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Abstract

Background: Microbes are extensively associated with insects, playing key roles in insect defense, nutrition and
reproduction. Most of the associations reported involve Proteobacteria. Despite the fact that Actinobacteria
associated with insects were shown to produce antibiotic barriers against pathogens to the hosts or to their food
and nutrients, there are few studies focusing on their association with insects. Thus, we surveyed the Actinobacteria
diversity on a specific region of the midgut of seven species of stinkbugs (Hemiptera: Pentatomidae) known to
carry a diversity of symbiotically-associated Proteobacteria.

Results: A total of 34 phylotypes were placed in 11 different Actinobacteria families. Dichelops melacanthus held the
highest diversity with six actinobacteria families represented by nine phylotypes. Thyanta perditor (n= 7), Edessa
meditabunda (n=5), Loxa deducta (n= 4) and Pellaea stictica (n= 3) were all associated with three families. Piezodorus
guildini (n=3) and Nezara viridula (n=3) had the lowest diversity, being associated with two (Propionibacteriaceae and
Mycobacteriaceae) and one (Streptomyceataceae) families, respectively. Corynebacteriaceae and Mycobacteriaceae were
the most common families with phylotypes from three different insect species each one.

Conclusions: Many phylotypes shared a low 16S rRNA gene similarity with their closest type strains and formed new
phyletic lines on the periphery of several genera. This is a strong indicative that stinkbug caeca can harbor new species
of actinobacteria, which might be derived from specific associations with the species of stinkbugs studied. Although
the well-known role of actinobacteria as a source of biomolecules, the ecological features of these symbionts on the
stinkbugs biology remain unknown.

Keywords: Actinobacteria, Bacterial diversity, Pentatomidae, Symbiosis
Background
Insects are by far the most diverse and largest cosmopolitan
group of existing living animals with over a million
described species [1,2]. Their successful worldwide dissem-
ination was largely influenced by their associations with
microbes (mostly bacteria), which allowed insects to exploit
nutritionally-deficient food sources, either by complement-
ing the diet with essential nutrients (e.g., Buchnera aphidi-
cola in aphids) [3] and/or aiding in food digestion (bacteria
and protozoa in termites) [4]. However, some associations
are not beneficial to the host and the bacteria can play a
pathogenic role affecting the host fitness (reduced
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reproduction in any medium, provided the or
reproduction and longevity, and increased mortality) [5].
The interactions insect-microorganism had been mostly
investigated focusing on entomopathogens (virus, bacteria
and fungi), but the limitations to the study of secondary
and primary symbionts due to the difficulties to culture
them in vitro have been recently overcome. The develop-
ment of molecular tools and the use of new technologies
for metabolite analysis are allowing for in depth investiga-
tions on the interactions bacteria and insects develop [6,7].
Bacterial mutualists have been firstly studied for their

ecological appeal on insect development, but have re-
cently gained a lot of attention due to their exploitation
for insect and/or insect-vectored disease control, either
through their direct elimination [8] or paratransgenesis
[9]. Although the promising advances which may arise
by these techniques, the use of the most intrinsic associ-
ation between insects and bacteria, i.e. obligatory endo-
cellular symbionts, is still thoroughly untapped mainly
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because these symbionts are difficult to cultivate or are
not cultivable yet, which implies on an extra effort to
obtain positive results. On the other hand, secondary
symbionts are relatively straight forward to isolate and
may therefore become a breakthrough tool on biological
control of insect pests. However, most of these bacteria
establish loosen relationships with their hosts and efforts
must be driven to identify the most persistent secondary
symbiont species which colonize the insect.
Stinkbugs (Hemiptera: Pentatomidae) are widely distrib-

uted around the globe and many species are considered as
agricultural pests. A particular region of their midgut, the
gastric caeca, has been scrutinized due to its association
with a community of bacteria and the possible role this
microbiota may have on host nutrition [10]. Several penta-
tomid species had their midgut symbionts investigated by
culture-independent approaches and the most abundant
bacterial species were identified as belonging to the
Enterobacteriaceae [11-13]. However, these studies have
used universal primers and PCR conditions that would
favor this particular group of bacteria, while bacteria that
would require particular PCR conditions for successful
amplification would not be detected or be a minor repre-
sentative in the population of amplicons produced. These
bacteria could also be key players in the process of symbi-
osis and have an important impact in host fitness.
Our observations of scanning electron micrograph

images of the gastric caeca of species of stinkbugs indi-
cated the existence of cells with a morphology that
resembled that of Actinobacteria (data not shown). Acti-
nobacteria are known to not amplify well in PCR condi-
tions normally used employing the universal primers
developed based on Escherichia coli, and it has already
been reported associated with the gut of several orders
of insects [14-17], including a couple of species belong-
ing to Hemiptera-Heteroptera [18,19]. Despite the exist-
ent data on the nutritional contribution of gut-
associated Actinobacteria [18], and the provision of an
antibiotic-barrier against pathogens by actinobacteria
associated with the host body surface [20,21], little is
known on the diversity of Actinobacteria associated with
the gut of insects [22].
Therefore, due to the lack of information on the acti-

nobacterial diversity associated with the gut of stinkbugs,
we aimed to characterize the actinobacteria communities
inhabiting the gastric caeca of the pentatomids Dichelops
melacanthus, Edessa meditabunda, Loxa deducta,
Nezara viridula, Pellaea stictica, Piezodorus guildinii
and Thyanta perditor, by using a culture independent
approach.

Results
The diversity of Actinobacteria associated with the V4
region of the midgut was quite different depending on
the stinkbug species. Dichelops melacanthus, T. perditor
and E. meditabunda had a quite diverse actinoflora asso-
ciated, with several genera from different families of
Actinobacteria. On the other hand, the actinoflora of N.
viridula and P. guildinii were represented by one genus
or a couple of genera from two distinct families, respect-
ively (Table 1, Figure 1). Database search for sequence
similarities to type strains ranged from 92.5 to 100% se-
quence identity (Table 1). In general, there is not a
major, predominant phylotype within each stinkbug spe-
cies. But Mycobacteriaceae are the most frequent when-
ever they occur (Table 1), with the exception of the
phylotype of Mycobacteriaceae in P. stictica, which was
almost as frequent as the others phylotypes.
The phylogenetic analysis of the 16S rRNA gene placed

all the 34 phylotypes from stinkbugs within the Actinomy-
cetales order (Figure 1). In general, the analysis was suffice
to determine the family of the phylotypes and 25 of them
were distributed into 10 families: Corynebacteriaceae (n=5
phylotypes); Micrococcaceae, Mycobacteriaceae, Propioni-
bacteriaceae and Streptomycetaceae (n=3 phylotypes each);
Actinomycetaceae, Brevibacteriaceae and Intransporangia-
ceae (n=2 phylotypes each); Kineosporiaceae and Micro-
bacteriaceae (n=1 phylotype each) (Figure 1). However,
our results demonstrated that phylotypes which shared a
16S rRNA gene similarity value lower than 96.0% with their
nearest type strain, although strongly associated with fam-
ilies included in the order Actinomycetales, formed new
phyletic lines on the periphery of 16S rRNA gene subclade
of known actinobacteria families. Therefore, it was not pos-
sible to assign them into a specific family. This was the case
of IIL-cDm-9s1 which grouped together with other four
phylotypes and formed a new 16S rRNA gene subclade
closely associated with the subclade represented by
sequences of the 16S rRNA gene of Dietziaceae. The two
subclades were supported by all tree-making algorithms
and by a bootstrap value of 56%. Similarly, the IIL-cDm-
9s3, IIL-cLd-3s5 and IIL-cTp-5s10 phylotypes formed new
phyletic lines strongly associated with Micrococcaceae,
Mycobacteriaceae and Actinomycetaceae 16S rRNA gene
subclades, respectively, with bootstrap supporting values
from 56% to 99%. Furthermore, the highest phylotype diver-
sity found for D. melacanthus was also represented by a
high number of Actinomycetales families as this insect was
associated with actinobacteria representatives scattered into
five families and two other unresolved families (Figure 1).
Similarly, the actinobacteria phylotypes from T. perditor
were distributed into three families and one unresolved
family, whereas E. meditabunda and P. guildinii had repre-
sentatives within three and two families, respectively. Loxa
deducta and P. stictica have actinobacteria representatives
distributed into two families and one unresolved family. On
the other hand, all phylotypes associated with N. viridula
were comprised into a single family, Streptomycetacea.



Table 1 Nearest matches of 16S rRNA sequences (~640 bp long) of selected genotypes gut-associated actinobacteria
from Pentatomidae

Amplified from Clones Similarity with type-strain %
phylotypeaNearest match Identity (%)

Dichelops melacanthus IIL-cDm-9s1 Dietzia maris DSM 43672T (X79290) 93.9 26.7

IIL-cDm-9s2 Propionibacterium granulosum DSM 20700T (AJ003057) 99.2 13.3

IIL-cDm-9s3 Citricoccus parietis 02-Je-010T (FM992367) 96.0 13.3

IIL-cDm-9s4 Citricoccus parietis 02-Je-010T (FM992367) 98.4 6.7

IIL-cDm-9s9 Corynebacterium durum IBS G1503T (Z97069) 97.2 6.7

IIL-cDm-9s23 Dietzia timorensis ID05-A0528T (AB377289) 95.5 6.7

IIL-cDm-9s24 Brevibacterium permense VKM Ac-2280T (AY243343) 99.5 6.7

IIL-cDm-9s26 Brevibacterium permense VKM Ac-2280T (AY243343) 99.5 13.3

IIL-cDm-9s27 Kineococcus marinus KST3-3T (DQ200982) 98.8 6.7

Edessa meditabunda IIL-cEm-14s4 Corynebacterium freiburgense 1045T (FJ157329) 97.3 6.3

IIL-cEm-14s8 Pseudoclavibacter chungangensis CAU59T(FJ514934) 96.7 31.3

IIL-cEm-14s9 Citricoccus parietis 02-Je-010T (FM992367) 98.8 25.0

IIL-cEm-14s10 Corynebacterium variabile DSM 20132T (AJ222815) 98.3 25.0

IIL-cEm-14s21 Arthrobacter protophormiae DSM 20168T (X80745) 99.8 12.5

Loxa deducta IIL-cLd-3s2 Dietzia timorensis ID05-A0528T (AB377289) 95.9 37.5

IIL-cLd-3s5 Mycobacterium llatzerense MG13T (AJ746070) 95.6 50.0

IIL-cLd-3s10 Dietzia timorensis ID05-A0528T (AB377289) 95.5 6.3

IIL-cLd-3s21 Ornithinimicrobium kibberense K22-20T (AY636111) 97.3 6.3

Nezara viridula IIL-cNv-20s10 Streptomyces puniceus NBRC 12811T (AB184163) 100.0 20.0

IIL-cNv-20s17 Streptomyces violascens ISP 5183T (AY999737) 99.8 27.5

IIL-cNv-20s19 Streptomyces puniceus NBRC 12811T (AB184163) 98.4 52.5

Pellaea stictica IIL-cPs-1s22 Mycobacterium phocaicum CIP 108542T (AY859682) 99.2 25.0

IIL-cPs-1s25 Ornithinimicrobium kibberense K22-20T (AY636111) 96.5 37.5

IIL-cPs-1s26 Dietzia timorensis ID05-A0528T (AB377289) 95.9 37.5

Piezodorus guildinii IIL-cPg-8s3 Mycobacterium phocaicum CIP 108542T (AY859682) 96.6 73.3

IIL-cPg-8s5 Propionibacterium acnes KPA171202T (AE017283) 98.8 13.3

IIL-cPg-8s21 Propionibacterium acnes KPA171202T (AE017283) 99.8 13.3

Thyanta perditor IIL-cTp-5s2 Actinomyces naeslundii NCTC 10301T (X81062) 97.1 11.1

IIL-cTp-5s4 Corynebacterium variabile DSM 20132T (AJ222815) 98.6 5.6

IIL-cTp-5s5 Mycobacterium phocaicum CIP 108542T (AY859682) 96.4 44.4

IIL-cTp-5s8 Actinomyces meyeri CIP 103148T (X82451) 98.6 5.6

IIL-cTp-5s10 Curtobacterium ginsengisoli DCY26T (EF587758) 92.5 5.6

IIL-cTp-5s24 Corynebacterium stationis LMG 21670T (AJ620367) 99.4 11.1

IIL-cTp-5s28 Corynebacterium variabile DSM 20132T (AJ222815) 98.4 16.7

Similarities compared with entries from EzTaxon database. avalues corresponding to phylotypes obtained from each pentatomid species.
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Discussion
The bacterial diversity associated with the midgut of
stinkbugs has been investigated by a wide range of mo-
lecular analyses [5,11,23,24], but studies addressing the
actinobacteria community within pentatomids have been
thoroughly neglected. The present study is the first in
which selective primers for actinobacteria have been ap-
plied to survey the diversity of this bacterial group into
the gastric caeca of pentatomids (Hemiptera: Pentatomi-
dae) and revealed a rich diversity of actinobacteria inha-
biting their gastric caeca.
Actinobacteria are known inhabitants of the intestinal

tract of several insects, but little has been reported on
their role. Termites were shown to have a fixed commu-
nity of actinobacteria mostly represented by species of
Actinomycetales [25], and several of the Streptomyces



Figure 1 Neighbour-joining tree based on 16S rRNA gene sequences (~640 bp) showing relationships between pentatomid gut-
associated actinobacteria and closely free-living relatives. Asterisks indicate branches of the tree that were also recovered with the
maximum-likelihood and maximum-parsimony tree-making algorithm; L and P indicate branches which were either recovered with the
maximum-likelihood or maximum-parsimony tree-making algorithm, respectively. Numbers at the nodes are percentage bootstrap values based
on 1000 resampled data sets; only values above 50% are given. The arrow indicates the inferred root position using Bacillus subtilis DSM 10T

(GenBank accession no. AJ276351) and Escherichia coli ATCC 11775T (X80725) which were used as the outgroup. Bar, 0.02 substitutions per
nucleotide position.
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species associated with the gut of termites have the po-
tential to degrade hemicellulose and lignin, which are
key components of the diet of these insects [14,26]. A
very diverse community of actinobacteria, including spe-
cies belonging to Dietzia, was also reported as gut inha-
bitants of scarabaeid beetles. These actinobacteria were
also shown to release enzymes capable of degrading
xylan and pectin as substrates [17,27]. Although these
actinobacteria were show to produce a number of active
enzymes that act on the food substrate of their hosts,
their direct contribution to the digestive process and nu-
trition of their hosts has not been evaluated yet.
A number of associations among actinobacteria and

hemipterans have also been reported, but far less diverse
than those we report or those already described in ter-
mites and scarabaeids. Coriobacterium glomerans (Corio-
bacteriaceae) has been reported from the midgut of
Pyrrhocoris apterus (Pyrrhocoridae) [28], and Rhodococcus
rhodnii (Nocardiaceae) from the reduviids Rhodnius pro-
lixus, Rhodnius ecuadoriensis and Triatoma infestans [29-
31], and Rhodococcus triatomae from Triatoma sp. [32].
Although a horizontal transmission route for C. glomerans
has been recently demonstrated and molecular analysis of
another pyrrhocorid species indicated the occurrence of
closely related species of actinobacteria [19], gut sym-
bionts associated with T. infestans and R. prolixus were
the only ones that have been shown to play a role in host
nutrition by producing vitamin B [33,34].
We do not have sufficient information to argue on the

role of the actinobacteria associated with the different spe-
cies of stinkbugs we have studied in here. Nonetheless, it is
striking how diverse the actinoflora associated with the gas-
tric caeca of some of these stinkbugs are as compared to
others, including the species of kissing bugs. However, the
same pentatomids species surveyed herein were analyzed
using universal primers [11], unpub. data and none of the
clones retrieved were characterized as actinobacteria. Thus,
it is clear that the use of specific primers enhanced the
chance to detect this special bacterial group and has, there-
fore, opened the opportunity to better understand the evo-
lutionary forces which may drive the interactions between
bacteria and pentatomids. Mutualistic associations with
microorganisms generally occur in insects that exploit
nutrient-limited food sources, and it is quite common in
blood or sap-sucking hemipterans [35,36]. Blood sucking
hemipterans are known to carry symbionts associated with
their gut that complement the vitamin B deficiency in their
natural diet [33,34], while sap-sucking hemipterans are
commonly associated with symbionts housed within bacter-
iocytes or bacteriomes [36,37]. But there is also a number
of heteropterans (Hemiptera) that are not sap or blood
suckers that carry symbiont bacteria associated to their gut
that affect host fitness [38,39], but only one is known to be
an actinobacterium [19,28].
Although the reported potential of gut actinobacteria
to produce enzymes to possibly aid in food processing
by their hosts (termites and scarabaeids) or to synthesize
nutrients (hemipterans), the well-known potential of
Actinobacteria to produce bioactive metabolites has led
some to argue that these bacteria may also have a more
general role in host protection against the invasion of
pathogenic bacteria [22]. This hypothesis has gained
support by the growing body of information on the asso-
ciation of actinobacteria with insects, in which actino-
bacteria are ectopically associated with the integument
of Hymenoptera to produce a plethora of antibiotics to
protect their hosts or the host’s food source [7,20,21,40].
Insect symbiosis have been reported more than half a
century ago [35] and has regained attention due to the
possible exploitation of symbionts for insect pest and/or
insect-vectored disease control [8,30,41] and the impact
they can have on pest- and disease-control programmes
[42]. However, the biotechnological potential of bacterial
symbionts associated to insects is another face of insect
symbioses that is seldom explored, especially the extra-
cellular bacterial symbionts [40,41,43,44].
Furthermore, most of the genera found inhabiting the

midgut of the pentatomids in here studied has already
been reported associated with other insects. Some of them
have a beneficial impact on the insect fitness, i.e., strepto-
mycetes in hymenopterans [20,21] and corynebacterial
symbionts in Rhodnius spp. [30]. Other genera, such as
Dietzia [27,45] and Brevibacterium [46], have been re-
cently isolated from insects and the last may play a patho-
genic association with their hosts [47]. The ecological
features of these interactions could be achieved by select-
ive isolation of the symbionts. However, our initial
attempts to culture the actinobacteria associated with a
couple of the stinkbugs we have studied by using several
selective media for actinobacteria (data not shown) were
fruitless so far, indicating a likely intrinsic coevolutionary
relationship between these organisms or the environment
(insect midgut) have selected actinobacteria species that
may require special nutritional requirements.

Conclusions
Thus, it is clear that the gastric caeca of pentatomids
can be considered as an untapped reservoir of putative
new species of actinobacteria. The new 16S rRNA gene
subclade formed by the IIL-cDm-9s1 phylotype justifies
any attempt to isolate and cultivate the actinoflora asso-
ciated to stinkbugs. Finally, although many have sought
to characterize the microbiological diversity in the stink-
bug midgut, the simple use of a different primer set
demonstrated the existence of a high diversity of an earl-
ier unnoticed group of bacteria, indicating that the inter-
actions between these insects and their symbionts are
more complex than previously thought.
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Methods
Insect sampling and midgut extraction
The pentatomids Dichelops melacanthus, Nezara viri-
dula, Edessa meditabunda, Loxa deducta, Pellaea stic-
tica, Piezodorus guildinii and Thyanta perditor were
collected in a soybean field (South of Brazil, 2008/2009)
and kept under laboratory conditions on a mixed diet
composed of green beans and soybean and peanut seeds.
From each studied species two adult females were sur-
face sterilized before dissection. Their midguts were dis-
sected under a microscope and transferred to a clean
glass slide. The posterior section of the midgut (V4,
crypt or caeca-bearing region) was removed, washed
three times in sterile phosphate-buffer saline (PBS),
macerated and then subjected for DNA extraction. Dis-
sections were carried out under sterile conditions and all
tools used were autoclaved before use.
16S rRNA gene sequencing analysis
The genomic DNA from the V4-midgut section of all
individuals was extracted following Sunnucks and Hales
[48]. The 16S rRNA gene was selectively amplified from
purified genomic DNA by using primers designed for
general identification of actinobacteria (S-C-Act-0235-a-
S-20: 5′-GGCCTATCAGCTTGTTG-3′ and S-C-Act-0
878-a-A-19: 5′-CCGTACTCCCCAGGCGGGG-3′) [49].
The polymerase chain reaction (PCR) mixture contained
10 ng gDNA, 1x PCR buffer, 1.5 mM MgCl2, 0.2 mM of
each deoxyribonucleoside triphosphate, 0.32 μM of each
primer, 0.5 U GoTaq polymerase, and sterile MilliQ H2O
to 25μL. PCR condition used the touchdown protocol
recommended by Stach et al. [49]. The PCR product was
visualized by electrophoresis in a 0.8% (w/v) agarose gel,
and the PCR product was purified using a PCR Product
Purification Kit (Qiagen, USA), according to the manu-
facturer’s instructions.
The PCR product was then cloned into the pGEM-

Teasy cloning vector and positive clones were selected
following the manufacturer’s guidelines (Promega). Plas-
mids of selected clones (10 per individual, two rounds of
10 clones/pentatomid species) were extracted, purified
and subjected to RFLP-PCR analysis prior to sequencing.
Amplicons produced with the original primer set (S-C-
Act-0235-a-S-20 and S-C-Act-0878-a-A-19) were sub-
jected to restriction analysis with three informative re-
striction enzymes, EcoRI, MspI and SalI, and those
which showed a different RFLP pattern were selected
and sequenced using T7 and M13 universal primers. 16S
rRNA gene sequences were compared with entries in
the updated EzTaxon database [50]. The nucleotide
sequences of 16S rRNA gene sequences of the phylo-
types have been deposited with the GenBank database
under accession numbers JQ927510–JQ927543.
Phylogenetic analysis
Sequences were aligned using the MEGA4 software [51],
and manually trimmed before further analysis. Phylogen-
etic trees were inferred by using the maximum-likelihood
[52], maximum-parsimony [53] and neighbour-joining
[54] tree-making algorithms drawn from the MEGA4 [51]
and PHYML [55] packages. The Jukes and Cantor [56]
model was used to generate evolutionary distance matri-
ces for the neighbor-joining data. Topologies of the result-
ant trees were evaluated by bootstrap analysis [57] of the
neighbour-joining method based upon 1,000 replicates
using the MEGA4 software. Bacillus subtilis DSM 10T

(GenBank accession no. AJ276351) and Escherichia coli
ATCC 11775T (X80725) were used as outgroups.
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