and concentrate target pathogens from food samples
before detection by plating, immunoassay, PCR, or bio-
sensor methods [31,37,39,42,45,51]. Antibodies [14] or
alternative molecules [19,51,52] are used as capture
molecules for IMS, and improvements in reagents and
assay platform development are essential to enhance
assay performance.

The specific detection of whole cells of L. monocyto-
genes using immunological methods relies on highly spe-
cific antibodies with a strong affinity for bacterial surface
antigens [31]. The antigen target should be uniformly

distributed on the target organism, covalently anchored
to the cell wall, and accessible to the antibody [53]. InlA
is a well-characterized protein that is highly specific to
L. monocytogenes and L. ivanovii, and it has all the desir-
able properties of an antigen [15]. Thus, we produced
MAbs against InlA (pathogenic Listeria) and p30 (all Lis-
teria spp.). The resulting MAbs were employed in IMS
to capture and concentrate bacteria from food followed
by fiber-optic sensor-based detection. To the best of our
knowledge, this is the first demonstration of the com-
bined use of these two approaches.

InlA-specific antibody production was facilitated by
the use of whole cells of L. monocytogenes and purified
rInlA as immunogens. Hybrid B-lymphocyte clones
secreted antibodies with a strong reaction towards live
whole cells, but a weaker reaction was observed with
heat-killed cells (data not shown). Since rInlA was sol-
uble, denaturing agents were not required before
immunization. Thus, the native structure of InlA during
the immune response was preserved, and the resulting
antibody recognized the native protein on the surface of
bacteria. The InlA-specific MAb-2D12 reacted with all
known L. monocytogenes serotypes, whereas previously

Table 2 qPCR analysis of paramagnetic bead captured bacteria from food samples®

Paramagnetic bead

Detection/enumeration of PMB captured cells by qPCR (CFU/ml)

(PMB) Hotdog® Soft Cheese®

CFU/ml+SD % CFU/ml +SD %
MyOne-2D12 1094307 x 10 1262 +35" 265+1.79x10 162497
MyOne-3F8 226+1.18x10° 263+14° 645 + 744 x 10° 38+43°
Dynabead anti-Listeria 276+3.11x10° 612+05° 765+ 826 x 10° 44+48°

2qPCR analysis is based on hlyA. Primers to 16S gene sequences were used as internal control.
PData are average of 3 experiments run in triplicate. Values labeled with letters (A, B) in a column are significantly different at P < 0.05.
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reported MAbs failed to recognize all 13 serotypes
[23,26,27]. Only serotype 1/2c showed a weak reaction
with MAb-2D12. However, this strain has been involved
in a few sporadic cases of listeriosis [54,55] and is rarely
found. Moreover, none of the 25 strains of serotype 1/2c
expressed a functional, full-length InlA [55], which may
explain why MAb-2D12 displayed a reduced reaction to
1/2c. When tested with serotype 3c, MAb-2D12 reacted
strongly with a ~66 kDa band instead of the normal
80-kDa InlA band. The smaller band may represent
truncated InlA, which results from inlA mutation [49].
Generally, such strains are less invasive and are less
likely to cause systemic infection as confirmed in animal
models [56].

We also generated a Listeria species-specific MAb by
immunization with whole cells of L. monocytogenes.
MAD-3E8 (IgM subclass) reacted with a ~30-kDa pro-
tein (p30) present in all eight Listeria species. Therefore,
MAD-3F8 may aid tracking of Listeria contamination in
foods or the food-production environment.

The separation of target organisms following primary
enrichment using IMS is faster than using selective sec-
ondary enrichment [57]. Thus, we performed IMS using
two different sizes of commercial beads. Antibody-
coated 1-uym MyOne T1 exhibited significantly higher
capture efficiency than the 2.8-um M-280 beads (Table 1,
Figure 4). Similarly, Foddai et al. [58] used six different
magnetic beads, including the two types used in this
study, to capture Mycobacterium avium. MyOne dis-
played better capture efficiency than that of M-280, but
the overall capture efficiency was low (<10%). In the
present study, the capture efficiency for MyOne-2D12
and M280-2D12 was 49.2% and 33.7% (initial concentra-
tion used, 10° CFU/mL), respectively while 16.6% for
MyOne-3F8 and 8.5% for M280-3F8. Paoli et al. [52]
used M-280-coated scFv antibody to ActA and reported
a maximum capture of 19% for L. monocytogenes. Wal-
cher et al. [51] reported a capture range of 46%—122%
using a bacteriophage endolysin specific for Listeria spp.
coated on M-280; however, the long capture incubation
time (2 h) may have allowed bacterial growth, thereby
producing a higher capture rate. Furthermore, the bind-
ing of bacteriophage to host cells is an irreversible
process, which may lead to higher capture efficiency
than with antibody-coated PMBs. Koo et al. [19] used
Hsp60-coated M-280, which showed a capture efficiency
for L. monocytogenes of 1.8%—9.2%.

The capture efficiency also depended on the initial
bacterial concentration. The highest capture (peak) with
MyOne-2D12 or MyOne-3F8 was seen at a bacterial
concentration of 10° CFU/mL (Figure 4). This is im-
portant for meaningful comparisons to be made between
the performances of IMS in different studies, which
may use a wide range of initial bacterial concentrations.
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Collectively, IMS data indicate that beads with a smaller
diameter (1-um MyOne) have better capture efficiency
than larger beads (2.8-pm M-280) due to higher surface
area to mass ratio and smaller beads can bind more anti-
body per mg of beads (20 pg biotinylated antibody for
MyOne vs. 10 pg for M-280) (Invitrogen). Furthermore,
the antibody affinity, the distribution/expression of anti-
gens on the surface of bacteria, and the initial bacterial
concentration also significantly affect capture efficiency
[14,58]. Here, the abundant expression of InlA on the
surface of L. monocytogenes cells coupled with the use
of smaller sized PMB was most likely responsible for
increased capture efficiency. However, the assay perform-
ance may be affected if PMB followed by fiber optic sensor
was applied to food samples directly without an enrich-
ment step. In such situation, food matrices may affect
bacterial antigen expression or antibody affinity [14].

We tested the capture efficiency of L. monocytogenes
in a co-culture experiment in buffer or food. Food con-
taminated with L. monocytogenes may contain other
Listeria spp. and background competitive microflora
[16,50]. L. monocytogenes grows slowly and is a poor com-
petitor; hence, lower cell numbers are expected in food
samples [18]. In a mixed population, L. monocytogenes
may be outgrown by other species of Listeria during en-
richment [17,18,21,33]. Here, IMS using MyOne-2D12
efficiently captured L. monocytogenes, in the presence
of L. innocua while both MyOne-3F8 and Dynabeads
anti-Listeria captured more L. innocua cells than
L. monocytogenes (Figure 6). Furthermore, the capture
efficiency for MyOne-2D12 using a co-culture in buf-
fer or food varied from 4.7%-12.3% (Figure 6 and
Additional file 2: Figure S2). Less than optimal level of
capture was attributed largely to the presence of higher
initial concentrations of bacteria (10’-=10® CFU/mL) in
the sample and the presence of interfering agents
(inhibitors) in food matrices, particularly in soft cheese.
Furthermore, the increased capture of L. monocytogenes
in hotdog compared to PBS was possibly due to increased
expression of MAb-2D12-reactive antigen (InlA) during
enrichment while cells used in PBS were originally
cultured in BHI, which may have caused reduced InlA
expression resulting in reduced L. monocytogenes capture
(Figure 6).

L. ivanovii is an opportunistic human pathogen that is
associated with gastroenteritis and bacteremia in
humans [13,59]; therefore, the development of methods
to detect this pathogen is also essential. MAb-2D12
reacted with L. ivanovii, which was successfully detected
by using IMS and a fiber-optic sensor. Hearty et al. [60]
reported the InlA-specific MAb-2B3; however, this anti-
body was unable to detect L. ivanovii in their assay
setup. MAb-2B3 may be specific for an epitope of InlA
on L. monocytogenes that is absent on L. ivanovii.
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PMB-captured cells were also identified by BARDOT
and qPCR. BARDOT is a light-scattering sensor that
detects and identifies bacterial colonies on agar plates with
a high degree of precision in minutes, since each spe-
cies has a distinctive scatter-fingerprint signature [61].
BARDOT allowed quantitative estimation of capture rate
for L. monocytogenes and L. innocua on BHI or MOX
plates (Additional file 2: Figure S2) instantly based on
colony scatter patterns and it is easy to perform without
the requirement for any additional reagents or probes.

Real-time qPCR confirmed that L. monocytogenes
capture and detection from food by MyOne-2D12 was
13%—-16%, which is significantly higher than that by
MyOne-3F8 and Dynabeads anti-Listeria (3%—6%). These
estimations are slightly higher than the plate count and
the light-scattering data obtained in this study. Yang
et al. [39] used nanoparticles for IMS and showed better
capture and detection of L. monocytogenes in milk with
real-time PCR (9%) compared with plate counts (6%).
This may be because qPCR detects DNA from nonviable
or viable but non-culturable cells, which may not other-
wise be detected by traditional plating methods [62,63].

The fiber-optic sensor operates based on the principles
of antibody-antigen interaction and is marketed by Re-
search International. It is currently used for foodborne or
biothreat agent detection [31]. The antibody (MAb-2D12)
used in this study on the optical waveguide made the assay
highly specific for L. monocytogenes and L. ivanovii, with
the detection limit of 3 x 10> CFU/ml, a significant im-
provement over previous reports. Geng et al. [46] used
MADb-C11E9 to show cross-reaction with some L. innocua
strains with LOD of 4.3 x 10> CFU/ml. Using a polyclonal
anti-Listeria capture antibody and an InlA-specific apta-
mer as a reporter, Ohk et al. [48] reported specific detec-
tion of L. monocytogenes with a LOD of 10° CFU/mL.

Conclusions

We developed highly specific anti-InlJA MAb (2D12)
against pathogenic Listeria: L. monocytogenes and L. iva-
novii and anti-p30 MAD (3F8) against all Listeria spp. in-
cluding the two new species (L. marthii and L.
rocourtiae). Anti-InlA antibody allowed specific detec-
tion of low levels (3 x 10> CFU/ml) of L. monocytogenes
and L. ivanovii when used on IMS and a fiber-optic sen-
sor in the presence of other bacteria from buffer, soft
cheese or hotdogs inoculated with low levels of cells
(10-40 CFU/g) following enrichment.

Methods

Culture and growth conditions

All bacterial cultures (Additional file 3: Table S1) were
maintained on brain heart infusion (BHI; Acumedia,
Lansing, MI) agar plates at 4°C with the exception of
lactic acid bacteria, which were maintained on de Man
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Rogosa Sharpe agar (MRS; Becton Dickinson [BD],
Sparks, MD). To obtain fresh cultures, Listeria spp. were
grown in tryptic soy broth (TSB; BD) containing 0.6%
yeast extract (TSB-YE) or Listeria enrichment broth
(LEB; BD) at 37°C for 16—18 h. Non-Listeria organisms
were grown in TSB-YE, and lactic acid bacteria were
grown in MRS broth at 37°C for 16—18 h. Fraser Broth
(FB) and modified Oxford agar (MOX) were purchased
from BD. All bacteria were maintained in BHI broth
with 20% glycerol at —80°C until further use.

Cloning of inlA and immunogen preparation

Specific primers (MWG-Biotech, Huntsville, AL) were
designed to target the in/A gene (GenBank acc. no.:
DQ132795) using Vector NTI 10.0 software (Invitrogen)
in order to amplify the complete open reading frame
(2331 bp) except for the signal peptide and a C-terminal
portion. To insert the inlA gene into the pAE expression
vector [64], the restriction sites for BamHI and Kpnl
enzymes were incorporated into the forward primer,
For-inlA (5-CGGGATCCGTATGGATTAACACGA-3')
and reverse primer, Rev-inlA (5-GGGGTACCCTAAG-
TAAGAACCATTGCAGT-3), respectively. The inlA
ORF was amplified from the genomic DNA of L. mono-
cytogenes (ATCC 19114) by PCR using an Eppendorf
thermocycler (Mastercycler EP gradient S) with the fol-
lowing standardized conditions 94°C for 7 min, 94°C for
1 min, 45°C for 1 min, 68°C for 2 min, and a final exten-
sion of 68°C for 7 min. The amplicon was digested with
BamHI and Kpnl and ligated into pAE—predigested with
the same enzymes—using T4 DNA Ligase (Invitrogen).
The PpAE-inlA construct was electrotransformed into
Escherichia coli Topl0 (Invitrogen), the recombinant
clones were selected on LB agar containing ampicillin
(100 pg/mL), and insertion of inlA (pAE-inlA) was
confirmed by sequencing. The pAE-inlA plasmid was
transformed into E. coli BL21(DE3) pLysS (Invitrogen)
competent cells. The transformed cells were grown to
reach the log phase (ODggo = 0.5-0.7) and induced with
1 mM IPTG for 3 h at 37°C. Cells were harvested, sus-
pended in lysis buffer (100 mM NaH,PO,4, 10 mM Tris
HCl, and 20 mM imidazole; pH 8.0) and sonicated
(3 cycles using a Branson Sonifier). The recombinant
InlA (rInlA) containing a poly-histidine tag (6x-His) was
purified by using a Ni-NTA affinity chromatography
system (GE Healthcare, Piscataway, NJ). Finally, column-
eluted proteins were dialyzed against 0.02 M phosphate
buffered saline (PBS; pH 7.2) for 24 h and concentrated
with polyethylene glycol (MW 20,000).

Immunization, MAb production, and MAb
characterization

Six-week-old BALB/c female mice were administered
intraperitoneally (i.p.) with approximately 1 x 10°® cells/mL
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of heat-killed L. monocytogenes serotype 4b diluted in PBS
and mixed (1:1) with complete Freund’s adjuvant (CFA).
Two weeks later, a mixture of heat-killed L. monocytogenes
and 50 pg of rInlA prepared with incomplete Freund’s
adjuvant (IFA) was administered ip. every week for
8 weeks. Four days before the last immunization, the
mouse showing the highest antibody titer against rInlA
in an indirect ELISA received booster immunizations
with rInlA via both intravenous and i.p. routes. The sple-
nocytes were harvested from the mouse and fused with
murine Sp2/O-Agl4 myeloma cells in the presence of
50% (w/v) PEG 1450 (Sigma) as described previously
[65]. Selected hybridoma clones were administered to
pristane-primed mice to produce ascitic fluid for anti-
body production [65](28). MAbs were purified by affinity
chromatography using a protein A-Sepharose 4B column
(GE Healthcare), and the class and subclass of each MAb
were determined by ELISA using a Mouse Subisotyping
Kit (Sigma).

Indirect ELISA was performed to determine the reac-
tivities of MAbs with live bacterial cultures adjusted to
ODgoo =1 (approx. 10° CFU/mL) in 0.1 M sodium car-
bonate coating buffer (pH 9.6) or with rInlA (10 ng/well)
for 16 h at 4°C, and immunoassay was carried out as
described previously [24].

Protein preparation, SDS-PAGE, and Western blot

Bacterial proteins were prepared according to the pub-
lished method [66] with some modifications. For isola-
tion of cell wall-associated proteins, 100 mL of cultures
grown for 18 h were centrifuged (7000 x g for 10 min),
and the cell pellets were resuspended by gently pipetting
up and down with 250 pL of protein extraction buffer
(0.5% SDS, 10 mM Tris; pH 6.9) followed by incubation
at 37°C for 30 min. After centrifugation (16,100 x g for
10 min at 4°C), the supernatants were collected. The
remaining cell pellets were resuspended in sample solv-
ent (4.6% SDS, 10% [-mercaptoethanol, 0.124 M Tris,
and 20% glycerol; pH 6.9), sonicated four times for 15 s
each (Branson Sonifier), and centrifuged (16100 x g for
20 min at 4°C) to collect the supernatant (representing
intracellular protein fractions). Protein concentrations
were adjusted using the bicinchoninic acid assay (BCA;
Pierce) and separated by SDS-PAGE (10% or 12% acryl-
amide; Bio-Rad, Hercules, CA). The proteins were blot-
ted onto Immobilon-P membranes (Millipore, Bedford,
MA) and blocked with 5% skimmed milk for 1 h at
room temperature (RT). The membranes were washed
with PBST (PBS containing 0.05% Triton X-100), immu-
noprobed sequentially with the MAbs, and incubated
with HRP-conjugated goat anti-mouse polyvalent anti-
body (Sigma). Antibody-reactive bands were visualized
following treatment with a chemiluminescence substrate
system (ECL kit; Thermo Fisher Scientific, Rockford, IL)
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or DAB (6 mg of 3.3/-diaminobenzidine tetrahydrochlor-
ide; 10 pL of HyOy, 30%; 9 mL of 50 mM Tris—HCI, pH
7.6; 1 mL of 0.3% NiCl,). Two MAb-producing clones
were selected for further study: L. monocytogenes (InlA-
reactive)-specific MAb-2D12 and Listeria genus-specific
(p30-reactive) MADb-3F8.

Immunofluorescence microscopy

L. monocytogenes (serotypes 4b, 1/2a, 1/2b, and 4d) and
L. innocua cell pellets (grown in 10 mL of LEB) were
washed twice with PBS and resuspended in 1 mL of PBS
containing 5% bovine serum albumin (PBS-BSA). Subse-
quently, 20 pL of cells were incubated with MAbs
diluted in 500 puL PBS-BSA for 1 h at 37°C. After wash-
ing with PBS (2x), the cell pellets were resuspended in
250 pL of FITC-conjugated goat anti-mouse IgG (1:100;
Sigma) and incubated at 37°C for 1 h. After three se-
quential washes with PBS, the pellets were stained with
Hoechst 33258 (for nuclear staining) for 15 min, and a
single drop of the suspension was examined using an
epifluorescence microscope (Leica, Buffalo Grove, IL).

Antibody labeling

For use with a fiber-optic sensor and magnetic beads
that are pre-coated with streptavidin, affinity-purified
antibodies were biotinylated using the EZ-Link Sulfo
NHS-Biotinylation Kit (Pierce) as per the manufacturer’s
instructions. The biotinylated MAbs were tested by
ELISA in avidin-coated microtiter plates, and the ratio
of biotin incorporated into the MAbs was calculated using
the HABA assay (4/-hydroxyazoben-zene-2-carboxylic
acid; Pierce). For use with a fiber-optic sensor, MAbs
were also labeled with Cy5 using the Cy5-Ab labeling
kit (Amersham Biosciences) as per the manufacturer’s
protocol.

Bacterial capture using antibody-coated PMBs
Two different sizes of PMBs were used: Dynabeads
M-280 Streptavidin (2.8-um diameter) and MyOne
streptavidin T1 (1.0 pm-diameter) (Invitrogen). Bead
preparation involved mixing the streptavidin-coupled
PMBs with 200 pg/mL of biotinylated MAbs for 30 min
under constant rotation at RT. The unbound biotinylated
MAbs were separated by removing the PMBs with a
magnetic particle concentrator (MPC-S; Invitrogen), fol-
lowed by washing the beads three times with PBS con-
taining 1% BSA. The beads were stored at 4°C until use.
To determine PMB-based capture with pure cultures,
bacterial cultures grown for 18 h were washed twice
with PBS and resuspended in PBS containing 0.1% BSA.
Subsequently, 20 uL. of MAb-coated PMBs was added to
200 pL of bacterial cell suspension containing variable
cell counts (10% to 10° CFU/mL) and mixed in a rotary
incubator for 30 min at RT. PMBs were recovered using
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MPC-S, washed 3 times using 1 mL of PBST, and resus-
pended in 200 pL of PBS. Finally, PMBs were subjected
to vigorous vortexing to release the captured bacteria
and 100 pL of each suspension was surface-plated onto
BHI or MOX agar plates for enumeration [19]. In some
experiments, Dynabeads Anti-Listeria (Invitrogen) were
used in parallel as a control. The capture efficiency (CE)
was calculated as follows: CE (%) = Cb/Ci x 100, where
Cb is number of cells bound to beads (CFU/mL) and Ci
is the initial total number of cells present in the sample
(CFU/mL).

To verify PMB-based capture of Listeria from food
matrices, we inoculated 10 g of each RTE soft cheese
made from goat’s milk and hotdogs (purchased from
local grocery stores in West Lafayette, IN) with L. mono-
cytogenes and L. innocua (10-40 CFU/g) and incubated
the samples for 15 min at 25°C. The samples were
placed in stomacher bags built with an interior filter lin-
ing (Whirl-Pak; Nasco, Fort Atkinson, WI) and 90 mL of
FB or LEB was added to each bag, blended for 2 min in
a stomacher, and incubated at 37°C for 18 h. Uninocu-
lated food samples served as negative controls. A total of
10 mL of each enriched culture was placed in a 15-mL
tube, washed twice with PBST, and resuspended in
10 mL of PBST. Samples were diluted 10-fold in PBS,
and IMS was performed as described above using 200
pL of the inoculated sample. The precise levels of inocu-
lums and growth after enrichment were enumerated on
BHI and MOX agar after 24 h or 48 h, respectively, at
37°C. Bead-captured bacteria were further tested by
fiber-optic sensor, light-scattering sensor, and qPCR.

Fiber-optic immunosensor assay

Polystyrene waveguides (fibers) were cleaned and coated
with 100 pg/mL of streptavidin (NeutrAvidin; Pierce) for
2 h at 4°C as described previously [48]. Fibers were
blocked with SuperBlock blocking buffer (Pierce) for 1 h
and incubated overnight at 4°C with each of the biotiny-
lated MAbs (200 pg/mL). The fibers were rinsed gently
with PBST and then reacted with biotinylated-BSA
(100 pg/mL; Pierce) for 1 h at RT to block unbound
streptavidin sites. The antibody coated fibers could be
stored at 4°C until use. The fibers were washed again in
PBST and placed in reaction chambers containing 100
uL of freshly harvested bacterial suspensions (Table 1) at
various concentrations (1 x 10® to 1 x 103 CFU/mL) and
incubated for 2 h at RT. Following gentle washing with
PBS, the fibers were exposed to Cy5-labeled anti-InlA
antibody for 2 h at 4°C, washed with PBST, and signals
were acquired with an Analyte 2000 Fluorometer
(Research International Co., Monroe, WA). The fluores-
cence intensity signals were recorded for each fiber for
30 s [46]. For each treatment, 3—-5 waveguides were
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used, and mean values + SD for each experiment were
presented.

Confirmation of captured bacteria using an optical
light-scattering sensor

An automated light-scattering sensor, BARDOT (BAc-
terial Rapid Detection using Optical light-scattering
Technology; Advanced Bioimaging Systems, LLC, West
Lafayette, IN) was used to identify colonies of Listeria
captured by IMS (described above) on BHI or MOX agar
plates [19,61]. This system collects scatter images of bac-
terial colonies (diameter, 1.3 + 0.2 mm) through a diode
laser (635 nm), and the bacteria were identified by com-
paring scatter images with library-stored images [61].
Before conducting the food sample testing experiment,
initial experiments were performed to determine the
capture rate of IMS for L. monocytogenes and L. innocua,
present at 10° CFU/mL each in a mixture in PBS, fol-
lowed by BARDOT analysis.

Real-time quantitative PCR (qPCR)

PMB-captured bacteria were also analyzed by qPCR. To
eliminate PCR inhibitors, the DNA was purified from
captured bacteria using the DNeasy Blood and Tissue
Kit (Qiagen) by treating the PMB-bacteria complexes
(100 pL) with 180 pL lysis buffer (20 mM Tris—HCI, pH
8.0; 2 mM sodium EDTA; 1.2% Triton X-100; 20 mg/mL
lysozyme) followed by incubation at 37°C for 30 min.
PMBs were removed from the solutions by using MPC-S
(Invitrogen), and the supernatant was pipetted onto the
columns. DNA was eluted in 100 pL of elution buffer
and used for qPCR.

Primers specific for #lyA (hlyA-For, 5-TGCAAGTCC-
TAAGACGCCA-3" and hlyA-Rev, 5-CACTGCATCT-
CCGTGGTATACTAA-3") of L. monocytogenes were
used for detection [67]. Primers for 16 s (Lis-16 s-For,
5- CACGTGGGCAACCTGCCTGT-3' and Lis-16 s-Rev,
5'- CTAATGCACCGCGGGCCCAT-3') were used as an
internal control. The qPCR was performed using Power
SYBR Green Master Mix (Applied Biosystems, Foster City,
CA) with 5 pL of DNA template in a 20-pL total reaction
volume and analyzed in triplicate. PCR amplification
was carried out in a StepOnePlus Real-Time PCR System
(Applied Biosystems) under the following conditions:
1 cycle of 95°C for 10 min for denaturation, followed
by 40 cycles of 95°C for 20 s, 58°C for 1 min, and 95°
C for 1 min for the dissociation curve. To construct the
standard curves, DNA from L. monocytogenes F4244 was
quantified, and a serial dilution was prepared to produce a
concentration curve. In all qPCR assays, the DNA tem-
plates of L. monocytogenes and L. innocua were used as
internal controls. Bacterial cell counts were estimated
based on the Ct values of unknown samples and com-
pared with the standard curve [39].
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Statistical analysis

Data are expressed as the mean + SD from at least three
independent experiments performed in duplicate unless
otherwise indicated. Mean values were compared by
ANOVA using GraphPad Prism version 5.0 (GraphPad
Software), and the differences in mean values were com-
pared using Tukey’s multiple comparison test at P < 0.05.

Additional files

Additional file 1: Figure S1. Indirect immunofluorescence assay of L.
monocytogenes (top row) and L. innocua (bottom row) immunoprobed with
anti-InlA MAb-2D12 and FITC-conjugated anti-mouse antibodies. Cells were
counter-stained with Hoechst for nuclear staining to assess the total
bacterial cells. Magnification, 1000x.

Additional file 2: Figure S2. Capture efficiency of MyOne-2D12 (InlA),
MyOne-3F8 (p30), and Dynabeads anti-Listeria (Dynal) from soft cheese
inoculated with L. monocytogenes and L. innocua and enriched in FB.
Captured cells were plated on (a) MOX plates for enumeration and

(b) BHI for confirmation of L. monocytogenes (Lm) and L. innocua (Linn)
counts by a light-scattering sensor, BARDOT.

Additional file 3: Table S1. Description of bacterial strains used.
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