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Abstract

plasmid integration frequencies.

Background: Sa/monella has been employed to deliver therapeutic molecules against cancer and infectious
diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid
recombination has been reduced in £ coli by mutating several genes including the recA, reck, recF and recJ.
However, to our knowledge, there have been no published studies of the effect of these or any other genes that
play a role in plasmid recombination in Salmonella enterica.

Results: The effect of recA, recF and rec) deletions on DNA recombination was examined in three serotypes of
Salmonella enterica. We found that (1) intraplasmid recombination between direct duplications was RecF-
independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a ArecA or ArecF
mutation; (2) in all three Salmonella serotypes, both ArecA and ArecF mutations reduced intraplasmid recombination
when a 1041 bp intervening sequence was present between the duplications; (3) ArecA and ArecF mutations
resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi;

(4) in some cases, a Arec) mutation could reduce plasmid recombination but was less effective than ArecA and
ArecF mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal
recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid
recombination frequencies in Rec” strains. A ArecA mutation reduced both intrachromosomal recombination and

Conclusions: The ArecA and ArecF mutations can reduce plasmid recombination frequencies in Salmonella enterica,
but the effect can vary between serovars. This information will be useful for developing Salmonella delivery vectors
able to stably maintain plasmid cargoes for vaccine development and gene therapy.

Background

Attenuated Salmonella are being developed as vaccines
to protect against typhoid fever [1-3]. There are also
endeavors employing Salmonella as delivery vectors for
therapeutic molecules. One strategy utilizes attenuated
Salmonella, which expresses a gene or gene fragment
encoding a protective antigen as vaccine against bacter-
ial pathogens [4-6]. The heterologous genes can be
expressed from the Salmonella chromosome, or, more
often, from a multi-copy plasmid [7,8]. Another strategy
exploits Salmonella as a delivery vector of DNA vaccine
against viral pathogens [4,5,9]. The later strategy is also
used to deliver DNA encoding tumor antigen or
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cytokine for therapeutic applications in oncology
[10,11]. In addition, Salmonella is used to deliver small
interfering RNAs (siRNA) [12], ribozymes [13] and large
DNA molecules encoding a viral genome [14]. For
instance, in vivo delivery of an artificial bacterial chro-
mosome (BAC) carrying the viral genome of the murine
cytomegalovrirus (MCMYV) by Salmonella Typhimurium
led to a productive virus infection in mice and resulted
in elevated titers of specific antibodies against lethal
MCMV challenge [14].

Most vaccine designs utilize Salmonella delivery vec-
tors carrying a single plasmid for expression of a single
antigen or of a fusion protein carrying epitopes from
more than one antigen [15]. To induce broader immu-
nity against a particular pathogen or various pathogens,
one might need to express multiple antigens from a
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single plasmid carrying different antigen cassettes or
from multiple plasmids in a single cell, each expressing
one or more relevant antigens. Co-delivery of plasmids
encoding tumor antigens and cytokines by Salmonella
has been successfully demonstrated to improve protec-
tive immunity against cancer [16]. In the case where
multiple plasmids are carried in the same Salmonella
vector strain, there are most likely regions of homology
between the plasmids, since the widely used pUC- and
pBR-based plasmids have origins of replication that are
nearly identical and both share regions of homology
with the p15A ori. Additionally, commonly used promo-
ter sequences, transcriptonal terminators and other
expression plasmid components may also be present on
plasmids coexisting in the same bacterial cell. The pre-
sence of these similar or identical DNA sequences
would serve to facilitate undesirable interplasmid recom-
bination. In some cases the bacterial vector may inten-
tionally harbor multiple copies of the same DNA
sequence, which may lead to plasmid instability.
Recently, we encountered such a situation during the
development of a bacterial based influenza vaccine. We
constructed a single plasmid carrying eight head-to-tail
connected influenza cDNA cassettes [17]. The plasmid
was intended for delivery into host cells by an attenu-
ated Salmonella strain. The multiple repetitive
sequences residing in the plasmid make its stability
within the attenuated Salmonella an important concern
because any intraplasmid recombination event results in
deletion of one or more influenza gene cassettes.

Recent work in our laboratory has focused on devel-
oping new strategies for attenuated Salmonella vaccine
strains, with features including regulated delayed in vivo
attenuation [18,19], regulated delayed in vivo antigen
synthesis [18,20-22], and programmed delayed in vivo
cell lysis [23,24]. For all of these systems, one or more
chromosomal and/or plasmid genes are placed under
the control of the araC Pgap promoter. Eventually, our
goal is to combine all of these features into a single Sal-
monella vaccine vector strain. Such a strain will there-
fore carry multiple chromosomal and plasmid copies of
araC Pgap, providing sites for potential recombination,
which could lead to unwanted chromosomal or plasmid
rearrangements.

However, to our knowledge, there have been no pub-
lished studies specifically designed to evaluate plasmid
recombination in Salmonella enterica. Deletions of sev-
eral Escherichia coli genes are known to reduce the fre-
quency of plasmid recombination, including the recA,
recE, recF and recJ genes [25-30]. The recA gene
encodes the general recombinase RecA, involved in
nearly all forms of recombination in the cell [31]. The
RecE, RecF and Rec] proteins play a role in plasmid
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recombination and recombination repair [32,33]. The
RecA, RecF and Rec] proteins are highly homologous
between E. coli and S. enterica, therefore they may play
similar roles in DNA recombination. Despite these pos-
sible similarities, the recombination systems in the two
organisms differ somewhat, as S. enterica does not
encode recE [34]. Based on these concerns, we decided
to determine the effect of rec gene deletions on intra-
plasmid recombination, interplasmid recombination,
intrachromosomal recombination and plasmid integra-
tion in S. enterica.

In this work, we examine the effect of ArecA, ArecF
and Arec/ mutations on DNA recombination frequencies
in three serovars of Salmonella enterica currently rele-
vant to vaccine development. Our results show that the
effect of these mutations on recombination can vary
among Salmonella serovars and with previously pub-
lished results in E. coli.

Results

Plasmid construction

We constructed a series of plasmids (Figure 1 and Table 1)
encoding various truncated fetA genes to assay plasmid
recombination frequencies using the strategies similar to
those described previously [28,35]. Restoration of a func-
tional ZetA gene via intra- or intermolecular recombination
resulted in a change of the bacterial phenotype from tetra-
cycline sensitive to tetracycline resistant, and served as a
marker allowing us to measure the frequency of recombi-
nation events (Figure 2).

Plasmids pYA4463 and pYA4590 were constructed to
test intraplasmid recombination (Figure 1 panel A).
Plasmid pYA4463 carries two truncated tetA genes
(5" end and 3’end), which have 466-bp of tandemly
repeated sequence. An intramolecular recombination
event can delete one of the repeats resulting in an intact
tetA gene, thereby recreating the structure of plasmid
PACYC184 (Figure 1 panel A). Theoretically, intermole-
cular recombination may occur between two pYA4463
molecules to form a plasmid dimer with a functional
tetA gene (Figure 1 panel C). Plasmid pYA4590 contains
a 602-bp tetA sequence duplication separated by a
1041-bp kan cassette. The intramolecular recombination
product is equivalent to pACYC184. The intermolecular
recombination product is a dimer plasmid containing an
intact tetA gene (Figure 1 panel C). Plasmids pYA4464
and pYA4465 carry the 3'tet gene and 5'tet gene, respec-
tively (Figure 1). The Rec’ Salmonella strain y3761 car-
rying either plasmid individually was sensitive to
tetracycline. There is 751-bp of tetA DNA in common
between the two truncated tetA genes. Recombination
between the two plasmids creates a hybrid plasmid con-
taining an intact tetA gene (Figure 1 panel C).
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Figure 1 lllustration of plasmids carrying intact or truncated tetA genes. Plasmids are not drawn to scale. (A) Plasmid pACYC184 carries an
intact tetA gene (1191 bp), which is the source of all truncated tetA genes used in this study. Plasmid pYA4463 carries two copies of truncated
tetA genes, truncated at the 5’ or 3’ ends as indicated, which results in a 466-bp direct tandem duplication (shown as open arrows). Plasmid
pYA4590 has two similar copies of truncated tetA genes, resulting in 602 bp of repetitive sequence (shown as open arrows) separated by 1041-
bp kan cassette. (B) Plasmid pYA4464 has a 3'tet truncated gene. Plasmid pYA4465 has a 5'tet truncated gene. There are 751 bp of common
sequences (shown as open arrows) between the two truncated tetA genes. (C) Plasmid pYA4463 dimer is the intermolecular recombination
product of two pYA4463 molecules. Plasmid pYA4590 dimer is the intermolecular recombination product of two pYA4590 molecules. Plasmid
pYA4464-pYA4465 is the intermolecular recombination product of pYA4464 and pYA4465.
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Intraplasmid recombination products

To verify the recombination products, plasmid DNA
was prepared from tetracycline resistant (Tc®) single
colonies derived from x3761(pYA4463), %3761
(pPYA4590) and 33761(pYA4464, pYA4465). Plasmids
extracted from Tc® clones of y3761(pYA4463) were
digested with Xbal and Sall. Theoretically, Xbal/Sall
digestion of pYA4463 will yield two fragments (3524 bp
and 1187 bp), pACYC184 will yield two fragments (3524
bp and 721 bp) and pYA4463 dimer will yield four frag-
ments (3524 bp, 3524 bp, 1653 bp and 721 bp).
The results (Figure 3A) showed that digestion of all 16
Tc® clones yielded a 721-bp band, indicating either a

pYA4463 dimer or a plasmid equivalent to pACYC184.
Three clones (lane 1, 5 and 10) yielded the pYA4463
dimer-specific 1653-bp band. Therefore, we conclude
that the other 13 clones recombined to form the
pACYC184-like structure. Of note, several clones (2,
13-16) also yielded the 1187-bp pYA4463-specific band,
suggesting that the original plasmid (pYA4463) and its
recombination product (pACYC184-like) could coexist
in the same bacterial cell.

Plasmids extracted from Tc® clones of 3761
(pYA4590) were digested with Kpnl and EcoRI. Theore-
tically, plasmid pYA4590 will be digested into two frag-
ments (3414 bp and 2474 bp), plasmid pACYC184 will
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Table 1 Plasmids used in this study

Plasmid Relevant characteristic(s)* Reference or
source
pACYC184  cat, tetA, p15A ori [59]
pBAD-HisA  amp, pBR ori Invitrogen
pKD46 A Red recombinase expression plasmid  [60]
p15A-PB2-  cat, kan, p15A ori This study
kan
pYA4463 pPACYC184, adjacent 5'tet and 3'tet This study
pYA4464 PACYC184, 3'tet This study
pYA4465 PBAD-HisA; 5'tet This study
pYA4590 pACYC184, 5'tet-kan-3'tet This study
pYA4373 cat-sacB [54]
pRET12 oriT, orV, sacB, cat [61]
pYA3886 PRE112, ArecF126 This study
pYA4783 PYA3886, ArecF1074 This study
pYA3887 PRE112, ArecJ1315 This study
pYA4680 PRET12, ArecA62 This study
pYA4518 pYA4464, cat, p15A ori, GFP gene This study
pYA4518-  Two cysG fragments This study
cysG
pYA4689 pYA4518-cysG, 5'tet-kan-3'tet This study
pYA4690 pYA4518-cysG, 5'tet-kan This study
pYA5001 aacCl, pSC101 ori, T vector This study
pYA5002 pYA5001, recA cassette from This study
Typhimurium 3761
pYA5004 PYAS5001, recA cassette from Typhi Ty2  This study
%3769
pYA5005 pYA5001, recF gene from Typhimurium  This study
%3761
pYA5006 pYA5001, recF gene from Typhi Ty2 This study
%3769

*cat: chloramphenicol resistance gene; tetA: tetracycline resistance gene; amp:
ampicillin resistance gene; kan: kanamycin resistance gene; 3'tet: 3' portion of
the tetA gene; 5'tet: 5’ portion of the tetA gene together with its promoter;
aacC1: 3-N-aminoglycoside acetyltransferase.

be linearized (4245 bp) and the pYA4590 plasmid dimer
will be digested into four fragments (4245 bp, 3414 bp,
2474 bp and 1643 bp). Examination of the restricted
DNA (Figure 3B) showed that only one clone (lane 12)
had the pYA4590 dimer-specific 1643-bp band. The
most prominent band in the other lanes was a 4245-bp
band expected for pACYC184-like recombination pro-
ducts. Nine clones contained a mixture of pACYC184
and pYA4590 (lane 1, 3-5, 8, 9, 14-16).

Interplasmid recombination products

Plasmids extracted from Tc® clones of 3761(pYA4464,
pYA4465) were digested with Ncol and Bgl/Il. Both
PYA4464 and pYA4465 are linearized into a DNA frag-
ment about 4 kb. Therefore, in cells containing each or
both monomeric plasmids, the digested product will be a
single band. The pYA4464-pYA4465 hybrid will be cut
into two fragments (5510 bp and 2481 bp). All four of
the Tc® clones we isolated and examined showed
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recombination product specific bands and the 4-kb band
expected when each plasmid exists separately in the cell.
Four tetracycline sensitive (Tc®) isolates were examined
and only a single band was observed, as expected
(Figure 3C). These results suggest that interplasmid
recombination occurred in the Tc® cells and that both
dimer and individual monomers corresponding to at
least one of the two starting plasmids can coexist in the
same bacterial cell. We performed a similar experiment
in S. Typhi strain Ty2(pYA4464, pYA4465) and obtained
identical results (data not shown).

Construction of rec deletion strains

We constructed a series of strains for these studies carry-
ing deletions in either recA, recF or rec/ in S. Typhimur-
ium UK-1, S. Typhi Ty2 and S. Paratyphi A (Table 2).
We also constructed ArecAA recF and Arec] A recF dou-
ble mutants in S. Typhimurium. Deletion of recA, recF
and rec] results in an increase in sensitivity to UV irradia-
tion [36,37]. To verify the presence of these deletions
phenotypically in our strains, the UV sensitivity of the
S. Typhimurium mutant strains was measured. The ArecF
and Arec/ mutants showed significantly lower surviving
fractions than the wild type strain after the same exposure
dose (Figure 4). By contrast, after five seconds of UV expo-
sure (16 J/m?) to 2.2 x 10° CFU of the ArecA62 mutant
(19833), we were unable to recover any surviving cells
(not shown). UV resistance similar to the wild-type strain
13761 was restored to S. Typhimurium ArecA and ArecF
mutants strains after introduction of recA plasmid
(pYA5002) or either recF plasmid (pYA5005/pYA5006),
respectively. Transformation of either mutant strain with
vector plasmid pYA5001 did not restore UV resistance
(Figure 4 and data not shown for recA mutant).

Effect of rec deletions on intraplasmid recombination

To examine the influence of ArecA, ArecF and Arec]
mutations on intraplasmid recombination frequencies,
plasmid pYA4463 (tandem duplication) or pYA4590
(tandem duplication with intervening sequence) were
introduced into Salmonella rec mutants and their paren-
tal strains and analyzed as described in the Methods
section. The recombination frequency of plasmid
pYA4463 was approximately 1.5-5.0 x 107 in Rec”
Typhimurium, Typhi and Paratyphi A (Table 3). In
S. Typhimurium and Paratyphi A, most of the rec dele-
tions had no effect on the intraplasmid recombination
frequency of plasmid pYA4463 except that a small, but
statistically significant decrease in recombination was
observed in the ArecA mutant of Paratyphi A. However,
in both S. Typhi strains, both ArecF mutations resulted
in approximately 10-fold decrease in recombination fre-
quency (P < 0.01), while the ArecA and Arec/ mutations
resulted in a 2-3-fold reduction (P < 0.01). In the
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Figure 2 Strategies for measuring DNA recombination. (A) Truncated tetA genes. Two truncated tetA genes were derived from an intact tetA
gene and its promoter (P). 5'tet, includes the tetA promoter and the 5’ portion of tetA gene. 3'tet, consists of the 3’ portion of the tetA gene. The
overlapping region (between 5'tet and 3'tet) varies from 466 to 789 bp depending on the system. Homologous recombination can occur
between the two truncated tetA genes at the overlapping region, leading to the formation of a functional tetA gene. (B) Intermolecular
recombination. Each DNA molecule carries either 5'tet or 3'tet. A single crossover between the two molecules occurs at the regions of
homology, and leads to a functional tetA gene. (C) Intramolecular recombination. The two truncated tetA genes were placed on one molecule in
the same orientation. A single crossover between the regions of homology leads to a functional tetA gene.
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complementation test, the recombination frequency of
plasmid pYA4463 in S. Typhi 411053 was restored to
2.52 + 0.18 x 102 and 1.71 + 0.68 x 107 by introduc-
tion of plasmid pYA5005 encoding S. Typhimurium
recF gene and pYA5006 encoding the S. Typhi recF
gene, respectively (Table 3).

The results with plasmid pYA4590 were also variable
among strains. The recombination frequency in Rec”
S. Typhimurium and S. Paratyphi A strains was approxi-
mately 2-3 x 10° and in both S. Typhi strains, the fre-
quency was 3-fold higher, at 1.16 x 10 (Ty2) and 1.31 x
107 (ISP1820). In S. Typhimurium and S. Typhi Ty2, the A
recA and ArecF mutations reduced the recombination fre-
quency of plasmid pYA4590 by 5-20-fold (P < 0.01; Table
3). The results were similar for S. Paratyphi A, though the
ArecF mutation only led to 3-fold lower plasmid pYA4590
recombination (P < 0.01). The Arec] mutation had no effect
in S. Typhimurium and resulted in a 2-3-fold decrease in
recombination in both S. Typhi Ty2 and S. Paratyphi A.
Combining the ArecA ArecF mutations in S. Typhimurium
led to a recombination frequency similar to the frequencies
observed for both mutations individually, indicating no
additive effect. In the complementation test, plasmid

pYAS5002, which encodes S. Typhimurium recA, was trans-
formed into S. Typhimurium ArecA mutant 9833
(pYA4590) and S. Typhi ArecA mutant y11159(pYA4590).
Their respective recombination frequencies were 2.50 +
042 x 10 and 14.35 + 2.44 x 107, which were comparable
to the corresponding wild type strains (P > 0.05) (Table 3).
The recF-encoding plasmids pYA5005 and pYA5006 were
transformed into recF mutant strains y9070(pYA4590) and
111053(pYA4590), respectively. The respective recombina-
tion frequencies were increased to 2.00 + 0.24 x 10” and
2.86 + 059 x 10°°.

Effect of rec deletions on interplasmid recombination

To evaluate interplasmid recombination, plasmids
pYA4464 and pYA4465 were co-electroporated into the
wild-type and rec deletion strains. Electroporants from
each test strain were grown in LB broth containing both
ampicillin and chloramphenicol to maintain selection
for both plasmids. The frequency of recombination was
determined as described in the Methods section. The
interplasmid recombination frequency was 1-4 x 107
for Rec” S. Typhimurium, S. Typhi and S. Paratyphi A
strains (Table 3). For Typhimurium and Paratyphi A,
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Figure 3 Verification of plasmid recombination product by agarose gel separation. (A) Plasmid DNA was isolated from Tc® clones derived
from %3761(pYA4463) and digested by Xbal and Sall. (B) Plasmid DNA was isolated from Tc® clones of x3761(pYA4590) and digested by Kpnl and
EcoRl. (C) Plasmid DNA was isolated from Tc® or Tc® clones of 13761(pYA4464, pYA4465). The purified plasmids were digested with Ncol and Bglll.

the ArecA and each ArecF mutation reduced the inter-
plasmid recombination frequency by about 3-10-fold
(P < 0.01). In contrast, the ArecA mutation had no effect
on interplasmid recombination in S. Typhi Ty2. The
ArecF mutations did not reduce interplasmid recombi-
nation in either of the Typhi strains. Surprisingly, intro-
duction of the ArecF1074 mutation into S. Typhi Ty2
resulted in significantly higher interplasmid recombina-
tion (P < 0.01). Note that we performed this analysis in
eight independent experiments and observed a higher
recombination frequency of interplasmid recombination
each time. The Arec/ mutation had no significant effect
in S. Typhi, and a small (< 3-fold) but significant effect

in S. Typhimurium and S. Paratyphi A. The recombina-
tion frequencies were also determined in S. Typhimur-
ium strains ArecA ArecF and ArecF ArecJ double
deletions. No additive effect between the two mutations
was observed with respect to each single mutation.

Effect of rec deletions on chromosome related
recombination

To measure intrachomosomal recombination frequencies,
we introduced the pYA4590-derived DNA sequence
containing two truncated tetA genes (5'tet-kan-3'tet) into
the S. Typhimurium chromosome at ¢ysG. The two trun-
cated tetA genes had 602 bp of overlapping sequence.
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Table 2 The bacterial strains used in this study

Strain Genotype* [parental strain] Reference
or source
S. Typhimurium
UK-1
%3761 wild type [62]
%9833 ArecA62 [y3761] This study
%9070 ArecF126 [33761] This study
%9072 ArecJ1315 [x3761] This study
%9081 ArecJ1315 ArecF126 [9072] This study
%9931 cysG494:(5'tet-kan-3'tet) [x3761] This study
%9932 ArecF126 cysG494:(5'tet-kan-3'tet) [x9070]  This study
19933 Arec)1315 cysG494:(5'tet-kan-3'tet) [x9072] This study
19934 ArecA62 cysG494:(5'tet-kan-3'tet) [x9833]  This study
%9935 cysG493:(5'tet-kan) [x3761] This study
%9936 ArecF126 cysG493:(5'tet-kan) [x9070] This study
%9937 ArecJ1315 cysG493:(5'tet-kan) [x9072] This study
%9938 ArecA62 cysG493:(5'tet-kan) [ 9833] This study
%9939 ArecF126 A recA62 [y 9070] This study
S. Typhi Ty2
%3769 wild type [63]
% 11053 ArecF126 [3769] This study
111134 ArecF1074 [y3769] This study
11159 ArecA62 [, 3769] This study
11194 Arec)1315 [ 3769] This study
S. Typhi ISP1820
13744 wild type D.M. Hone
11133 ArecF1074 [y 3744] This study
S. Paratyphi A
18387 Plasmid pSPAT was cured from wt This study
isolate ATCC 9281
111243 ArecA62 [ 8387] This study
x11244  DArecF126 [3,8387] This study
x 11245 ArecJ1315 [x8387] This study
E. coli K-12
EPI300 F mcrA A (mrr-hsdRMS-mcrBC) ®@80dlacZ  Epicentre
A M15 A lacX74 recAl endAl araD139 A
(ara, leu)7697 galU galK A" rpsL. nupG trfA
dhfr
%7213 thi-1 thr-1 leuB6 ginV44 fhuA21 lacY1 [55]
(MGN-617)  recAl RP4-2-Tc:MuApir AasdA4 Azhf-2:
Tn10

* kan: kanamycin resistance gene; 5'tet: 5' portion of the tetA gene together
with its promoter; 3'tet: 3’ portion of the tetA gene.

Intrachromosomal recombination deletes the kanamycin
resistance cassette and restores one intact copy of the tetA
gene (Figure 2C). Deletion of recA resulted in a 5-fold
reduced recombination frequency compared to the Rec”
strain 9931 (P < 0.01), while the recF or rec/ deletions
had no effect, indicating that RecF and Rec] are not
involved in this process (Table 4).

To examine plasmid integration, the 5’tet gene was
introduced into the S. Typhimurium chromosome at
¢ysG. The resulting strains were transformed with plas-
mid pYA4464 (3’tet) (Figure 1B). The 789 bp of
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overlapping sequence between 5’tet on the chromosome
and the 3’tet on the plasmid could result in plasmid inte-
gration into the chromosome, generating an intact tetA
gene (Figure 2B). Deletion of recA had a profound effect,
reducing the integration frequency to less than 7 x 107'°,
which was below the limits of detection in this assay (P <
0.01), indicating a strict requirement for RecA in this
process. Introduction of plasmid pKD46, which encodes
the A Red recombinase, into (9938 (ArecA) carrying
pYA4464 restored the integration frequency to the level
of the Rec” strain ¥9935. Deletion of recF reduced the
frequency of integration less than 3-fold (P < 0.01; Table
4) and the Arec] deletion had no effect.

Effect of rec deletions on the virulence of S. Typhimurium
BALB/c mice were orally inoculated with the highly viru-
lent S. Typhimurium strain 3761 and its rec mutant
derivatives. The LDsgs of 3761, x9070 (ArecF) and
%9072 (Arec]) were similar, 3.2 x 10% 6.8 x 10* and 1.5 x
10° CFU, respectively (Table 5). The LDsq of the ArecF
Arec] double mutant was approximately 100-fold higher
than 33761, at 2.2 x 10° CFU. All mice inoculated with
1.3 x 10° CFU of the ArecA mutant survived, indicating
that the LDs, was > 1.3 x 10° CFU. Two months follow-
ing the initial inoculation with the A recA mutant strain,
surviving mice were challenged with either 1.5 x 10% or
1.5 x 10° CFU of wild-type strain 33761. All mice sur-
vived the challenge, indicating that A recA mutant strain
19833 was both attenuated and immunogenic.

Discussion

We began our studies using information gathered in
E. coli as a reference point. In E. coli, recA-dependent
homologous recombination relies on the RecBCD path-
way, the RecFOR pathway (originally designated the
RecF pathway) and the RecE pathway [38]. The RecBCD
pathway is important in conjugational and transduc-
tional recombination [39], and may also be involved in
the recombination of plasmids containing one or more
Chi sites [40]. Recombination in small plasmids lacking
a Chi sequence is primarily catalyzed by the RecFOR
pathway [41]. RecF, RecO, and RecR bind to gaps of
ssDNA and displace the single-strand DNA binding pro-
teins to allow RecA to bind [42,43]. The Rec] ssDNA
exonuclease acts in concert with RecFOR to enlarge the
ssDNA region when needed. Strand exchange is then
catalyzed by RecA [44]. Because of their prominent role
in plasmid recombination in E. coli, we analyzed the
effect of mutations in recF, rec/ and recA on plasmid
recombination in Salmonella.

Attenuated S. Typhi strains have been developed as
antigen delivery vectors for human vaccine use. Due to
the host restriction phenotype of S. Typhi, preliminary
work is typically done in S. Typhimurium using mice as
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Figure 4 UV sensitivity of S. Typhimurium rec mutants. Log phase cultures of S. Typhimurium were diluted and spread on LB agar. Multiple
dilutions were exposed to 254 nm UV in a dark room at each designated dose. Then the plates were wrapped with aluminum foil and placed at
37°C overnight. Surviving fractions were calculated and shown except ArecA strains 39833 and x9833(pYA5001), for which no survivors were
recovered at any UV dose. wt: 3761; ArecF: 3,9070; Arec: x9072; ArecA(RecA™): x9833(pYAS5002); ArecF(vector): 9070(pYA5001); ArecF(Typhimurium
RecF"): x9070(pYA5005); ArecF(Typhi RecF™): %9070(pYAS5006). Survival of Rec” strains [33761, x9833(pYA5002), % 9070(pYA5005) and %9070
(pYA5006)] was significantly greater than survival of the Rec strains [x9070, 19072 and x9070(pYA5001)] at the UV doses indicated (P < 0.002; ¥).

the model system to work out attenuation and antigen
expression strategies. Recently, we have also been inves-
tigating attenuated derivatives of the host-restricted
strain S. Paratyphi A as a human vaccine vector. There-
fore, it was of interest to evaluate and compare the
effects of rec mutations in these three Salmonella sero-
vars. We selected S. Typhi strain Ty2 as exemplary of
this serovar because most of the vaccines tested in clini-
cal trials to date have been derived from this strain [45].
S. Typhi strain ISP1820 has also been evaluated in clini-
cal trials [46,47] and we therefore included it in some of
our analyses. We found that, for some DNA substrates,
the effects of ArecA and ArecF deletion mutations dif-
fered among Salmonella enterica serotypes. In particu-
lar, we found that deleting recA, recF or rec] in S. Typhi
Ty2 and deleting recF in strain ISP1820 had significant
effects (3-10 fold) on the recombination frequency of
our direct repeat substrate, pYA4463 (Table 3). No or
very limited effect (< 2 fold) was observed for our
S. Typhimurium and S. Paratyphi A strains, consistent
with results reported for E. coli indicating that recombi-
nation of this type of substrate is recA-independent [35].
In contrast, the ArecA and ArecF mutations resulted in
lower interplasmid recombination in Typhimurium and

Paratyphi A but not in Typhi strains. Deletion of rec/
led to a reduction in intraplasmid recombination fre-
quencies in S. Typhi, while no effect was seen in
S. Typhimurium. The Arec/ mutation also affected
plasmid recombination frequencies for two of the three
substrates tested in S. Paratyphi A. Taken together,
these results suggest that the recombination system in
S. Typhi, or at least in strains Ty2 and ISP1820, is not
identical to the recombination system in S. Typhimur-
ium and S. Paratyphi A.

To investigate the mechanism responsible for the
observed differences, we analyzed the genome sequences
of S. Typhimurium UK-1 (Luo, Kong, Golden and Cur-
tiss, unpublished whole genome sequence), S. Paratyphi
A (NC_006511) [48] and S. Typhi Ty2 (NC_004631)
[49]. No paralogs of the recA, recF and rec] genes were
found in the three strains. The S. Typhimurium UK-1
has RecA, RecO and RecR protein sequences identical
to Typhi Ty2, and RecF and Rec] protein sequences
with over 99% identity. Plasmids expressing Typhimur-
ium recF or Typhi recF complemented the ArecF126
mutation in Typhi, as evidenced by the UV sensitivity
profile (Figure 4) and intraplasmid recombination of
pYA4463 (Table 3). Therefore, the basis for these
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Table 3 Plasmid recombination frequency (Mean * STD, x 103)
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Strain rec deletion pYA4463° pYA4590° pPYA4464+pYA4465°©
S. Typhimurium

%3761 None 1.55 £ 0.31 240 + 0.54 2.88 + 0.85
%9833 ArecA62 1.07 + 0.24 022 + 0.07** 0.27 +£ 0.07%*
%9070 ArecF126 1.14 £ 0.15 0.52 + 0.07** 0.33 + 0.09**
%9072 ArecJ1315 187 £ 044 237 £ 021 1.10 + 0.20**
%9081 ArecJ1315 ArecF126 NAd NA 0.35 + 0.08**
%9939 ArecF126 ArecA62 NA 041 + 0.09** 0.35 + 0.08**
%9833(pYA5002) ArecA62 (RecA™) NA 250 + 042 NA
%9070(pYA5005) ArecF126 (RecF") NA 200 + 0.24 NA

S. Typhi Ty2

%3769 None 469 + 0.26 1159 + 261 420 + 144
x11159 ArecA62 132 + 0.27% 0.60 + 0.19%* 337 £ 096
%11053 ArecF126 051 + 0.06** 0.57 + 0.09** 6.19 + 2.71
x 11134 ArecF1074 045 + 0.05* 052 + 0.17%* 16.28 + 2.64**
x 11194 ArecJ1315 169 + 0.26%* 488 + 1.56** 231 £ 090
% 11053(pYA5005) ArecF126 (RecF") 252 +0.18 NA NA

% 11053(pYA5006) ArecF126 (RecF") 1.71 + 0.68 NA NA
%11159(pYA5002) ArecA62 (RecA™) NA 14.35 + 244 NA

% 11053(pYA5006) ArecF126 (RecF™) NA 2.86 + 0.59 NA

S. Typhi ISP1820

%3744 None 493 + 067 1310 + 1.23 422 + 025
x11133 ArecF1074 0.65 + 0.26** 0.71 + 0.06** 538 £ 0.58
S. Paratyphi A

%8387 None 270 + 039 332 + 061 1.03 £ 0.15
x11243 ArecA62 191 + 0.69** 0.55 + 0.20** 0.13 + 0.03**
x 11244 ArecF126 5.00 £ 0.70 1.16 + 0.21%* 0.34 + 0.04**
% 11245 ArecJ1315 256 £ 041 1.83 + 0.99** 064 + 0.15**

“Intraplasmid recombination without intervening sequence (5'tet-3'tet).

PIntraplasmid recombination with a 1041-bp intervening sequence (5'tet-kan-3'tet).

“Interplasmid recombination.
9Not assayed.
**P < 0.01, relative to the parental rec” strain.

differences are not clear and indicates that there may be
other genes or gene products involved. A more detailed
analysis of this phenomenon is under investigation.
Plasmid recombination frequencies were higher in our
Salmonella strains than those reported in E. coli. We

Table 4 Chromosome related recombination in
S. Typhimurium?

rec deletion Intrachromosomal Plasmid integration
recombination
Strain Frequency (10°)  Strain Frequency (10'6)
None %9931 6.02 + 0.38 %9935 559 £ 0.94
ArecF126 %9932 705+ 140 %9936 2.13 + 0.60**
ArecJ1315 %9933 9.18 +2.18 %9937 4.89 + 041
ArecA62 %9934 1.29 £ 0.51** %9938° <0.00071**

@Mean + STD from 3-5 assays were shown in the table.

PUpon introduction of pKD46 (30°C, 0.2% arabinose), the frequency was 6.41
+£0.85 x 10° (P = 0.425).
** P < 0,01, relative to the parental rec’ strain.

observed intra- and interplasmid recombination fre-
quencies on the order of 1 x 1072 in Rec* Salmonella,
whereas measurements made in E. coli strain AB1157
using a similar plasmid system (equivalent to our sub-
strates pYA4590 and pYA4464 + pYA4465) revealed a
basal frequency around 10-fold lower, approximately 1 x
10" for both types of substrates [26]. Interestingly, the
effect of a recF mutation in E. coli was to reduce the
recombination frequency of intra- and interplasmid
recombination approximately 30-fold, to roughly the
same frequencies we observed for S. Typhimurium
(Table 3). However, consistent with the results in E. coli,
the effects of recA, recF, and recA recF mutations were
similar, indicating that the mutations are epistatic.

RecF has been shown previously to play a role in
recombinational repair of chromosomal DNA in
response to DNA damaging agents [50], including a
major role in homologous recombination between direct
repeats in the chromosome of S. Typhimurium. In our
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Table 5 Virulence of S. Typhimurium rec mutants in
BALB/c mice (oral inoculation)

Strain rec deletion Dose (CFU) Survivor/total LDs, (CFU)
%3761 None 15 % 10° 0/4 32 % 10*
15 % 10° 1/4
15 x 10* 3/4
15x10° 4/4
%9070  ArecF126 10 x 107 0/4 6.8 x 10°
10 x 10° 1/4
10 x 10° 1/4
10 x 10* 4/4
%9072 ArecJ1315 1.0 %107 0/4 15 % 10°
10 x 10° 0/4
10 % 10° 3/4
10 x 10* 3/4
%9081 ArecJ1315 ArecF126 1.0 x 10 1/4 22 % 10°
10 x 10° 3/4
10 x 10° 4/4
10 x 10 3/4
%9833 ArecA62 13 % 10° 10/10 >13 % 107

study, we did not observe any effect of recF on intra-
chromosomal recombination, although it did have an
effect on the frequency of plasmid integration (Table 4).
This discrepancy can be explained by the fact that we
did not use DNA damaging agents in our study. These
agents lead to single stranded stretches of DNA that
represent substrates for recF (and recA). Our observa-
tion that recF did affect plasmid integration may reflect
the presence of stretches of ssDNA in the plasmid, pre-
sumably due to supercoiling effects.

To induce strong primary and memory immune
responses, Salmonella delivery vectors should be suffi-
ciently invasive and persistent to allow antigen expres-
sion in targeting organs, while maintaining a high
degree of safety. This requires the use of mutations that
attenuate the Salmonella vector without impairing its
antigen delivery ability. Many attenuating mutations
impair invasion and colonization ability. In our study,
we confirmed a previous report that recF is not required
for S. Typhimurium virulence in mice [51], indicating
that the recF mutant remains invasive and replicates
well in colonized organs. Therefore, including a ArecF
mutation in a Salmonella vaccine strain is unlikely to
affect its immunogenicity. Our results with the S. Typhi-
murium ArecA strain are consistent with two previous,
independent studies showing that recA mutations reduce
Salmonella virulence [51,52]. To evaluate the potential
effect of ArecA mutation on immunogenicity, mice
inoculated with the recA mutant were challenged with a
lethal dose of virulent wild-type S. Typhimurium. All
the challenged mice survived, indicating that a ArecA
mutant retains immunogenicity and therefore may be

Page 10 of 15

suitable for use in a vaccine. However, since it does not
affect virulence, inclusion of a ArecF mutation into a
Salmonella vector that has been attenuated by other
means to reduce the frequency of intra- and interplas-
mid recombination, may be more desirable than a
ArecA mutation. Studies are currently underway to
investigate these possibilities.

Our data show that ArecA and ArecF mutations
resulted in reduced frequencies of intraplasmid recombi-
nation in all Salmonella strains tested, which included
three serovars, when there was an intervening sequence
between the direct duplications (Table 3). Our results
also show that it is likely that deletions in recA, recF or
recJ will not be useful for reducing interplasmid recom-
bination in S. Typhi vaccine strains, since we did not
observe any reduction in interplasmid recombination
frequency. This result was disappointing, since the
majority of human trials with live Salmonella vaccines
have focused on S. Typhi. In the case of S. Typhi, it
appears that the best approach to preventing interplas-
mid recombination will be in the careful design of each
plasmid, avoiding any stretches of homology. However,
for vaccines based on S. Typhimurium or S. Paratyphi
A, introduction of a ArecF mutation into attenuated Sal-
monella vaccine strains carrying multiple plasmids is a
useful approach to reduce unwanted plasmid/plasmid or
plasmid/chromosome recombination without further
attenuating the strain or negatively influencing its
immunogenicity. The ArecA mutation had a similar or
more pronounced effect on reducing various classes of
recombination and it clearly had an effect on virulence.
We did not examine the effect of a ArecA mutation on
the immunogenicity of a vectored antigen. Based on its
effect on virulence, it may affect the immunogenicity of
the vectored antigen in some attenuation backgrounds
and therefore may not be applicable for all attenuation
strategies.

Conclusions

In this study we showed that ArecA and ArecF muta-
tions reduce intraplasmid recombination in S. Typhi-
murium, S. Typhi and S. Paratyphi while there is an
intervening sequence between the duplicated sequences.
The ArecA and ArecF mutations reduce interplasmid
recombination in S. Typhimurium and S. Paratyphi but
not in S. Typhi. The ArecF mutations also sharply
reduce intraplasmid recombination between direct
duplications in S. Typhi. Since ArecA mutation results
in an avirulent Salmonella strain, the ArecF mutation is
ideal for reducing plasmid recombination in Salmonella
delivery vectors without impairing the virulence. The
intrachromosomal recombination and plasmid integra-
tion are 2-3 orders lower than plasmid recombination,
therefore are less concerned. These information help
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develop Salmonella delivery vectors able to stably main-
tain plasmid cargoes for vaccine development and gene
therapy.

Methods

Bacterial strains and media

E. coli K-12 strain EPI300™ was used for cloning and
stable maintenance of plasmids. All Salmonella strains
used in this work were derived from Salmonella enterica
serovar Typhimurium wild-type (wt) strain %3761
(UK-1), serovar Typhi strains Ty2 and ISP1820 or sero-
var Paratyphi A strain y8387. Their origin and relevant
genotypes are presented in Table 2. Bacteria were grown
in LB broth [53].

Plasmid construction

All plasmids used in this study and their relevant char-
acteristics are presented in Table 1. Primers used for
plasmid construction are shown in Table 6. All enzymes
were obtained from New England Biolabs or Promega.

To construct plasmid pYA4463 (Figure 1 panel A), a
Xbal-Hincll fragment containing the tetA promoter and
568 bp of the 5" end of tetA, was excised from pACYC184
and ligated into Xbal-EcoRV digested pACYC184.

To generate plasmid pYA4590 (Figure 1 panel A), the
5" end of tetA gene together with its promoter was
amplified from pACYC184 with primers P1 and P2,
which contain engineered Xbal and Kpnl restriction
sites, respectively. The resulting PCR fragment was
digested with Xbal and Kpnl. The kan gene was ampli-
fied from plasmid p15A-PB2-kan, a pACYC184 deriva-
tive carrying a influenza virus PB2 gene and a kan
cassette, with primers P3 and P4, which were engineered
to contain Kpnl and BamHI sites, respectively. The
resulting PCR fragment was digested with Kpul and
BamHI. The two digested PCR fragments were ligated
into pACYC184 digested with Xbal and BamHI. The
resulting plasmid, pYA4590, contains the fetA promoter
and 891 bp of the 5 end of tetA, a 1041-bp fragment
encoding kan and its promoter followed by 902 bp of
the 3’end of tetA.

To construct plasmid pYA4464 (Figure 1 panel B),
plasmid pACYC184 was digested with Xbal and EcoRV
to remove the 5" 102 bp of the tetA gene and the tetA
promoter. The cohesive ends were filled using the Kle-
now large fragment of DNA polymerase and the linear
plasmid was self-ligated to yield plasmid pYA4464.

To construct plasmid pYA4465 (Figure 1 panel B), the
5 853 bp of tetA together with its promoter was ampli-
fied from pACYC184 using primers P5 and P6, which
were engineered with Smal and BglII sites, respectively.
The resulting PCR fragment was digested with Smal
and Bgl/ll, and ligated to EcoRV and Bg/II digested
pBAD-HisA.
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Creation of rec deletions

The recA62 deletion, which deletes 1062 bp, encompass-
ing the entire recA open reading frame, introduced into
the bacterial chromosome using either A Red recombi-
nase-mediated recombination [54], or conjugation with
E. coli strain %7213(pYA4680) followed by selection/
counterselection with chloramphenicol and sucrose,
respectively [55]. The cat-sacB cassette was amplified
from plasmid pYA4373 by PCR with primers P7 and P8
to add flanking sequence. The PCR product was further
amplified with primer P9 and P10 to extend the flanking
sequence. Those two steps of amplification resulted in
the cat-sacB cassette flanked by 100 bp of recA flanking
sequences at both ends. The PCR product was purified
with QIAquick Gel Extraction Kit (QIAGEN) and elec-
troporated into Salmonella strains carrying plasmid
pKD46 to facilitate replacement of the recA gene with
the cat-sacB cassette. Electroporants containing the cat-
sacB cassette were selected on LB plates containing 12.5
ug chloramphenicol ml™. From S. Typhimurium chro-
mosome, a 500-bp sequence upstream recA gene was
amplified with primers P11 and primer P12 and a 500-
bp sequence downstream recA gene was amplified with
primers P13 and P14. Primers P12 and P13 were engi-
neered with a Kpnl site. The two PCR fragments were
digested with Kpnl, ligated and amplified with primers
P11 and P14. The resulting PCR product was digested
with isocaudarner Spel and Xbal and ligated into Xbal-
digested pRE112 to yield plasmid pYA4680. In addition,
undigested, agarose-gel purified PCR product was elec-
troporated into the cat-sacB Salmonella strains carrying
plasmid pKD46 and spread onto LB plates containing
5% sucrose to select for deletion of the cat-sacB cas-
sette. Chloramphenicol-sensitive isolates were verified as
ArecA62 by PCR using primers P15 and P16 (ArecA62:
1360 bp; wt: 2412 bp). S. Typhimurium strains ¥ 9833
and %9939 were constructed by this method (Table 2).
For construction of a ArecA62 mutant of S. Typhi, wild-
type strain Ty2 was mated with E. coli strain 37213
(pYA4680). Transconjugants were selected on LB plates
containing chloramphenicol, followed by counterselec-
tion on sucrose plates as described above. The resulting
ArecA62 strain was designated ¢ 11159. The S. Paratyphi
A strain 11243 was generated from wild-type strain
18387 using the same strategy.

The ArecF deletion strains were constructed using sui-
cide vectors pYA3886 and pYA4783. From the S. Typhi-
murium chromosome, a 397-bp sequence upstream of
the recF gene was amplified with primers P17 and P18,
which were engineered with Xbal and Kpnul sites,
respectively. The downstream 296-bp sequence (includ-
ing 78 bp from the 3" ORF of recF) was amplified with
primers P19 and P20 containing Kpnl and Sphl sites,
respectively. The two fragments were digested and
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Table 6 Primers used in this study
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Primer Sequence?® Direction®

P1 tattictagatttcagtgcaat F
p2 ttaggtaccgcgaacgccagcaagacy R
P3 taaggtaccccggaattgccagetggg F
P4 ttaggatcctecgegceacatttecccg R
P5 taacccgggaattctcatgtttgac F
P6 ttaagatctccatgccggegataat R
p7 tgcttcaacagtacgaattcactatccggticaataccaagtigcatgacgcatgectgcagggegeg F
P8 gttttgctgaatggcggcticgttttgcccgecccaccatcacctgatgattatttgttaactgttaattgte R
P9 ggcaacaattictacaaaacacttgatactgtatgagcatacagtataattgcttcaacagtacgaa F
P10 gagaaatgccaaaagggccgcataaatgcagceccttgatggtaatttaacgttttgctgaatggegge R
P11 taaactagtacgacagcagagtcctgtaccg F
P12 ttaggtacctgaagcttgtcatgcaacttggtattgaac R
P13 taaggtaccggatcctcatcaggtgatggtggggcegg F
P14 ttatctagatttgcgaacggectgttcacgt R
P15 gatagcacgtgctatcttgtge F
P16 tcgtcgcagacgcetgttcgecg R
P17 ctagtctagacgtcagtgagaatcagctcaaa F
P18 Caaggtaccatattagtacattcgtccagg R
P19 cgcggtaccagcgctgaacacgttatagacat F
P20 acatgcatgcgaatagtcacgacgatatcttt R
P21 Ctagtctagacgtcagtgagaatcagctcaaaatc F
p22 cggggtaccatcaactcataaccagggegttatc R
P23 cgactttatctttacctcgaagctggtggat F
P24 gttacggacacggagttatcggcgtgaata R
P25 ctagtctagaagattataacgcgcetggg F
P26 cggggtaccgcgtattatttaccactggtc R
p27 cgcggtacctaatcggggcegatttaacaac F
p28 acatgcatgccttcgagegatgaacgctcet R
P29 gtctataaagcgccggatgagaaacatgtc F
P30 tcgacgatcgcttcgagcgatgaacgctct R
P31 taaaagcttgaccgcgactgtctgategt F
P32 tcaagatctctcgggegeggagttgeccgge R
P33 taaagatcttgactgcagtgaaaaagcagtttgccacgat F
P34 ttagagctcagaaaggaataccggcatgaca R
P35 taaagatctcgatataagttgtaattctc F
P36 ttactgcaggegaggtgecgecggcttce R
P37 ttactgcagtccgegeacattteeccy R
P38 ggggtaatgtcgtggaccatttge F
P39 ccgceggtaatccccggcactaccg R
P40 gcgctacaaaccctgtggcaacaat F
P41 gctgtgatcgcggacagcaagaatac R
P42 ttctcaacataaaaaagtttgtgtaatactgaggatgcggcegtcacag F
P43 gttacggacacggagttatcggcgtgaata R

“The underlined sequences are enzyme sites mentioned in the text.
PForward (F) or reverse (R) primers.

inserted into Xbal-Sphl digested pRE112, resulting in
plasmid pYA3886. The corresponding deletion was
designated ArecF126. Strains 39070, 9081 and y 11244
were generated by conjugation using E. coli strain %7213
(pYA3886). Phage P22HTint mediated transduction was

used to construct Typhi strain 11053 [56]. The
ArecF126 deleted 996 bp from the 5’end of recF in sero-
vars Typhimurium and Paratyphi. The upstream flank-
ing sequence of S. Typhi is different with the other
serotypes. To construct a serovar Typhi-specific ArecF
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mutation, we constructed a new suicide vector. The recF
upstream flanking sequence in plasmid pYA3886 was
replaced with the corresponding DNA sequence (447
bp) from S. Typhi Ty2. Primers P21 and P22 were used
for this modification. The resulting plasmid was desig-
nated as pYA4783. The Typhi-specific ArecF1074 muta-
tion was introduced into S. Typhi strains ISP1820 and
Ty2 by conjugation with E. coli strain y7213(pYA4783)
to yield strains 11133 and y 11134, respectively. Primers
P23 and P24 were used to verify the recF126 and
recF1074 deletions.

Similar strategies were used to construct the A
recJ1315 deletion with suicide vector pYA3887. From
the S. Typhimurium chromosome, 330 bp upstream of
the rec/ gene was amplified with primers P25 and P26,
which were engineered with Xbal and Kpunul sites,
respectively. The 299-bp downstream sequence was
amplified with primers P27 and P28, engineered with
Kpnl and Sphl sites, respectively. The two fragments
were digested and ligated with Xbal-Sphl digested
pRE112. The resulting plasmid was designated pYA3887
and the corresponding deletion was named Arec/1315.
Strains 9072 and y 11245 were generated by conjugat-
ing the parental strains with E. coli strain 37213
(pYA3887). Strain % 11194 was constructed by phage
P22HTint mediated transduction. The ArecJ1315 muta-
tion is a deletion of the entire rec/ gene (1734 bp). Pri-
mers P29 and P30 were used to verify the recJ1315
deletion (Arec/1315: 736 bp; wt: 2461 bp).

To test chromosome-related recombination, the 5’tet
and 3’tet fragments were inserted into the cysG gene of
each S. Typhimurium strain using the A Red system.
The 460-bp fragment of the cysG gene was amplified
using primers P31 and P32 that were engineered with
Hindlll and BgIII sites, respectively. The PCR product
was digested with HindIIl and Bg/Il. A 480 bp adjoining
fragment of cysG was amplified with primers P33 and
P34. Primer P33 was engineered with Bg/Il and Pstl
sites and primer P34 was engineered with a Sacl site.
The PCR product was digested with Bg/II and Sacl. The
two digested PCR fragments were ligated into HindIII
and Sacl digested pYA4518, deleting green fluorescent
protein (GFP) gene. The resulting plasmid pYA4518-
cysG has BssHII and Pstl sites between the two cysG-
fragments. This plasmid was digested with BssHII, fol-
lowed by treatment with the Klenow large fragment.
The linear plasmid was further digested with PstI for
insertion of truncated tetA genes. The 5’tet-kan-3’tet
cassette was amplified from pYA4590 with primers P35
and P36. Primer P36 was engineered with a PstI site.
The PCR product was digested with PszI and inserted
between the cysG fragments in pYA4518-cysG to yield
plasmid pYA4689. The 5'tet-kan cassette was amplified
from pYA4590 with primers P35 and P37. Primer P37

Page 13 of 15

was engineered with a PstI site. The PCR product was
digested with PstI and inserted into treated pYA4518-
cysG to obtain plasmid pYA4690. The 5’tet-kan-3’tet
cassette, together with cysG flanking sequences, was
amplified from pYA4689 using primers P31 and P34.
The PCR product was electroporated into strains 3761
(pKD46), 19070(pKD46), ¥9072(pKD46) and %9833
(pKD46) with selection on LB plates containing 25 pg/
ml chloramphenicol. After growth at 37°C to cure plas-
mid pKD46, the resulting strains containing chromoso-
mal copies of the 5'tet-kan-3’tet cassette in cysG were
designated %9931 (Rec"), ¥9932 (ArecF), 19933 (Arec))
and %9934 (ArecA), respectively. Primers P38 and P39
were used to verify insertion in the c¢ysG gene. The
5'tet-kan cassette together with cysG flanking sequences
was amplified from pYA4690 with primers P31 and
P34. Using the same strategy, the PCR product was elec-
troporated into pKD46 transformants of strains 3761,
%9070, 19072 and %9833 to yield strains ¥9935 (Rec”),
19936 (ArecF), 39937 (Arec]) and 19938 (ArecA),
respectively, each containing the 5’tet-kan cassette
inserted into c¢ysG. These strains were transformed with
plasmid pYA4464 to test plasmid integration based on
the 789-bp of tetA sequence common to both the plas-
mid and the bacterial chromosome.

Analysis of recombination frequency

To examine plasmid recombination and plasmid integra-
tion, plasmid(s) containing truncated tetA genes were
introduced into Salmonella strains with or without rec
mutations. The resulting strains were inoculated into
3 ml of LB broth supplemented with 100 pg/ml ampicil-
lin and/or 25 pg/ml chloramphenicol, as needed. After 8
h growth at 37°C, bacteria were serially diluted in 10-
fold steps. 100 pl of the 107, 10 or 107 dilution were
spread onto LB-agar plates supplemented with 10 pg
tetracycline ml™* and 100 pl of the 10, 10 or 1077
dilutions were spread onto LB-agar plates with or with-
out the addition of antibiotics, as needed. Plates were
incubated overnight at 37°C. The ratio of tetracycline
resistant colonies to total colonies was calculated as the
recombination frequency. The average mean frequency
was calculated using the frequencies obtained from 3-10
assays for each strain. Following one-way ANOVA, the
Dunnett’s test was used to compare multiple groups
against the control. The Student’s ¢-test was used to
analyze two independent samples.

Complementation of rec mutation

Plasmid pYA5001 has a pSC101 ori, a gentamicin resis-
tance marker and a prokaryotic green fluorescent pro-
tein (GEP) gene cassette flanked by two AhdlI sites. A
linearized T vector for cloning PCR products can be
obtained by removing the GFP cassette by Ahdl
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digestion. The recA genes from S. Typhimurium and
S. Typhi were amplified using their respective chromo-
somal DNAs as template with primers P40 and P41.
The recF genes were amplified similarly using primers
P42 and P43. The forward primer P42 was engineered
to include the S. Typhimurium /pp promoter sequence
ttctcaacataaaaaagtttgtgtaatact (the -35 and -10 boxes are
underlined). Amplified DNA fragment were treated with
Taq DNA polymerase in the presence of dATP to add
3’ A overhangs. Then the treated PCR products were
cloned into pYA5001-derived T vector to yield recA
plasmids pYA5002 (Typhimurium) and pYA5004
(Typhi), and recF plasmids pYA5005 (Typhimurium)
and pYA5006 (Typhi). The recA plasmids, recF plasmids
or empty vector plasmid pYA5001 were transformed
into S. Typhimurium recA or recF mutants, respectively
for complementation studies. The recA and recF plas-
mids were also introduced into Salmonella strains carry-
ing pYA4590 or pYA4463 to complement the rec
mutation and measure the plasmid recombination
frequency.

UV sensitivity test

Quantitative UV killing curves were measured as
described previously [57]. Briefly, cells were grown in
3 ml of LB broth at 37°C with vigorous shaking to mid-
log phase. The cells were then 10 fold serially diluted in
buffered saline with gelatin (BSG) and spread on LB
agar plates. Multiple dilutions were exposed to 254 nm
UV in a dark room at each designated dose. Then the
plates were wrapped with aluminum foil and placed at
37°C overnight. The 10 dilutions were not exposed to
UV to determine the total bacterial cell numbers present
in the culture. Surviving fractions were calculated as the
CFU remaining after UV exposure/total CFU present.

Virulence determination of the rec mutants

Eight-week old BALB/c female mice were purchased
from Charles River Laboratories (Wilmington, MA).
Mice were held in quarantine for 1 week before use in
experiments. Food and water were deprived 6 h before
administration of bacteria. Each mouse was orally inocu-
lated with 20 ul of Salmonella suspended in buffered
saline with gelatin (BSG) by pipet feeding. Food and
water were returned 30 min after inoculation. All mice
were observed for a month to record mortality. The
50% lethal dose (LD5q) was determined via the Reed and
Muench method [58]. Surviving mice were challenged
orally with wild-type Salmonella y3761 two months
after the first inoculation.
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