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Abstract

Background: Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been
successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome
revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the
HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms.

Results: The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at
40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly
expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from
A. ferrooxidans are possible non-paralogous proteins, and are regulated by the ¢ factor, a common transcription
factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins
encoded by Afe_1009 and Afe_1437 have a conserved a-crystallin domain and share similar structural features
with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and
resembles a hollow spherical shell.

Conclusion: We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as
molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans
are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.
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Background
Acidithiobacillus ferrooxidans is an acidophilic, chemo-
lithoautotrophic bacterium that derives energy from the
oxidation of ferrous iron, elemental sulfur and reduced
sulfur compounds [1]. This bacterium has been success-
fully used in bioleaching to recover metals from low-
grade sulfide ores. During the bioleaching process, A.
ferrooxidans is subjected to extreme growth conditions,
such as temperature increase, pH fluctuations, nutrient
starvation, and the presence of heavy metals [2], all of
which can affect the efficiency of metal recovery.
Temperature change is one of the most common
environmental stresses that can influence essential
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bacterial processes such as energy transduction and
growth. All organisms tend to respond to environmental
stresses with a rapid transient increase in heat shock
protein (HSP) synthesis. HSPs act either as molecular
chaperones, mediating the correct folding and assembly
of proteins, or as proteases, irreversibly degrading
unfolded proteins [3]. The HSPs are usually classified
according to their molecular weights, and the small
HSPs (denoted sHSPs) include the categories HSP100,
HSP90, HSP70, HSP60, and HSP20.

The sHSPs are characterized by a molecular mass of
between 12 and 43 kDa and the presence of 80 to 100
residues that constitute the o-crystallin domain, which
is flanked by C- and N-terminals that present lower
similarity. The N-terminus is critical to a.-HSP activity
in vivo, playing a role in a-HSP oligomerization and
substrate binding [4,5]. The a-crystallin domain is
known to possess a molecular chaperone role [6], and
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the C-terminal extension maintains o.-HSP solubility,
stability, and chaperone activity [4].

The sHSPs have been extensively studied due to their
importance in protecting cellular proteins and maintain-
ing cellular viability under intensive stress conditions,
which is particularly important for extremophile micro-
organisms. Interestingly, most extremophiles posses one
or two sHSPs, and species harboring at least 3 sHSP
genes are mostly from the Archea domain. However,
three sHSP genes have been identified in the genome of
A. ferrooxidans ATCC 23270 [7].

Xiao et al. [8] showed that there could be significant
differences in the expression levels of A. ferrooxidans
ATCC 23270 sHSP genes in response to heat shock.
These findings suggest that A. ferrooxidans sHSP genes
may be controlled by different regulatory mechanisms,
which could be related to specialized functions of the
genes. In this study, the expression levels of three sHSP
genes (Afe_1009, Afe_1437, and Afe_2172) were investi-
gated in the A. ferrooxidans LR strain subjected to heat
shock. Phylogenetic analysis and comparative molecular
modeling were used to provide new insights concerning
the structure and function of the sHSPs from A.
Serrooxidans.

Methods

Bacterial strain and growth conditions

The Brazilian strain A. ferrooxidans LR [9] was grown at
30°C and 250 rpm in modified T&K liquid medium [10]
containing 0.4 g/L. K;HPO,4.3H,0, 0.4 g/L. MgSO,4.7H,0,
0.4 g/L (NH4),SO,, and 33.4 g/L FeSO,.7H,0. The pH
was adjusted to 1.8 with sulfuric acid. For the heat
shock experiments, A. ferrooxidans LR cells were grown
in T&K liquid medium until 50% oxidation of Fe** was
reached. The cells were then collected, inoculated into
100 ml of T&K liquid medium, and incubated at 40°C
and 250 rpm for 15, 30 and 60 minutes.

RNA isolation

The total RNA was isolated from three independent A.
ferrooxidans cultures, according to the procedure
described by Paulino et al. [11]. The cells were sus-
pended in a solution containing 1 mM EDTA, 100 mM
LiCl, and 100 mM Tris-HCI, at pH 7.5. The RNA frac-
tion was extracted with phenol/chloroform/isoamyl alco-
hol (25:24:1, v/v/v) containing 10% (w/v) SDS,
precipitated at -20°C with 2% (w/v) potassium acetate at
pH 5.5 and 100% (v/v) ethanol, and resuspended in
DEPC-treated water. The RNA was treated with DNase
(Invitrogen) for 1 h at 37°C, and stored at -70°C.

Quantitative real-time PCR (qRT-PCR)
The relative expressions of Afe_1009, Afe_1437, and
Afe 2172 were determined by qRT-PCR [12]. The
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cDNAs were synthesized with the ThermoScript RT-
PCR system kit (Invitrogen). The alaS gene was used as
the endogenous control [13]. The primers used in the
experiments were designed with the Primer3 program
http://frodo.wi.mit.edu/, employing the entire coding
region of the selected genes from the A. ferrooxidans
ATCC 23270 genome (Table 1). The specificity of the
primers was confirmed by PCR using genomic DNA
from A. ferrooxidans LR.

The qRT-PCR experiments were performed in tripli-
cate using a 7500 Real Time PCR System (Applied Bio-
systems), and threshold cycle (Ct) numbers were
determined using Real Time System RQ Study Software
v. 1.3.1 (Applied Biosystems). The qRT-PCR reactions
were performed in triplicate using Platinum SYBR
Green qPCR SuperMix-UDG (Invitrogen). After thermal
cycling, a dissociation (melting) curve analysis was per-
formed to ensure the specificity of the amplifications
and the absence of primer-dimer and unspecific amplifi-
cations. The relative gene expression was calculated
according to the comparative critical threshold method
(AATC) described by Livak and Schmittgen [14]. The
statistical significance of the qRT-PCR data was deter-
mined using the Student’s t-test (p-value < 0.05).

Bioinformatics analysis

The A. ferrooxidans ATCC 23270 genome (J. Craig Ven-
ter Institute - http://cmr.jcvi.org/cgi-bin/CMR/Genome)
was used to search for genes encoding sHSPs. CLUS-
TAL W was employed to align the sHSP sequences
from A. ferrooxidans with sequences found in other bac-
teria. The alignment was edited with the GeneDoc pro-
gram [15].

Prediction of the transcription start site was performed
with BPROM software (Softberry, Inc.). A widely accepted
theoretical informational approach was adopted to identify
potential 6>? sites [16,17]. Since the 6** binding site com-
prises two conserved blocks (-35 and -10), separated by a
gap of variable length, two positional weight matrices
(PWM) were generated, each one based on complemen-
tary information from the -35 and -10 binding sites. The
frequency matrix was based on a set of eighteen V. cho-
lerae 6> promoters [18], including the extended ¢>* pro-
moter, with 6 positions in the -35 element and 8 positions
in the -10 element, separated by a spacer of variable
length. Using the PWMs as a scoring function, putative
-35 and -10 regions of 6>> were searched on 200 bases
upstream from the ATG start codon of the A. ferrooxidans
sHSP genes. Each site was scored for its degree of match-
ing to the 6** -35 and -10 PWMs.

Phylogenetic analysis
A search was performed against all complete bacterial
genomes (1295 genomes on 08/03/2010), using NCBI'’s
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Table 1 Primers used in the real-time PCR experiments.
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Target gene Forward primer (5" — 3’)

Reverse primer (5 ‘— 3’)

Amplicon length (bp)

Afe_1009 CCGAAATACCTGAGGTCAA TCCCTTTCTCCTCCTTCTCC 91
Afe_1437 GTATTGAAGGCGGAGATTGC TCTTCTTCCTTGACGCCACT 118
Afe_2172 AGGTAATCTTCAGCGGCAAC TAGGGGATCTCCAGACGATG 97

microbial genome BLAST tool http://www.ncbi.nlm.nih.
gov/sutils/genom_table.cgi?organism=microb and the
protein sequences from Afe_1009, Afe_1437 and
Afe_2172 as queries. The 20 best hits for each A. fer-
rooxidans sHSP were selected to build an alignment
using MAFFT v6.717b http://align.bmr.kyushu-u.ac.jp/
mafft/software/. The alignment containing 76 aligned
residues was used to produce a maximum likelihood
(ML) tree using PhyML 3.0 software http://atgc.lirmm.
fr/phyml/. The PAM matrix procedure [19] was used to
calculate genetic distances, and statistical support for
the nodes employed aLRT statistics [20].

Molecular modeling

PSI-BLAST search against the Protein Data Bank (PDB)
using the three A. ferrooxidans sHSPs (Afe_1009,
Afe_1437, and Afe_2172) resulted only in templates with
low sequence identity (< 28%). However, fold assignment
searches using the pGenTHREADER algorithm imple-
mented in the PSIPRED server [21] returned two struc-
tures that had significant scores, both of which displayed
well-conserved a-crystallin domains. The crystal struc-
tures of HSP16.9 from wheat (WHSP16.9, PDB entry code:
1GME) [22] and HSP16.5 from Methanococcus jannaschii
(MjHSP16.5, PDB entry code: 1SHS) were used as three-
dimensional templates for molecular modeling of the a-
crystallin domain. The N-terminal region was modeled
using only the wHSP16.9 structure as template. Template
and target sequences were aligned using the mGenThrea-
der server [23], and were carefully examined to confirm
the alignment accuracy. Comparative protein modeling by
satisfaction of spatial restraints was carried out using the
program MODELLER 9v7 [24]. Fifty models were built for
each sHSP from A. ferrooxidans, and all models were eval-
uated with the DOPE potential. Models of each protein
with the lower global score were selected for explicit sol-
vent molecular dynamics (MD) simulation, using GRO-
MACS [25] to check for stability and consistency. The
overall and local quality of the final model was assessed by
VERIFY3D [26], PROSA [27] and VADAR [28]. Three-
dimensional structures were displayed, analyzed, and com-
pared using the programs COOT [29] and PyMoL [30].

Results and Discussion

The sHSPs from A. ferrooxidans

Search of the A. ferrooxidans ATCC 23270 genome (J.
Craig Venter Institute) revealed the presence of three

sHSP genes (Afe_1009, Afe_1437, and Afe_2172)
belonging to the HSP20 family. According to Han and
co-workers [31], about 71% of the microbial organisms
with completed annotated genomes possess one or two
sHSP genes, and 10% of the Archaea species have more
than three sHSP-related genes. Notably, the genome of
Bradyrhizobium japonicum (a rhizobial species) pos-
sesses 13 sHSP-related genes [32].

Laksanalamai and Robb [7] showed that the degree of
identity of the sHSPs from several extremophiles posses-
sing only one sHSP was 75%, while the identity of
sHSPs from the same organism ranged from 20 to 50%.
The low sequence identity for the A. ferrooxidans sHSPs
(Table 2) is therefore intriguing.

Afe_1009, Afe_1437, and Afe_2172 are not organized
in an operon in the A. ferrooxidans genome. Indeed,
most of the known sHSP genes are not arranged in
operons [33,34], with some exceptions such as the
Escherichia coli ibpAB operon, which contains two sHSP
genes (ibpA and ibpB) [35,36], and Bradyrhizobium
japonicum, which has sHSP genes found as independent
units and others grouped in the same operon [32].

sHSP genes expression in A. ferrooxidans LR cells
subjected to heat shock

qRT-PCR was used to determine the transcript levels of
the Afe_1009, Afe_1437, and Afe_2172 genes in A. fer-
rooxidans LR cells grown at 30°C (control) or subjected
to a 40°C heat shock for 15, 30 and 60 minutes (Figure
1). The qRT-PCR results indicate that after 60 minutes
all three sHSP genes were significantly up-regulated (p <
0.05 and fold change > 2.0), although the expression
level of Afe_2172 was considerably lower than the
expression levels of Afe 1437 and Afe_1009. The
expression level for Afe_1437 was 20-fold higher than
that observed for Afe_2172, and 11.5-fold higher than
the expression level of Afe_1009. Xiao et al. [8] observed
a similar pattern of expression for the Afe_1437 gene.
Our results for Afe_1009 and Afe 2172 were dissimilar
to those obtained by Xiao et al. [8]. However, this com-
parison may not be reliable due to differences in the A.
ferrooxidans strains as well as the heat shock experi-
ments used in the two studies.

The observed differences in the expressions of the
three A. ferrooxidans sHSP genes suggest possible regu-
latory differences. In many bacteria, the 6>* factor regu-
lates the expression of the sHSP-encoding genes in a
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Table 2 Physical and chemical parameters of the three sHSPs from A. ferrooxidans.

Gene Length Molecular weight Theoretical Identity/similarity to Identity/similarity to Identity/similarity to
(Da) pl Afe_1009 Afe_1437 Afe_2172

Afe_1009 145 16934 6.20 - 29/58% 26/47%

Afe_1437 148 16680 543 29/58% - 22/53%

Afe_2172 134 16401 560 26/47% 22/53% -

temperature-dependent manner [35]. Under stress con-
ditions, the transcription of heat shock genes is induced
following a rapid and transient increase of this factor
[37]. A bioinformatics analysis was therefore performed
in the deduced -10 and -35 regions of the three sHSP
genes. The results indicated that the three genes had
possible 6>*-dependent promoters (Figure 2). In the
work undertaken by Xiao et al. [8], 6°*-dependent pro-
moters were only found for the Afe_1437 and Afe 2172
genes. However, the disparities between the two studies
can be explained by the different in silico strategies
chosen.

In A. ferrooxidans, the -35 motif at the > binding
site appears to be more conserved than the -10 motif.
The same occurs for the V. cholerae and the E. coli 6>
consensus sequences [18]. In spite of the different
expression levels observed for the A. ferrooxidans sHSP
genes, the bioinformatics analyses did not reveal any
other type of regulation mechanism (data not shown).
However, within the 6>*-regulated genes, alternative
mechanisms of regulation are possible. Miinchbach and
co-workers [32] used subtractive two-dimensional gel
electrophoresis to identify a set of 10 sHSPs in B. japo-
nicum subjected to a temperature shift from 28°C to 43°
C. These authors observed that the amounts of the

sHSPs were quite dissimilar, suggesting the existence of
a diverse regulatory repertoire.

Phylogenetic analysis and comparative sequence analysis
The ML analysis suggested that the three sHSPs from A.
ferrooxidans are not recent paralogs (Figure 3). This
finding is in accordance with the low sequence similarity
between the sHSPs from A. ferrooxidans (Table 2 and
Figure 3). The sequence divergence among the A. fer-
rooxidans sHSPs is likely to be the consequence of hori-
zontal transfer of one or even two genes; however, the
possibility of divergent evolution [38] caused by different
selective pressures cannot be fully discarded. To gain
more insight into the origins of the A. ferrooxidans
sHSPs, the CG content of each gene was compared with
the average CG content of A. ferrooxidans coding-genes
(~59% of CG). The CG contents of Afe_1437 (46.53%)
and Afe_1009 (47.71%) were statistically different from
the average A. ferrooxidans CG content (p < 0.01; x* =
11.7766 and x> = 9.4510, respectively), while for
Afe_2172 (58.76%) there was no significant difference
(x* = 0.1025). These findings suggest that Afe_1437 and
Afe 1009 could be inherited horizontally by A. ferrooxi-
dans. Interestingly, the closely related species A. caldus
from the same genus has only one sHSP gene, which is
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Figure 1 Expression of the shsp genes from A. ferrooxidans LR. Expression of the genes located at loci Afe_1009, Afe_1437, and Afe_2172 in
A. ferrooxidans LR cells submitted to heat shock (40°C) at different times (15, 30, and 60 min). The expression values, obtained by Real time PCR,
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AFE_1009:
35

v

AFE_1437:
-35

AFE 2172:
-35

v

GGGGaT

(7.3 bits)
TGCGGGAATCCATTGCTATAATGAAATGGACTGGCGTITGAGATTCAACA

GCGCAGCGCCAGGCCTTGCCGGACAGAACGCGGGCGATCCTGCAAGGTG

AGGGCCCCGTCCCGCATCATTCAGGAGCAATAAC

(7.3 bits)
ACTCGTACCCATAACGTTGCATGCCAGAGTCCAGGCGTACAGTCGCTTG

GCTGGCGTCCTATTGATGCCCGTGAAGGAGGTGTAAA@

(5.4 bits)
CCCGGCGTCAGCCTGGTTGTCGCCGCCAGGCTGGAGAGGTATAGCCGCA

AAAATACGCTACAATATTGGGACGTCATGGACGCCGATCAGGGGGAGTG

Figure 2 Nucleotide sequences of the 5’-upstream regions of the three genes, Afe_1009, Afe_1437, and Afe_2172, which encode
sHSPs in A. ferrooxidans. Transcription start sites predicted by the BPROM program and promoter sequences recognized by the o> factor are
indicated by black triangles and by shadowed-bold letters, respectively. The first codon of the coding sequence is indicated by boxed letters.
The total information content of the 62 boxes (-35 and -10) is shown in bits.

-10 (3.8 bits)

Met

-10 (3.4 bits) ¥

Met

-10 (4.5 bits)

the possible ortholog of A. ferrooxidans Afe_1437. Con-
sidering the hypothesis of horizontal transfer origins of
Afe_ 1437 and Afe_1009, it is likely that A. caldus has
lost the ortholog of Afe_2172 (putative original sHSP)
and maintained the ortholog of Afe_1437. In this sce-
nario, the lateral transference that originated Afe_1437
occurred prior to the divergence between these two
species.

Figure 4 shows the alignment of the amino acid
sequences of the three sHSPs from A. ferrooxidans with
other sHSP sequences, including sequences from the
gamma-proteobacteria subdivision. As shown in Figure
4, the sHSPs from A. ferrooxidans harbor the well-con-
served a-crystallin domain and all elements considered
essential for their oligomerization, and therefore for
their chaperone activity. However, the Afe_2172 protein
has a very short C-terminus that is rarely observed in
sHSPs from other bacteria. The only other exception is
a sHSP from Bordetella avium, a bacterium that causes
an upper respiratory tract disease in avian species (Fig-
ure 4). This feature can either decrease their ability to
oligomerize or modulate their chaperone activity.

Moreover, the C-terminal region of sHSPs from some
bacteria presents highly conserved cysteine residues.
These residues have been proposed to enable the sHSPs
to sense changes under oxidizing conditions of the
environment, and to translate these changes into differ-
ences in protein conformation and chaperone activity
[39]. Also, in some plant species, a conserved methio-
nine-rich sequence at the N-terminal region has been
proposed to offer a redox control of chaperone-like
activity and dynamics of the oligomeric structure [40].
However, these conserved cysteine residues at the C-ter-
minus, as well as the conserved methionine-rich motif
at the N-terminus, were not found in the sHSPs phylo-
genetically related to A. ferrooxidans (Figure 4), which
suggests an absence of such control in the sHSPs
belonging to the gamma-proteobacteria subdivision.

The N-terminal region showed no significant sequence
similarity to other sHSPs with well-defined chaperone
activity (groups C and D), but secondary structure pre-
diction tools indicated that all of the sequences analyzed
had the propensity to form the a-helical structures that
are considered key elements for substrate binding and
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Figure 3 Inferred phylogenetic relationships among the A. ferrooxidans and closely related bacterial sHSPs. The 20 closest related
bacterial protein sequences to each A. ferrooxidans sHSP were retrieved by a BLAST search against 1295 completed bacteria genomes (see
Methods section). The topology was obtained by ML using 76 aligned amino acids residues. Distances were calculated by PAM matrix and the
statistical confidence of the nodes was calculated by alRT test. Branches with aLRT values lower than 50% were collapsed. GeneBank accession
numbers are shown in front of the species name.




Ribeiro et al. BMIC Microbiology 2011, 11:259
http://www.biomedcentral.com/1471-2180/11/259

Page 7 of 9

N-terminal region

a-crystallin domain

10 X 20 30 . 40 50
- -MA- -NEVS- - -RPVVKSVRQ- VEP- LEN- -
ALMK - - - WEP- LRE- -

1437_A_femooidans
A [ 1009_A_ferrooxidans
2172 A_ferooxidans

[ A_borkumensis_(110834636)
Synechococous_sp_(36608110)
D_psychraphita_51245718)
H_chejuensis_{83630996)

B | 7 denitificans_(7s056583
N_multifarmis_(82702885)
£_phytofirmans_ (187920403
R_ferrireducens_(80000329)

b B avium (187478782)

[ M_jannaschii_(15668460)
P_furiosus._(T363824)
M_tuberculosis_(15607392)

C | A_tumetaciens_(159786472)

L_plantarum_{28377077)

B_breve (119434085

M_santhus_(61677253)

1bpB_E_cali_(117625962)

IbpA_E_coli_(117625963)

IbpA_K_pneumoniae_(152972585) - - -

IbpE_K_pneumoniae_(152072504) -

D | W capsuais_smdo19

IpA_P_aeruginosa_(15600660)

P_putida_(167032523)

L v cholerae, (15640050}

E [ T_asstivum_(1GME)

MT | FPRSRRN |

-LSPLYRS
-LSPLYRS- -
-LSPLLRGQ
- AEPVATR
S.LAPLERH
-LAPLFRH
-FTPLYRN

a-crystallin domain

LIETWWPGVF - - -
- - IDDMFDRYVMSMGWPSR -
--------- LED | MWMQA | DWMLERAERLQRRF - - - - - -
--------- SVGFDRFOELL-

- IDEIQREMNRMFDRL - - - - -
- - |IEDVFDRNIKRV - -
- -FEDILDRYNRSLQGQSRY
LTRLDPFETMVREL
- - - - LDDWFKNWGMRPF -

- FDRLHQQM= « - =« v e nm e - AALFGGNPSSIRTD-RLESAFR- - - - - QVNV-GTTDDT |EIVAFAPBIDPKOLEVS | DKG- - - -
rrrrrrrrrrrrrr GWRELLSRSSD-

LFERMFKEFFATPMT
REIQEEIDAMFDEFFSRPRL
rrrrrrrr WORWLRDFFGPAA- - - - - - -

- FERMARSFWAPLE -

- -DTMFSDLFDDPFF
-VDALFREL-
WIGFDKLANAL -
~AIGFDRLFNHL -
- - -AIGFDRLFNLL-
rrrrr WIGFDKLASAL -

-SVGFDRFNDLF-
-SVGFDRFNDLF-
-AIGFDRLLNMM-
FOP-FAD-------- LWADPFDTFRE| - - - - - - ----- WPAI SGGSSET -AAFANA- - - - - RVDW- KETPEAHVFKVDLPBYKKEEVKVEVEDG- - - N

50 % 100 110 120 130
--SPFITRQA-TQPQIA-----HIDV- LDHDDAFVLKAE | AGVDKDKLDWQVHGH - - - -
--RQELIT-AGDWSP RVDI| - SETDMEFL | KAE| PEVKKEDVKWSVDKG
FQPAPSGR -QPAWQR - - - - - PMDV- FESSGGLA I VVALPGVSPEEVQV I FSGH- - - -
- - -DAALRAD-QSNGYR- - ---PYD| IRESDGRYR | VMAMAGFARNDLD I TVQEN - - - -
- - IPRTTEAD-GFAFMP- - - - - AVEM- HDDPET | TLKLELPGLNPNDLD | QVE - -

LSDLGFAT - SEDWTP KVDI| - SETDKEF | | KAELPEVKREDVKVWTVDKG
ENGKEV | R - KADWAP --AVDI|-TETKEAFL | KAELPBVDKNHVKWAVHEG
MPTMFRSS - AGGEQP AIPIEV-QEMDMAYLWVAAELPBYVRKDAIDI - I TGN
- IKIDL-TENDMAYTWRAD| PBYKKEDVKUQVESBH - - - -

-SLTKFTHHKEETPTAGS -ALAAFPSWSLLAGEL - EETAKDVLVR | ELRGMDKDDCQI T IDGN- - - -
- - -LRETHPK - AHAWER - -WESTDAVQW I VALPRGYRPDDVVVRFOPQ
GTTMI----QS5TG|Ql - SGKGFM - | EGDQH | KW I AWLPGVMKED | | LNAVGD - - - -
WT YRRWS EPAMYEERVG - EVWR EP - FDNGDEFV|TAELPGYRKED | KVRVTED - -

- - TTDWYRPV - AGDFTP - -WKDGDDAVVRLELPGIDVDK - DVELDPGQPVS

- -ENAQRAR-51SDWP- - - - - PYD| VKTGDDRYR | Al AVAGFEQGDLDI TFQSN- -

--KTDI-NETDDQYQVKVDVPG I DKQBVKLDYRDN- - - -
TTDV-RETDKGYDVD I DMPGFKKDD INLELNNG
AAD| - TESESGLTLHLDMPBLEAKA | QWTVEKD
PYN|EKSDDMHYR I TLALABFRQEDLEIQLEGT
- -BYNVELVDEMHYRI|AIAVABFAESELEI TAQDN- - - -
- -PYNVELVDEMNHYRI|AIAVABFAESELEI TAQDN- - - -
- -PYNI|EKSDDMHYRI|TLALAGFRQEDLDIQLEGI - - - -
KVDV- | DRADEVVVRAELPG I TKDDLEVTLSED
PYNVEKHGDDEYR |V IAAAGBFQEEDLDLQVERG
PYNVEKHGDDHYR | VVAAABFQEQDLDLQVEKG
--PYNI|EQKEDMQYR| TMAVABFGDEE|DI TQQEN- -

THNAMNAA - P AN M
TQPMWRQA - PRERTP
-QNAGESQ- - - - SFP
~ENN-QSQ-SNGGYR- -
-ENN-QSQ-SNGGYP- -
-QTAGESQ- - - - SFP-

-ESAARNE-AGSSYP
- -ENSAAKHN - AQGGYR -

C-terminal region

140 s 150 )
-DSSREE- - -

160

Synechococcus_sp_(86606110) AWS | TEERRF- - EKRSED- - -

LLT I ABERPS -
TLYLSGEKRF-
GITVTELRPV-
TLEIRAKRSP-
TWY|EATWKR- - EKELER-
RLV IRBEHRD- - EHTQDA-
LLTVTGKEQE- - TASE- - -
VLS| KVQKDSFVDHEDOD
YLTVSASRSS- -
ILTYQSERKA- -

- BARADG-
-ERETSD- - -
SPAAHNT - - -
SLMITES-

B phytofrmans_{187920403)
FR_ferireducens_(80000329)
B_avium_(167474782)
A jannaschil_(15665460)
P furiasus_(7963624)
_tubsreulesis_(15607392)
C | A wmetsciens (159186472)
L_plantarum_(28377077)
B_treve_ (119434085
M_santhus_{51677253)
ibpB_E_colt_(117625952) RLSVKETPEQ- -
itbpA_E_cofi (117625963 LLVVKEAHAD- -
I6pA_K_pneumonise._(152972595) L L 1 VKGAHAA - -
D | e pneumonize aazerzssg RLVVKGT PaQ- -
M_capsulaius_(53804919) MFTLOASSQS- -
IphA_P_aeruginosa_(1560086%) VL TVSGGKRE - -
P_putida_{167032523) VLTVTBGKRE- -
\[_cholerae_(15640050) TLIVRBERKP- - -
E [ T_aestium_ 1615 VLVVSBERSR- - EKEDKN - - -

- IPYGVFDRRLQIPDGLTLG-

1437_A_ferrooxidans QWY | SEVKEE- -RRYGEFSRTVQ]

A [ 1609_A_ferrocxidans VLT |QEERKQ- - EKEEKG- -RYYGSFIRSFT|
2172_A_ferrooxidans VL IVSBQRRL- - SAELQT-

' A_borkumensis_{116834638) ELRIRGNLKT- - EDDSER- - | ARRAFERTFK|

- FRYGRFQRV | P|

D_psychrophila_(51245718) VLTICGERKQ- - EREEEG- -RYYGSFTRSFT|
H_chejuensis_(83630998) VLS |QBERKL- - EKEEGD- -RFYGAFARSFT|
B | 1 deniticans (74056883 QWT | SAEAKR - - EMAADA - -RCYGKLSRTIQ
N_multiformis_(82702885) RWS | SCETKQ- - EKEEKE- -CHOGSSYRSFT|

-RFSGQFRRV I E|
-RAYGSFQRA | P|
- IPYGQFLRRIN
IPEEEEIYRTIK
-RYFTGYRRA IR
- IRYGSFRRSFR)
- | AGRPFEHRFE|
-RHTGTLQRQYM,
-RYMGSCSRSFYVGDDVKESDIHASY -N
-RAFGTFARSFA|
- LMNQPFSLSFT|
- |AERNFERKFQ
- |AERNFERKFQ
-LVSQAFSLSFT|
-MSRGEFSRSLR]
- IAQRAFKLSFR]
- IAQRAFKLSFR|
- |AERDFERKFQ
-RSSGKFVRRER|

Figure 4 Alignment of the protein sequences of the sHSPs from A. ferrooxidans and other bacteria. Sequences were grouped as follows:
Group A, the amino acid sequences from the A. ferrooxidans sHSPs; Group B, sHSP sequences from phylogenetically related species; Group C,
sHSPs with three-dimensional structure established and with chaperone activity characterized; Group D, sHSPs with chaperone activity from
gamma-proteobacteria; Group E, the amino acid sequence from the well-characterized sHSP from Triticum aestivum.
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stabilization of the oligomeric structure. Furthermore,
the N-terminal region alone was capable of interacting
with denatured proteins [41], and its truncation reduces
the chaperone activity of sHSPs [42]. These findings
emphasize that this region contains the substrate bind-
ing site, and is therefore important for the chaperone
activity.

Structural modeling of the sHSPs from A. ferrooxidans

In silico three-dimensional models of the proteins
encoded by Afe_1009, Afe_1437, and Afe_2172 dis-
played excellent global and local stereochemical prop-
erties, with a Z-score (PROSA server) of around -3.5
and all residues lying within the allowed regions of
the Ramachandran plot. A good Z-score means that it
is within the range of scores typically found for native
proteins of similar size. RMSD analysis of the tem-
plate crystal structures and the developed models
resulted in values below 0.5 A for the main-chain
backbone of the a-crystallin domain, suggesting that
the models were suitable for structural and compara-
tive analyses.

The a-crystallin domains of the proteins encoded by
Afe 1009, Afe 1437, and Afe 2172 share similar struc-
tural features with other sHSPs from both prokaryotic
and eukaryotic organisms. This domain (residues 46-
135) shows a B-sandwich fold composed of seven [3-
strands in two sheets (Figure 5). The N-terminal region
(residues 1-45), encompassing two helical segments, was
only observed in the structure of wHSP16.9 from wheat
[22]. In the wHSP16.9 structure, the N-terminal helices
participate in the stabilization of the oligomeric struc-
ture, establishing interactions with the adjacent a-crys-
tallin domain [22]. The C-terminal extension (136-148)
displays a random coil conformation and has a critical
role in the formation of the oligomeric state. However,
different to the proteins encoded by Afe_1437 and
Afe_1009, the Afe_2172 protein has a rare shortened C-
terminus, which may prevent the formation of a stable
oligomer and could be involved in the modulation of
the protein chaperone activity. Canonically, the long
loop, which is responsible for dimerization, is fully con-
served, and the identification of functional regions by
surface-mapping of phylogenetic information, using the
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ConSurf web server [43], indicates that all residues con-
sidered essential for dimerization are fully conserved in
the three sHSPs from A. ferrooxidans.

In order to gain insights into the oligomeric state of
the proteins encoded by Afe_1437 and Afe_1009, which
possess the extended C-terminus, analysis was per-
formed of the structural determinants required for
assembling into either a dodecameric double disk
(wHSP16.9) or a spherical shell composed of 24 mono-
mers (MjHSP16.5). In both the wHSP16.9 and the
MjHSP16.5 structures, the intermolecular interactions
made by the C-terminal extension are virtually identical,
despite the fact that the C-terminus of wHSP16.9
requires two different orientations to form the oligomer.
This ability of the C-terminus to adopt two conforma-
tions resides in the amino acid segment between the
strands B 9 and B 10, which permits a hinge movement.
Analysis of the C-terminus contacts in the MjHSP16.5
structure showed that the segment between the strands
B 9 and B 10 adopts a conformation stabilized by hydro-
gen bonds between the OgGlul37 and NeGIn52 atoms,
and the carbonyl oxygen of the Glul37 and N{Lys142
atoms. Surprisingly, these contacts are not found in the
wHSP16.9 structure, due to the presence of a second
Pro residue at position 142 that enables the segment to
fold into a stable motif, generating a 6-residue segment
(KAEVKK) with high flexibility, which allows the hinge
movement. In both Afe_1437 and Afe_1009 protein
sequences, this segment does not contain a proline resi-
due at the same relative position, and the residues popu-
lating this segment have all the requirements to form a
stable motif in the same way as the MjHSP16.5 struc-
ture. Thus, based on our structural findings, we suggest
that both Afe_1437 and Afe_1009 proteins behave like
the prokaryotic sHSP from M. jannaschii, adopting a
24-molecule hollow spherical shell. However, additional
experimental data obtained using techniques that can
provide insights into hydrodynamic behavior, such as

dynamic light scattering, ultra-centrifugation, size-exclu-
sion chromatography and small angle X-ray scattering,
are required to confirm our in silico predictions.

Conclusions

In this study, we have demonstrated that the expression
level of the A. ferrooxidans Afe 1437 gene is consider-
able higher than that of the Afe_2172 gene, and that the
three sHSP genes harbor possible 6°*-dependent promo-
ters. The three sHSPs from A. ferrooxidans are not
recent paralogs, while the genes Afe 1437 and Afe_1009
can be inherited horizontally by A. ferrooxidans. This
suggests that the sHSPs encoded by Afe 1437 and
Afe_1009 are more likely to act as molecular chaperones
in the A. ferrooxidans heat shock response. These find-
ings were corroborated by molecular modeling showing
that both Afe_1437 and Afe_1009 proteins behave like
the prokaryotic sHSP from M. jannaschii, a well charac-
terized sHSP with chaperone activity.
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