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Ecologically relevant choanoflagellates collected
from hypoxic water masses of the Baltic Sea have
untypical mitochondrial cristae
Claudia Wylezich1*, Sergey A Karpov2*, Alexander P Mylnikov3, Ruth Anderson1 and Klaus Jürgens1
Abstract

Background: Protist communities inhabiting oxygen depleted waters have so far been characterized through both
microscopical observations and sequence based techniques. However, the lack of cultures for abundant taxa severely
hampers our knowledge on the morphology, ecology and energy metabolism of hypoxic protists. Cultivation of such
protists has been unsuccessful in most cases, and has never yet succeeded for choanoflagellates, even though these
small bacterivorous flagellates are known to be ecologically relevant components of aquatic protist communities.

Results: Quantitative data for choanoflagellates and the vertical distribution of Codosiga spp. at Gotland and Landsort
Deep (Baltic Sea) indicate its preference for oxygen-depleted zones. Strains isolated and cultivated from these habitats
revealed ultrastructural peculiarities such as mitochondria showing tubular cristae never seen before for
choanoflagellates, and the first observation of intracellular prokaryotes in choanoflagellates. Analysis of their partial 28S
rRNA gene sequence complements the description of two new species, Codosiga minima n. sp. and C. balthica n. sp.
These are closely related with but well separated from C. gracilis (C. balthica and C. minima p-distance to C. gracilis 4.8%
and 11.6%, respectively). In phylogenetic analyses the 18S rRNA gene sequences branch off together with
environmental sequences from hypoxic habitats resulting in a wide cluster of hypoxic Codosiga relatives so far only
known from environmental sequencing approaches.

Conclusions: Here, we establish the morphological and ultrastructural identity of an environmental choanoflagellate
lineage. Data from microscopical observations, supplemented by findings from previous culture-independent methods,
indicate that C. balthica is likely an ecologically relevant player of Baltic Sea hypoxic waters. The possession of derived
mitochondria could be an adaptation to life in hypoxic environments periodically influenced by small-scale mixing
events and changing oxygen content allowing the reduction of oxygen consuming components. In view of the
intricacy of isolating and cultivating choanoflagellates, the two new cultured species represent an important advance
to the understanding of the ecology of this group, and mechanisms of adaptations to hypoxia in protists in general.
Background
Choanoflagellates are colourless, free-living, exclusively
heterotrophic protists that are characterized by a single
anterior flagellum surrounded by a collar of microvilli;
and flat cristae in the mitochondria [1]. These unikont
flagellates form the sister taxon of metazoans as seen by
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reproduction in any medium, provided the or
sequence analyses [2-4]. Within the choanoflagellates,
three families were originally distinguished based on
morphology: Acanthoecidae Norris, 1965; Salpingoecidae
Kent, 1880; and Codonosigidae Kent, 1880 (synonym
Monosigidae Zhukov et Karpov, 1985). Recent taxonomic
revision based on multigene analysis states that the class
Choanoflagellatea Kent, 1880 comprises two orders: 1)
Craspedida, with a single family Salpingoecidae (including
the aloricate choanoflagellates of the former Codonosigidae
and Salpingoecidae families); and 2) Acanthoecida, with
the families Acanthoecidae and Stephanoecidae [5,6].
Choanoflagellates normally constitute 5 to 40% of the
average heterotrophic nanoflagellates (HNF) biomass in
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oxygenated pelagic habitats [7,8]. They have also been
detected in hypoxic (oxygen-deficient) water masses [9]
and can constitute a significant proportion of total HNF
biomass, reaching for example 10–40% in hypoxic water
masses of the Baltic Sea [10]. Especially in Gotland Deep,
the biomass of exclusively aloricate choanoflagellates can
clearly exceed 40% [10]. However, to date, few choanofla-
gellate species have been successfully cultured [5], and
none for hypoxic environments, limiting knowledge on
the ecology of this ecologically relevant protist group.
Clone library based approaches have produced many

novel sequence types during the last decade, enhancing
our knowledge of protist species richness and diversity
[11,12]. However, morphological and quantitative data of
microscopical life observations and cell counts are often
hard to match with such environmental sequences. In
some recent cases it has been possible to assign new
described species to novel protistan lineages only known
from culture-independent sequence investigations [13-15].
Many environmental sequences (18S rRNA) in public
databases cluster within the choanoflagellates. A recent
re-analysis of published environmental sequences belong-
ing to this group [16,17] provided evidence for only a low
correspondence between these sequences and sequences
obtained from cultures. Clonal sequences from hypoxic
environments (here referring to suboxic to anoxic/sulfidic
conditions) have also been found to often cluster within
the choanoflagellates. For instance, sequences from the
anoxic Framvaren Fjord [18] branch off near Diaphanoeca
grandis (Stephanoecidae); and clonal sequences found in
the hypersaline Mediterranean L’Atalante Basin constitute
the novel cluster F within the Acanthoecidae [16,19].
Stock et al. [20] also detected novel sequences in the
redoxcline of the periodically anoxic Gotland Deep
(central Baltic Sea), which branched within the Craspedida
cluster A [16]. However, only a small fraction of choano-
flagellates known at a sequence level have been isolated
and maintained in culture to date, and none so far was
derived from hypoxic marine environments. Thus, the
morphology, ultrastructure and physiological strategies of
these choanoflagellates from hypoxic environments re-
main unexplored.
The Baltic Sea is one of the largest brackish water

basins in the world. A stable halocline separates the
water column into an upper oxygenated layer and
underlying oxygen deficient and anoxic/sulfidic layers in
the deeper basins (e.g., Gotland and Landsort Deep).
Protist communities inhabiting these oxygen depleted
layers have been characterized so far by microscopical
counting of stained specimens [21-23] and clone library
investigations [20]. However, in contrast to well charac-
terized prokaryotic communities inhabiting these zones
[24-26], little is known on the ecology and ultrastructure
of individual protist groups living there.
The aim of this survey was to successfully isolate and
cultivate ecologically relevant protist strains from hyp-
oxic water masses of the Baltic Sea and characterize the
morphological and ultrastructural traits that could allow
them to succeed in these environments. In the present
study we present two successfully cultured choanoflagel-
late isolates of the genus Codosiga, which present mito-
chondria with tubular cristae and endobiotic bacteria,
never seen before for choanoflagellates, which could rep-
resent an adaptation to life in an environment with fluc-
tuating oxygen content.

Results
Vertical distribution and abundance of choanoflagellates
In 2005, an analysis of Codosiga spp. and its vertical dis-
tribution was conducted through light and electron
microscopy (Figure 1A) for the whole water column of
Landsort and Gotland Deep (Figure 1B, C). The detected
Codosiga specimens showed a preference for suboxic
and anoxic water layers in both sites. In Gotland Deep
the cells were mainly detected in sulfidic waters below
the chemocline (defined by the first appearance of
hydrogen sulfide). The HNF cell counts from the redox-
clines in 2008 and 2009 (Figure 2) are shown as the
abundance of total heterotrophic flagellates and the rela-
tive proportion of aloricate choanoflagellates (including
Codosiga and other naked genera). Choanoflagellates
were numerically important components in Gotland
Deep, but represented only a small fraction of total HNF
in Landsort Deep (Figure 2). Their abundance was high-
est at suboxic and interface depths ranging from 20 to
30% of total HNF counts in Gotland Deep and about 5%
Landsort Deep.

Phylogenetic reconstructions using ribosomal gene
sequences
Nearly complete 18S rRNA gene sequences were ob-
tained for both strain IOW73 (1748 base pairs in
length), and strain IOW94 (1783 base pairs). Addition-
ally, we generated partial 28S rRNA sequences for both
strains to enable comparison with Codosiga gracilis from
GenBank (the 18S rRNA sequence is missing for this
unique Codosiga culture, see [6]). The 28S sequences
obtained, including the divergent D1-D6 regions, pos-
sessed a length of 1620 and 1612 base pairs for strain
IOW73 and strain IOW94, respectively.
Strains IOW73 and IOW94 belong to the Salpingoeci-

dae according to [6] and branched off with clade 1 by
Carr et al. [5], and clade A by del Campo & Massana
[16]. The 18S rRNA tree (Figure 3) additionally contains
environmental sequences from different habitats closely
related to clade A. The Codosiga sequences form a well
supported clade with sequences from hypoxic habitats
such as the Baltic Sea (Gotland Deep), Framvaren Fjord,



Figure 1 Vertical distribution of Codosiga spp. indentified in
May 2005, and assessment of their presence (black circles) /
absence (no symbol) at different depths (grey diamonds)
throughout the whole water column of Landsort Deep (B) and
Gotland Deep (C). Oxygen concentrations (measured by titration
and by the oxygen sensor on the CTD) and hydrogen sulfide
concentrations (only available for Gotland Deep) are also shown,
along with cell-counts for Landsort Deep. Data were pooled for
several different CTD casts. The dashed line represents the
chemocline. Codosiga spp. was identified by life observations and
scanning electron microscopy as shown (A).
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the Black Sea and Sagami Bay, Japan. The only excep-
tional sequence in this clade, that was not isolated from
hypoxic environment, is AJ402325 from the Pacific [27]
which forms the basal branch. We were able to establish
cultures for two further strains, IOW74 (Gotland Deep,
208 m) and IOW75 (Landsort Deep, 260 m), whose
short 18S rRNA sequence fragments are identical to
strain IOW73 (data not shown).
The phylogenetic tree based on partial 28S rRNA gene

sequences, excluding the highly divergent D2 region,
shows a well established branching order in the Craspe-
dida and Acanthoecida (Figure 4). Sequences of our new
isolates are closely related to Codosiga gracilis ATCC50454,
rendering the genus Codosiga monophyletic. Strain
IOW94 is more closely related to C. gracilis (p-distance
4.8%) than IOW73 (p-distance to C. gracilis 11.6%).

Cultivation and morphology
Choanoflagellate cultures were maintained under oxic
conditions. The culture development in both strains was
similar during the first 4–6 days after inoculation to
fresh medium, though strain IOW94 proliferated one to
two days slower under the same conditions, and tends
to aggregate to clumps of bacteria. On days 2 to 3,
strains demonstrated solitary cells on a stalk of different
lengths (Figures 5, 6). On days 3 to 4, the development
of two-cell colonies appeared (Figure 6A). Such colony
types were common for IOW73, and are also typical for
Codosiga gracilis de Saedeleer, 1927 (basionym Monosiga
gracilis Kent, 1880), but with larger cell dimensions.
Strain IOW94 normally produced 2–4 cell colonies,
though occasionally largely colonies were formed.
Strain IOW94 was present as sedentary stalked solitary

cells and as colonies. It has a flask-shaped cell with a
broad and short neck covered with a very delicate, tightly
enveloping, theca (see ultrastructure below). The incon-
spicuous profile of the theca opening is visible in some
cells as “whiskers” at the base of the collar (Figure 5A,
arrowheads). Length of the body is 3–4.5 μm, width -
2 μm (n = 18). The length of the collar is equal to the body
length, the flagellum is approx. 2 times longer than the
body and the stalk covers up to 3 body lengths.
Strain IOW73 was present as sedentary stalked solitary

cells and as colonies of 2–4 cells (Figure 6A). The most
typical colonies were two cells on a rather long stalk (up
to 7 μm). The strain has an elongated vase-shaped cell
with a narrow and prominent neck, surrounded with a
delicate, tightly enveloping, theca (see ultrastructure) with
visible whisker. The body length is 2–4 μm, width - 1 μm
(n = 22). The length of the collar is equal to the body; the
flagellum is 1.5-2 times longer than the body.
The cell shape of both strains is similar to C. gracilis,

studied by Leadbeater and Morton [28]. A contractile vacu-
ole was not visible for cells cultivated at 22‰ but appeared
when the salinity was reduced to 8–10‰ (Figure 6A, B).

Ultrastructure
The electron microscopical investigations revealed an in
general typical choanoflagellate cell structure for both
strains (Figures 5, 6). As in many others colonial choano-
flagellates: (1) the cells were covered with a thin sheath,
which envelopes the whole body and the base of the collar
(Figures 5A, B, 6B); (2) the collar was composed of ap-
proximately 30 microvilli in both isolates (not shown); (3)



Figure 2 Abundance of heterotrophic nanoflagellates (light grey) and relative abundance of naked choanoflagellates (dark grey) in
redoxclines of Gotland Deep in 2008 (GD 2008) and 2009 (GD 2009) and Landsort Deep 2009 (LD 2009) based on epifluorescence
microscopy. The horizontal dashed line represents the first appearance of hydrogen sulfide (chemocline). Note the changes in the scale of some
axis between the two years.
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the Golgi apparatus lies under the base of flagellum
(Figure 5B); (4) the flagellar apparatus has a long transi-
tion zone, a flagellar kinetosome with radiating micro-
tubules, and a non-flagellar centriole, all typical for
choanoflagellates (Figure 5B, 6D); (5) a nucleus of vesicu-
lar type (Figure 6B) is located in the anterior-middle part
of the cell; and (6) other organelles and inclusions are also
those common for choanoflagellates. Additionally, food
vacuoles with bacteria in different stages of digestion were
found in the posterior half of the cell, and a contractile
vacuole is located at the cell posterior. This latter struc-
ture has the typical appearance of a folded reservoir with
coated pits and vesicles around it (Figure 6B). Finally,
lipid droplets occur in the cytoplasm of some cells
(Figures 5D, G, 6C).
In contrast to these similarities, the internal structure

of mitochondria—the shape of the cristae—is cardinally
different from all other choanoflagellates investigated to
date. The cells in both strains have mitochondria with
tubular or sac-like cristae (Figure 1B including left upper
insert, 5F, G, 6B insert lower left). In both types the cris-
tae have tubular or saccular shape (Figure 5B, F, G). In
the strain IOW94 mitochondria of two types can be seen:
with normal matrix and developed cristae (Figure 5B, F),
and with light matrix and rare cristae (Figure 5G).
Another peculiarity is the presence of many intracellu-

lar, potentially symbiotic bacteria in the cytoplasm of
strain IOW94, predominantly in the cell posterior
(Figure 5C). These prokaryotes are not limited with
membranes, instead lying freely in the cytosol, and seem
to belong to Gram-negative bacteria (Figure 5C, D, G)
due to the two covering membranes (Figure 5D). They
are represented by at least two types: long narrow (nlb)
and big flagellated bacteria (bfb). The bfb have a set of
rather long flagella which are tubular in cross section
(Figure 5D) and tend to associate with lipid globules
(Figure 5D, E, G).

Mode of feeding
Live observations of both strains revealed a typical
Monosiga-type mode of feeding [29,30]. The feeding
pseudopodium arises from the top of the neck outside
the collar, grows towards the bacterium on the outer
surface of the collar and engulfs the prey producing a
food vacuole. These observations were confirmed by
cross sections through the collar base (Figure 6B, insert).
Additionally, feeding pseudopodia arising from the side
of the neck were found for both strains (Figure 6C). This
mode of engulfment is typical for Codosiga and some
other colonial choanoflagellates with a thin sheath
around the cell [29,30]. The presence of two feeding
modes is easily explained by the combination of solitary
and colonial life styles for both strains: solitary cells feed in
Monosiga-type mode, and colonial cells feed as other colo-
nial choanoflagellates (Codosiga, Desmarella, Sphaeroeca).

Formal taxonomic description
Codosiga balthica sp. nov. Wylezich et Karpov
(Choanoflagellatea (Kent) Cavalier-Smith, 1998, Craspedida
Cavalier-Smith, 1997; Salpingoecidae (Kent) Nitsche et al.,
2011).
Diagnosis: Sedentary stalked solitary cells with rare

production of colonies of 2–4 cells. Flask-shaped cell
with a broad and short neck surrounded by a delicate
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Figure 3 Phylogenetic relationships of choanoflagellate strains isolated within this study to environmental sequences from hypoxic
habitats based on partial 18S rRNA sequences using MrBayes. New species are presented in white bold characters; environmental clonal
sequences of hypoxic habitats are shown in bold face letters. Posterior probability and bootstrap values above 0.5 and 50 are indicated. Values
above 0.99 and 99 are presented as bold face branches. Scale bar represents 0.1 mutations per position. Amoebidium parasiticum (Ichthyosporea)
was used as outgroup representative.
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sheath, visible through electron microscopy. Dimensions:
body length - 3–4.5 μm, width - 2 μm, length of the col-
lar equal to the body, flagellum 2–2.5 times longer than
the body, stalk: up to 3 body lengths. Tubular or saccu-
lar mitochondrial cristae, intracellular flagellated bacteria
present in cytosol not limited with membrane. Observed
habitat: Gotland Deep (central Baltic Sea, IOW station
271, 57°190N, 20°100E) suboxic to anoxic water masses
(depth 206 m), brackish (8–25‰); Type material: icono-
types: Figure 5D, E; fixed and embedded specimens
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(hapantotypes) are deposited at the Oberösterreichische
Landesmuseum in Linz, Austria (inventory number
2012/121); live strains (paratypes) are held as clonal
cultures (strain IOW94) in the laboratory of the
Leibniz Institut for Baltic Sea Research in Rostock-
Warnemünde; Etymology: balthica after the Baltic Sea,
where the strain was isolated. Closely related clonal
sequences were available from Gotland Deep and
Framvaren fjord but not from other habitats, oxic or
hypoxic.
Codosiga minima sp. nov. Wylezich et Karpov

(Choanoflagellatea (Kent) Cavalier-Smith, 1998, Craspedida
Cavalier-Smith, 1997; Salpingoecidae (Kent) Nitsche et al.,
2011).
Diagnosis: Sedentary stalked solitary cells which rarely

produce colonies of 2–4 cells. Elongated vase-shaped cell
with a prominent neck, surrounded by a delicate sheath
visible through electron microscopy. Dimensions: body
length - 2–3 μm, width - 1 μm, length of the collar equal
to the body, flagellum 1,5-2 times longer than the body,
stalk is up to 7 μm. Profiles of the mitochondrial cristae
of oval shape. Observed habitat: Gotland Deep and
Landsort Deep (central Baltic Sea, IOW station 284, 58°
350N, 18°140E) suboxic to anoxic water body (depths see
Table 1), facultative anaerobic, brackish (8–16‰); Type
material: iconotypes: Figure 6B and insertion down left;
fixed and embedded specimens (hapantotypes) are depos-
ited at the Oberösterreichische Landesmuseum in Linz,
Austria (inventory number 2012/120); live strains (para-
types) are held as clonal cultures (strains IOW73-75) in
the laboratory of the Leibniz Institut for Baltic Sea
Research in Rostock-Warnemünde; Etymology: minima,
due to the small cell size.
Remarks. The species described here could easily be sepa-

rated from C. gracilis based on their size (2–4.5 μm length
for IOW73 and IOW94 vs. 4–8 μm for C. gracilis), the
shorter flagellum (max. 8 μm vs. 8–20 μm for C. gracilis),
the flagellar root microtubules (organised in one row vs.
2–3 rows for C. gracilis [28,30,31]) and the shape of mito-
chondrial cristae. C. balthica differs from C. minima by
possessing intracellular bacteria and based on 18S and par-
tial 28S rRNA gene sequences. No 18S rRNA sequence of
Codosiga cultures exists (as discussed in [6]), but the clus-
tering of the 28S rRNA tree supports the separation of
both our strains from their nearest neighbour, C. gracilis
(Figure 4). Both species descriptions are deposited in
ZooBank under urn:lsid:zoobank.org:act:8EA52C91-58CE-
4FF9-9007-AC9DED267DD6 (C. minima) and urn:lsid:zoo-
bank.org:act:DF26A642-BD7A-4819-BE8C-40B01A1E7971
(C. balthica).

Discussion
Putative anaerobic choanoflagellate species have been oc-
casionally detected using microscopical methods [32,33].
For example, Diaphanoeca sp. and Acanthocorbis sp. were
found in fixed samples from suboxic to anoxic/sulfidic
waters of the Mariager Fjord [9] but did not grow in
anaerobic incubations. In contrast, Codosiga species had
not been described to date for hypoxic environments.
As shown here, aloricate choanoflagellates (including

choanoflagellate cells that show no lorica under epifluor-
escence microscope) in general are numerically important
members of the Baltic redoxcline protistan community
with a peak at the suboxic zone above the chemocline.
Their relative abundance was higher in Gotland Deep (up
to 20 to 30% of total HNF cell-counts) than in Landsort
Deep (up to 5%). The Gotland Deep is characterized by
periodical small-scale mixing events [34,35] and frequent
lateral intrusions of oxygenated water [20,36], which lead
to a less stable redoxcline than in Landsort Deep. Never-
theless, both deeps are rather similar concerning salinity,
oxygen and sulfide content and should principally be colo-
nized by both species if they are tolerant to anoxic and
sulfidic conditions and it requires more samplings to
reveal consistent differences in the spatial and temporal
distribution of the two species.
The single cell isolations, conducted in 2005, gave us the

opportunity to isolate and describe strains from these
abundant choanoflagellates. On the same cruise, redoxcline
samples from Gotland Deep were collected for RNA-based
clone library investigations of oxic-anoxic transition zone
and sulfidic water depths [20] which resulted in several
18S rRNA clonal sequences highly similar to our
C. balthica isolate (see framed clade in Figure 3). RNA-



Figure 5 Codosiga balthica n. sp. strain IOW94. Light (A) and transmission electron (B-G) micrographs. A. Single cell on the stalk (st), living
material under phase contrast. Arrowheads show the whiskers. B. Longitudinal section through the cell covered with delicate sheath
(arrowheads); insert: enlarged mitochondria of class 1 (m1) with tubular/saccular cristae. C. Cytoplasm at cell posterior filled with endobiotic
bacteria. D–E. structure of large flagellated bacteria with flagellar at cross section (D) and longitudinal section (E). F. mitochondria class 1 (m1)
with tubular/saccular cristae. G. mitochondria class 2 (m2) structure with tubular cristae and lipid globule association with bfb. Scale bars:
A – 3 μm, B – 1 μm, C-F – 200 nm, G – 400 nm.
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Figure 6 Codosiga minima n. sp. strain IOW73. Light (A) and transmission electron (B-D) micrographs. A. Single cell and two-cell colony with
a stalk (st), living material under phase contrast. B. Longitudinal section of the cell, arrowheads show a delicate sheath around the cell body and
proximal part of collar microvilli (mv). Insert upper right: transversal section through the collar with food vacuole (fv) with bacterium at outer side
of the collar. Insert down left: two mitochondrial profiles with tube-like cristae (arrows). C. Longitudinal section of feeding cell in the colony:
pseudopodium (ps) arises from the neck. D. Longitudinal section of flagellar kinetosome (kn) with one row of radiating microtubules (arrows).
Scale bars in A = 4 μm, B (+ upper insert), C = 2 μm, B (down insert), D = 500 nm.
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based clone libraries can be influenced by different num-
bers of ribosomal RNA molecules depending on cell size,
trophic state or rather metabolic activity. Because of the
small cell size of Codosiga spp. we would expect that its
contribution in clone libraries of the total protistan
community is only minor. However, the high amount of
clonal sequences closely related to C. balthica found by
Stock et al. [20] (11% and 4% in the library of the oxic-
anoxic transition zone and the sulfidic zone, respectively)
indicates in our opinion a high abundance of the



Table 1 Isolated strains, with the corresponding isolation depths and physico-chemical data (Gotland (G) and Landsort
Deeps (L), central Baltic Sea) and GenBank accession numbers for partial gene sequences generated in this study

Species Codosiga balthica Codosiga minima

Detected via Clone library (G1) DGGE (G2, L3) Isolation (G4) Isolation (G, L4)

Strain IOW94 IOW73 IOW74 IOW75

Station 271 (G) 271 (G) 271 (G) 284 (L)

Depth [m] 206 150 208 260

O2 [μM] 0.85 1.57 0.48 4.23

H2S [μM] 0.13 0.25 1.77 n.det.

18S rRNA JQ034424 JQ034422 n.sub. n.sub.

28S rRNA JQ034425 JQ034423 n.det. n.det.
(1Stock et al. 2009 [20]; 2Weber 2008 [37]; 3Anderson et al. [38] (in revision); 4this study; n.det., not detected; n.sub., not submitted to GenBank).
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corresponding cells at the sampling site. The 18S rRNA se-
quence of C. balthica also was reported via DGGE finger-
print techniques from the same habitat in 2007. The
relevant DGGE band was detected only in water depths
below the chemocline, representing anoxic/sulfidic water
layers until concentrations of 11 μM hydrogen sulfide [37].
These data correspond to the vertical distribution of Codo-
siga spp. at the sampling time (Figure 1), where they were
mainly found in anoxic depths. Additionally, an identical
sequence was detected from a DGGE fingerprint from
Landsort Deep permanent redoxcline collected at the oxic/
anoxic interface in 2011 [38]. Overall, our results indicate
that at least C. balthica is a permanent and prominent
member of the protistan community of Gotland and
Landsort Deep redoxclines.
In contrast to this taxon, C. minima was isolated for cul-

tivation from three different redoxcline samples during a
cruise in 2005. Two of these cultures were obtained from
Gotland Deep (strain IOW73, 150 m; strain IOW74,
208 m) while the third isolate came from Landsort Deep
(strain IOW75, 260 m; identity seen at an 18S rRNA
sequence level, see Table 1). In contrast to C. balthica, no
closely related environmental sequence for C. minima was
found in GenBank, which is typical for several isolated
and cultivated protistan taxa with presumably only minor
ecological relevance [39,40].
The general ultrastructure of both species described

here is similar to that of other investigated “naked” cras-
pedids [41-43]. However, the singular adaptation of their
mitochondria, and, in the case of C. balthica, the acqui-
sition of intracellular bacteria, are very likely strategies
gained both species to deal with oxygen depletion.
The cells of C. minima have mitochondria with tubular

but developed cristae, while C. balthica has mitochondria
of two types: m1 and m2 (see Figure 5). Both types of
mitochondria have predominantly cristae with a tubular
shape, but the type m2 shows a reduced number of cristae
and an electron translucent matrix. Tubular cristae have
never been found before in choanoflagellates, even in spe-
cially designed experiments to change the shape of
mitochondrial cristae with steroids, conducted unsuccess-
fully on a M. ovata culture [44]. Mitochondria with
reduced number of cristae were recently classified as an-
aerobically functioning mitochondria of the class 2 [45].
Such mitochondria have a reduced enzyme inventory with
regard to oxidative phosphorylation and are able to use
other electron acceptors than oxygen (e.g. fumarate or
nitrate). The routine growth of our strains under nor-
moxic circumstances in the laboratory shows that the
mitochondria of both species can use oxygen without any
difficulty. It is not clear at the moment whether the two
types/classes of mitochondria in C. balthica coexist per-
manently or if some of the mitochondria transformed into
aerobically functioning ones (class 1 according to Müller
et al. [45]) during the cultivation under oxic condition.
Higher numerical reduction of cristae (oxygen consuming
components) in C. balthica mitochondria class 2 and the
abundance of this taxon in oxygen depleted waters sup-
port the possibility to use other electron acceptors in
response to decreasing oxygen levels in the environment.
Prokaryotic endosymbionts are common in protists,

particularly in ciliates and dinoflagellates [46,47], but
had never been observed previously for choanoflagellates
[41-43]. Anaerobic ciliates often harbour methanogenic
archaeans in close connection to their hydrogenosomes,
and Eubacteria without connections to the hydrogeno-
somes [48,49]. C. balthica clearly does not possess
hydrogenosomes and its endobionts are of bacterial na-
ture as recognizable by the second enveloping mem-
brane instead of a cell wall like archaeans (Figure 5D).
Interestingly, the intracellular prokaryotes were not lost
during nearly seven years of cultivation under oxic
conditions, indicating that this is likely an obligate sym-
biosis for the choanoflagellate. Similar to observations in
anaerobic ciliates, the endobionts likely support the
choanoflagellate host (C. balthica) during anaerobic me-
tabolism and thus allowed them to colonize oxygen
depleted zones that supply high food availability. How-
ever, at this time we can not further specify the identity
and role of these intracellular prokaryotes.
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As noted in the introduction, environmental choa-
noflagellate sequences are typical constituents of pelagic
redoxcline protist communities and have been frequently
detected in hypoxic waters via clone libraries [18-20,50,51].
One environment in particular is worthy of mention:
although the Cariaco Basin is globally the most compre-
hensively sampled redoxcline environment (nearly 7,000
entries in GenBank of partial clonal 18S rRNA gene
sequences for this habitat; e.g., [50,52,53]), no sequences
belonging to C. balthica or C. minima have been found
there. This could be deeply rooted in methodological lim-
itations (e.g. different primers used for RNA or DNA
templates). Alternatively, the higher salinity of the Cariaco
Basin, or other physico-chemical or hydrological para-
meters, could exclude the two Baltic Codosiga species from
this environment with fully saline conditions. However,
these species seem to be relatively insensitive to salinity
variations and are highly tolerant to the presence of oxygen
and sulfide. They were able to grow in culture at 8‰ (this
study) and one sequence related to strain C. balthica
comes from deeper hypoxic water layers of the Framvaren
Fjord at about 25‰, [18]. Thus, the possibility that these
species represent endemic taxa of the Baltic Sea region
should be taken into consideration and will be tested in
further studies.
Conclusions
Both isolated species described here, C. minima and
C. balthica, were found within suboxic to anoxic water
layers, in the latter case using different approaches and
in several years. The species are of interest due to their
habitat, from which no choanoflagellate cultures could
be obtained yet, their unusual mitochondrial cristae and
presence of intracellular prokaryotes in one species. Our
isolation effort is important in view of the complexity of
isolation and cultivation of choanoflagellates species [5]
and of protists that can survive in hypoxic environments
in general. The novel C. balthica is ecologically relevant
component of the protist community at the sampling
sites tested. With its interior (derived mitochondria, pro-
karyotes), at least C. balthica is potentially able to out-
compete less adaptable heterotrophic nanoflagellates and
to become abundant in hypoxic parts of the Baltic Sea.
Preliminary investigations have shown that C. balthica is
able to grow successfully under suboxic conditions
in the laboratory, but not C. minima (M. Marcuse,
C. Wylezich & K. Jürgens, unpublished results). Our
next challenges would be (1) to identify and characterize
the functional role of the intracellular prokaryotes of
C. balthica, and (2) to determine the quantitative contri-
bution of both species to the Baltic protistan community
via fluorescently labelled specific probes. Moreover, both
cultivated species are ideal model organisms for future
studies on temporary anaerobic metabolism using derived
mitochondria.

Methods
Sampling, isolation/cultivation and counting of
choanoflagellates
Strains of the newly described Codosiga spp. were
obtained from untreated plankton samples taken in the
central Baltic Sea at the Gotland (IOW-station 271; 57°
19.20 N; 20° 030 E) and the Landsort Deep (IOW-station
284; 58° 35.00 N; 18° 14.00 E) in May 2005 during an ex-
pedition with the RV Alkor. Clonal cultures were obtained
from a single cell shortly after sampling, which was iso-
lated using a micromanipulator fitted with glass micropip-
ette [54]. The cultures were deposited as part of the IOW
culture collection, and were routinely kept in sterile 50-ml
tissue culture flasks (Sarstedt, Nümbrecht, Germany) in
F2 medium [55] (salinity 8–12‰) on a mixture of bacteria
grown on a wheat grain. Altogether four choanoflagellate
cultures could be established (Table 1).
Samples for cell-counts of HNF were obtained on board

the RV Poseidon in August 2008 (Gotland Deep) and the
RV Maria S. Merian in September 2009 (Gotland and
Landsort Deep). Water from different depths (GD 2008:
114–137 m, GD 2009: 90–140 m, LD 2009: 70–120 m)
was collected in 10 l free-flow bottles attached to a con-
ductivity, temperature and depth rosette (CTD) with a
coupled oxygen sensor. In all cases, oxygen and hydrogen
sulfide were measured immediately on board according to
standard methods [56]. In order to avoid potential oxygen
contamination during emptying of the free-flow bottles,
for experimental purposes only the bottom 5 l of water
from 10 l free-flow bottles was employed.

Molecular biological investigations
DNA was extracted from cells harvested from 20–30 ml
of dense cultures (8000 g, 20 min, 4°C) using a CTAB
extraction as described previously [57]. The 18S rRNA
gene was amplified by polymerase chain reaction (PCR)
using eukaryotic specific primers 18SFor-n2 (50- GAT
CCT GCC AGT AGT CAT AYG C - 30) and 18SRev-Ch
(50- TCC TTC TGC AGG TTC ACC TAC GG - 30). The
mixture containing 0.1 mM of each primer, 200 mM
dNTPs, 10 mM Tris pH 8.3, 1.5 mM MgCl2, 50 mM KCl,
and 1 unit of Taq DNA polymerase (Fermentas) was
heated to 95°C for 2 min, and the 18S rRNA gene was
amplified in 35 cycles of 95°C for 30 s, 52°C for 45 s, and
72°C for 2 min, followed by 10 min at 72°C. PCR products
were purified with the Nucleospin II Kit (Machery Nagel).
Sequencing was carried out by a company (Qiagen) with
the primers used for PCR and four different internal
sequencing primers (590F: 50- CGG TAA TTC CAG CTC
CAA TAG C - 30, 600R: 50- GCT ATT GGA GCT GGA
ATT ACC G - 30, 1280F: 50- TGC ATG GCC GTT CTT
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AGT TGG TG - 30, 1300R: 50- CAC CAA CTA AGA
ACG GCC ATG C - 30). The 28S rRNA was amplified as
described above with extended elongation time (3 min)
annealing of 48°C using primers fw1 (50- AGC GGA GGA
AAA GAA ACT A - 30) and 20R (50- GAG AGT CAT
AGT TAC TCC C - 30, kindly provided by C. Berney).
The purified PCR products were partially sequenced by
use of primers 1274 (50- GAC CCG TCT TGA AAC ACG
GA - 30), D5-Rev2 (50- GGC AGG TGA GTT GTT ACA
- 30, all given in [57]), and the newly designed primer
D2D3-Rev (50 - GAC TCC TTG GTC CGT GTT TC - 30).
Obtained sequences were checked and corrected using

Bioedit [58]. Genetic distances were calculated with
Mega [59]. Sequences were aligned together with other
sequences retrieved from GenBank using Clustal_X pro-
gram [60]. Afterwards, the alignments were edited
manually. Two data sets of the sequence alignments
were created for the 18S and 28S rRNA gene sequences.
The 18S rRNA data set contains 1,623 aligned nucleo-
tide positions, and the 28S rRNA alignmet excluding the
high divergent D2 region was 1,497 positions in length.
We used MrBayes [61] and PhyML 3.0 (http://www.
atgc-montpellier.fr/phyml/ [62]) for the phylogenetic ana-
lyses. The analyses were done using the GTR model of
substitution [63] and gamma-shaped distribution of rates
of substitution among sites with eight rate categories. The
Bayesian analysis was performed for 1,000,000 generations
and sampled every 100 generations for four simultaneous
MCMC chains (born-in = 2,500). For the maximum likeli-
hood analysis all model parameters were estimated from
the data set. To estimate branch support, we performed
500 bootstrap replicates for maximum likelihood analyses.
Phylogenetic reconstruction based on the partial 28S
rRNA gene we chose choanoflagellate sequences from
GenBank that cover the complete length of sequence frag-
ments generated in this study.

Microscopical investigations
For light microscopy observations of living cells a DM
2500 microscope (Leica) was used. For electron micros-
copy, the cultures were adapted to a salinity of 8‰ to
simplify the fixation protocol. The cell-pellet was fixed,
on ice in the dark for 30 min, with a cocktail containing
2% glutaraldehyde and 1% osmium tetroxide in F2 medium,
buffered with 0.05 M cacodilate to pH 7.2. After dehydra-
tion in an alcohol series the pellet was embedded in Epon/
Araldite resin, sectioned with a glass knife, and stained with
uranyl acetate and lead citrate. The sections were observed
at 80 Kv, under an EM Margani FI 268 electron microscope
equipped with digital camera (Olympus Megaview III).
For flagellate identification in 2005, a combination of

live observations and scanning electron microscopy was
employed. For live samples, sea water was concentrated
by reverse filtration (0.2 μm membrane filter; Millipore
GmbH, Schwalbach, Germany) in a hermetic box with a
nitrogen atmosphere at 4°C. Concentrated samples were
then placed inside a 1 ml transparent glass chamber, her-
metically sealed with a cover slip, and observed, directly
on board, using phase contrast at 360X and 630X under
an Axiovert 40 CFL inverted microscope (Carl Zeiss
MicroImagimg GmbH). Additionally, individual flagel-
late cells were isolated by means of a specially con-
structed micropipette [54], and cultured in 96-well
plates or petri-dishes, with sterile autoclaved Baltic Sea
water as medium and Pseudomonas putida MM-1 as
food source. Dried whole mount preparations of these
flagellates were later examined with a JEM-1011 trans-
mission electron microscope (JEOL Ltd.; Tokyo, Japan)
as previously described [64].
For HNF cell counts in 2008 and 2009, 100 ml samples

were fixed with a final concentration of 1% particle free
formaldehyde in brown glass bottles, at 4°C, between 2
and 24 h. Subsamples were filtered onto black polycarbon-
ate filters (0.8 μm pore-size; 25 mm diameter; Whatman
GmbH, Dassel, Germany), which were stored at −20°C or
−80°C. Filters were later stained with DAPI at a concen-
tration of 0.01 mg ml−1, mounted, and observed under a
Zeiss Axioskop 2 mot plus epifluorescence microscope
(Carl Zeiss MicroImagimg GmbH, Gottingen, Germany).
A minimum of 100 cells per filter were counted at 630X
using filter set 02 (Carl Zeiss MicroImagimg GmbH).
Aloricate choanoflagellates were clearly distinguishable
and therefore counted as a separate group.
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