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Abstract

processing, which makes this an offline measurement.

precision of ~5.4%.

quantitative time-resolved data.

Background: Online spectrophotometric measurements allow monitoring dynamic biological processes with high-
time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be
carried out offline. Integrating both types of measurement would allow analyzing biological processes more
comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the
opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density
(ODegoo) and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high
time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample

Results: Here, we propose a method to integrate growth curve data with endpoint measurements of secreted
metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible
time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time
shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. geruginosa as
endpoint measurements and we integrate these measurements with high-resolution growth curves measured by
ODgno and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution
allowed integrating rhamnolipid measurements at a ~0.4 h™' frequency with high-time resolved data measured at
a 6 h' frequency. We show how this simple method can be used in combination with mutants lacking specific
genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa
virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between
curves produces high-precision measurements of maximum specific growth rates, which were determined with a

Conclusions: Growth curve synchronization allows integration of rich time-resolved data with endpoint
measurements to produce time-resolved quantitative measurements. Such data can be valuable to unveil the
dynamic regulation of virulence in P. aeruginosa. More generally, growth curve synchronization can be applied to
many biological systems thus helping to overcome a key obstacle in dynamic regulation: the scarceness of

Background

Spectrophotometric measurements are ubiquitous for
quantitative analyses of dynamic biological processes. In
contrast, many other useful measurements require
laborious sample treatment that may include separation
or extractions, colorimetric reactions, electrophoresis as
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well as many other biochemical analyses. These latter
measurements are generally done as endpoint or offline
measurements. As opposed to the high temporal resolu-
tion of online measurements, offline measurements can-
not generally be used to monitor a dynamic process
with the same frequency. Furthermore, when the ana-
lyses require sample destruction then the offline method
can only be used for endpoint measurements. This
raises the question whether offline measurements can be
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integrated with high-resolution online measurements for
a more comprehensive examination of biological
processes.

Here, we propose a simple method to integrate cell
growth data monitored at high temporal resolution
with endpoint measurements of secreted metabolites
that require offline sample treatment. The method
takes advantage of the exponential growth of bacterial
cultures [1]. For typical cell cultures, where growth
curves are highly reproducible, the serial dilution of an
inoculum will lead to growth curves that are shifted in
time. The time-shift is the combination of a period of
cell adaptation (the “lag” phase [1]) and the time it
takes for the culture to grow to detectable values of
cell density. The total shift is longer in cultures started
from lower concentrations because it takes more cell
divisions to reach the detectable cell density. If the lag
period is independent of cell density, then the growth
curves are only shifted in time due to the differences
in initial density and growth curves can be synchro-
nized a posteriori by calculating the time-shift that
maximizes the overlap between them. Performing end-
point assays on cultures started at the same time but
with different dilutions will then allow a time series of
measurements to be reconstructed from the calculated
time-shifts.

This approach of growth curve synchronization has
several advantages over sampling a system at different
times. Firstly, the endpoint measurements can all be
performed at the same time, thereby decreasing experi-
mental variability. Secondly, efficiency will be improved
compared to processing multiple samples at different
times. Thirdly, no invasive sampling is necessary and
the method requires no constant vigilance or presence.
Finally, as we discuss throughout the paper, it allows
measuring the division rate of cells directly from optical
density with very high precision.

We exemplify the growth curve synchronization
method by analyzing rhamnolipid secretion by the bac-
terium Pseudomonas aeruginosa. P. aeruginosa is an
opportunistic human pathogen found in long-term,
often terminal, infections in cystic fibrosis patients and
various nosocomial infections occurring in immunocom-
promized patients [2-9]. Rhamnolipids are among the
predominant virulence factors of P. aeruginosa [9,10].
These glycolipid surfactants are involved in the forma-
tion and maintenance of biofilms, cytolysis of polymor-
phonuclear leukocytes (PMNs) and swarming motility
([8,11]; reviewed in [12]). Their synthesis is regulated by
quorum sensing, a mechanism for cell density-depen-
dent gene regulation. As such, rhamnolipid secretion in
P. aeruginosa is a valuable model system to investigate
how pathogenic bacteria coordinate population-wide
traits at the molecular level [13].
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The rhamnolipid quorum-sensing regulation consists
of at least two hierarchical systems governed by two dif-
ferent autoinducers [14-23]. These two systems, called
rhl and las, share a common motif. An autoinducer
synthase (Rhll and LaslI) synthesizes the autoinducer (N-
butyryl-L-homoserine lactone or C,-HSL and N-(3-oxo-
dodecanoyl)-L-homoserine lactone or 30-C;,-HSL),
which binds to its cognate transcription factor (RhIR
and LasR) that, in turn, up-regulates the autoinducer
synthase in a positive feedback. LasR controls expression
of RhIR, and thereby the las system is hierarchically
above rhl. The rhl system induces expression of rhlAB,
resulting in rhamnolipid production [24]. In spite of this
knowledge, the rhamnolipid system has puzzled micro-
biologists because it does not behave like the paradigm
of quorum sensing [13,25,26]. In either rhlI” or lasl bac-
teria, adding autoinducers to the growth media does not
induce rhamnolipid secretion from the outset of the cul-
ture, indicating there is at least one other factor regulat-
ing rhlAB expression [13].

Here we illustrate our growth curve synchronization
method by integrating high-resolution spectrophoto-
metric measurements of cell density and gene expres-
sion with endpoint rhamnolipid quantification to
produce multi-measurement time series of the latter.
We monitor cell density by optical density at 600 nm,
rhlAB expression using a GFP reporter fusion under the
control of the rhlAB promoter (P,;;45::¢fp) and secreted
rhamnose using the sulfuric acid anthrone assay [27].
We also illustrate how this simple method can be used
in combination with isogenic mutants lacking specific
genes in the rhamnolipid synthesis or quorum sensing
regulation to shed new light on the regulation of P. aer-
uginosa virulence.

Methods
All chemicals were acquired from Fisher Scientific (Wal-
tham, MA) unless specified.

Bacterial strains

The strains used in this study are listed in Table 1. We
used Pseudomonas aeruginosa PA14 as the parental
strain for all further constructions. A published GFP
reporter fusion [25] was cloned into wild-type PA14
cells (P. aeruginosa PA14 P,j4p:gfp; strain denoted as
WT). A clean rhamnolipid-deficient deletion mutant
(ArhlIA [13]) was used to construct a strain with r#/AB
under the control of the arabinose-inducible Pgap pro-
moter (P. aeruginosa PA14 ArhlA/Pgap::rhlAB; strain
denoted as IND, the inducible construct was described
in [28]) as well as a GFP reporter fusion strain (P. aeru-
ginosa PA14 ArhlA/P,j4p:gfp; strain denoted as NEG).
The quorum sensing signal negative strain (rhll’) is a
transposon insertion obtained from the PA14 non-
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Table 1 Pseudomonas aeruginosa strains used in this study
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Strain Genotype Description Reference or origin
WT PA14 P yag:gfp The wild-type background with a P,s:gfp reporter fusion [13,25]

NEG  PA14 AhlA/Ppas:gfp Same as WT but with rhamnolipid synthesis gene rhiA deleted. This study

QSN PA14 rhll /P pyag:gfp Same as WT but with a transposon knockout of rhll gene for autoinducer synthase. This study

IND PA14 ArhIA/PeapirhlAB - Strain with rhamnolipid synthesis genes rhlAB regulated by an L-arabinose inducible promoter. [13]

redundant mutant library [29]. The GFP reporter fusion
was also cloned into this strain, yielding P. aeruginosa
PA14 rhil |P,pap:gfp (strain denoted as QSN).

Media and growth conditions

Overnight starter cultures were inoculated directly from
glycerol stocks into 3 ml of LB Broth, Miller (EMD chemi-
cals, Gibbstown, NJ) and incubated for 16-18 h at 37°C in
a rotator shaker. Growth curve assays in microtiter plates
were carried out in minimal synthetic media with the fol-
lowing composition: 64 g/L of Na,HPO,.7H,0, 15 g/L of
KH,PO,, 2.5 g/L of NaCl, 1 mM of MgCl,, 0.1 mM of
CaCl,, 3 grams of carbon per liter in glycerol and 0.5
grams of nitrogen per liter in ammonium sulfate. When
necessary, media were supplemented with either 0.5% (w/
v) L-arabinose (MPBio, Solon, OH) or 5 uM N-butyryl-L-
homoserine lactone (C,-HSL; Sigma-Aldrich, St. Louis,
MO) to induce rklAB expression in IND or to activate the
quorum sensing conditions for QSN, respectively.

Microtiter plate assays

Cells from overnight cultures were washed twice in 1 x
phosphate-buffered saline (PBS). Each of the serial dilu-
tions was then diluted into minimal synthetic media at the
appropriate dilution ratio in 1.5 mL microcentrifuge tubes
(ODggp of 0.0025 for the undiluted sample and twofold
dilutions for each following sample). At the lowest densi-
ties even small numbers of bacterial cells sticking to the
walls of the tubes will introduce high variability. This pro-
blem can be avoided by systematically vortexing the bac-
teria immediately before transferring to new tubes or to
the microtiter plate where the growth will be measured.
Growth assays were conducted in clear flat-bottom BD
Falcon 96-well plates (BD Biosciences, San Jose, CA), con-
taining 8 replicates of 150 pL per sample (or 4 replicates
in the case of IND with and without C4-HSL). The plates
were incubated at 37°C in a Tecan Infinite M1000 plate
reader (Tecan US Inc., Durham, NC) set to “incubation
mode” with orbital shaking of 4 mm amplitude. Optical
density at 600 nm (ODgg) and GFP fluorescence (Aexcita-
tion = 488 nm, Aemission = 525/40 nm) were measured every
10 minutes for the duration of the assay (32 h).

Anthrone assay to quantify rhamnolipids
After each assay, the eight replicates of each sample
were pooled together in a microcentrifuge tube. The

cells were spun down at 7,000 rcf for 2 minutes. Pooling
the replicates will lead to considerable foaming because
of rhamnolipids in the supernatant. This foam contains
a significant amount of rhamnolipids and must therefore
be collected. 750 pL of the supernatant were transferred
to a new microcentrifuge tube. Rhamnolipid extraction
was then carried out twice via liquid-liquid extraction
using 750 uL of chloroform:methanol at 2:1 (v:v) each
time. When experiments had only four replicates we
used a variation of this extraction protocol, transferring
500 pL of the supernatants and extracting with 500 pL
of chloroform:methanol each time. The organic phases
of both extractions were pooled and then evaporated to
dryness in a Vacufuge Concentrator (Eppendorf, Haup-
pauge, NY) at 60°C. Each sample was subsequently re-
suspended in 100 pL of pure methanol, so that the final
rhamnolipid concentration is 7.5 x higher than in the
initial culture (or 5 x for experiments with 4 replicates).
Quadruplicate samples of 20 uL each were then pre-
pared together with quadruplicate samples of an L-
rhamnose (Indofine Chemical Company, Hillsborough,
NJ) ladder in a Thermogrid 96-well PCR plate (Denville
Scientific, Inc., Metuchen, NJ). The plate was put in iced
water and 200 pL of anthrone (Alfa Aesar, Ward Hill,
MA) solution (0.1% (w/v) in 70% (v/v) H,SO,) were
added to each sample before heating the entire plate to
80°C for 30 minutes. At this point the degree of blue-
ness indicates the amount of rhamnose in a sample. 200
uL of each sample were then transferred to a clear flat-
bottom 96-well plate and the absorbance was measured
at 630 nm. The absorbance levels were converted to
rhamnose concentration using the rhamnose calibration
values.

Computational alignment of growth curves

All growth curve analysis and plotting was carried out in
Matlab (the Mathworks, Inc., Natick, MA). An in-house
algorithm (Additional files 1 and 2, with example data
in Additional Files 3 and 4) was written for time shift
calculations, which maximizes time-series overlap
between all possible permutations of different growth
curves by minimizing the error of the median values.
The minimization routine uses the function fminsearch
from the Matlab Optimization toolbox, which is a deri-
vative-free method to search for minima of uncon-
strained multivariable functions. The time-shifts (1) of
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the different curves were then used to recreate a time
series of L-rhamnose quantifications.

Results

Mathematical model supporting the growth curve
synchronization method

The range of inoculum densities that may be used for
growth curve synchronization has both an upper and a
lower limit. While one can determine these limits
experimentally by testing whether the experiment works
over a large range of values, the factors behind these
constraints have the following straightforward theoreti-
cal explanation. The lower limit for initial cell density is
set by small number statistics. If the inoculum is too
dilute then there is a significant probability that some
wells will not receive any cells. The probability of having
empty wells can be calculated since the number of cells
in the inoculum follows a Poisson distribution. For
example, in the extreme case where an inoculum has an
average of 1 cell per replicate, the probability of having
at least one replicate among eight with zero cells is 97%.
The upper limit for inoculum density, on the other
hand, is determined by the carrying capacity of the
growth media. In order to guarantee reproducibility
between growth curves started from inocula at different
densities, the differences between the initial cell densi-
ties must be negligible compared to the carrying capa-
city yet they must not suffer from the small number
statistics.

Typical growth curves are subdivided into three
phases [1]: a lag phase, an exponential phase and a sta-
tionary phase. The exponential phase starts when cells
begin dividing at a constant rate, such that density
increase follows dX/dt = ptmaxX (Umax is called the maxi-
mum specific growth rate.) The stationary phase starts
when growth slows down as the system approaches car-
rying capacity. Decreasing growth rate can attributed to
nutrient depletion, accumulation of metabolic waste or
density-dependent growth regulation, among other
things [1,30-35]. Here, we formulate a mathematical
model assuming that growth limitation is due to nutri-
ent depletion, but the same analysis can be applied to
any other limiting factor. Without loss of generality we
use Monod’s equation [1] to model bacterial growth
based on nutrient concentration (N)

N
dX/dt = X
/ MmaxN + Ky
where K}y is the half-saturation constant. The nutrient
concentration, initially N,, decreases as a function of
cell growth and the yield (Y) such that at a time ¢ it has
the value
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X(t) — Xy

N(t)=N0— v

The maximum cell density reached (i.e. the carrying
capacity) is Xmax = Xo + Y x Np.

Growth starts to slow down as nutrient levels decrease
to levels close to the half-saturation constant, K. For
example, when N(¢) is equal to 20 x Ky, the growth rate
is theoretically ~95% of pax. Such a 5% decrease is
typically undetectable by optical density measurements
[36]. Therefore, in theory, as long as the initial cell den-
sity is Xy <<Y x 20 x Ky, variations in the inoculum
density have negligible impact on growth curve reprodu-
cibility. This therefore sets an upper limit to the inocu-
lum density.

Besides the lower and upper limits of inoculum den-
sity, another important condition for the growth curve
synchronization is that the lag phase must be indepen-
dent of inoculum concentration. We can confirm if this
is true by testing whether the time shift (t) between
growth curves starting from cell densities X; and X,
(where X, >X;) obeys the following relationship

Below, we show how we tested this condition empiri-
cally for all growth curves aligned by calculating the lin-
ear regression between t and In (X,/X}).

Application to virulence factor secretion by Pseudomonas
aeruginosa

We used high-resolution ODggo curves of wild-type P.
aeruginosa PA14 to demonstrate the growth curve syn-
chronization method. The wild-type strain will be
referred to as WT (see Table 1 for list of strains used).
Figure 1 shows 8 growth curves obtained by serial dilu-
tion before (Figure 1A) and after alignment (Figure 1B).
Although visual inspection shows the alignment was
successful, we evaluated the quality of the alignment by
plotting the time delays (1) as a function of the log of
the dilutions (Figure 2). For this case, we obtained R? =
0.996, which confirmed the alignment is appropriate
and confirms that the lag phase is independent of inocu-
lum density, which is a central requirement of our
method. Figure 1C shows GFP expression measured for
the same samples. GFP expression is under the control
of the rhlAB-promoter, making GFP an indication of the
expression of rhamnolipid synthesis genes. Figure 1D
shows the alignment of GFP expression obtained using
the time delays calculated from the original synchroniza-
tion based on ODggo. This alignment shows that gene
expression monitored by a reporter protein can be syn-
chronized using the same time-shift, without the need
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Figure 1 Alignment of growth curves and GFP expression in WT strain. A) Median growth curves constructed from 8 replicates of cultures
inoculated between 0.0025 ODgoo (dark blue) and 2 x 10° ODggo (dark red). B) Growth curve alignment for the median growth curves. C)
Median GFP expression curves, constructed from the same samples as the growth curves. D) GFP curves aligned using the time-shift calculated
from the ODgq alignment.

for a separate calculation, again supporting our theoreti-
cal model.

Figure 3A shows the average growth curve (ODgg0)
and the average rhlAB-expression curve (by way of a
GFP reporter) of WT, with their respective standard

25' 2 )
R® =0.997
20l p<0.0001 . -
L =0.29:0.02 h
15} max ]
5
10} -
5. 4
O. 4

In (X,/X)

Figure 2 Determining the reproducibility of the lag phase in WT
cells. If the mathematical assumption T = (1/tma) In (Xo/Xy) is
correct, then 1 as a function of In (X5/X;) should yield a straight line
with a slope of 1/umax T Shows a correlation to In (X,/X;) with an
R? of 0.997 (p < 0.0001) and a pmax Of 029 + 0.02 h' for WT. The
median and range over three independent experiments are plotted
as black squares and error bars.

deviations, reconstructed with data from three indepen-
dent experiments. These reconstructions show that
expression of rhamnolipid synthesis genes started only
when the culture entered stationary phase, as observed
previously in experiments with richer media [13,25]. We
then used the calculated time shifts from the growth
curve synchronizations to reconstruct time series of
rhamnolipid secretion. The two-fold serial dilution used
for preparation of the inocula produced a reconstructed
time series with one rhamnolipid measurement approxi-
mately every ~2.5 h, which corresponds to a ~0.4 h™'
frequency (Figure 3B). The reconstructed series also
revealed that secreted rhamnose levels quickly follow
the onset of GFP expression.

Next, we performed the same experiment for an iso-
genic mutant lacking the gene ri/A (strain NEG) as a
negative control (Figure 4A). As for WT, the growth
curves aligned well (R* = 0.998, Figure 5A). An average
growth curve and an average GFP expression curve
were constructed, showing that NEG cells would still
express the rhlA synthesis genes when entering the sta-
tionary phase if the gene was present (green curve in
Figure 4A). As expected, rhamnolipid secretion was
undetectable (Figure 4D).

We then used the same method for a signal-negative
mutant, QSN, both in the absence and in the presence
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of autoinducer (C4-HSL) supplied in the media. Again,

10 3 the growth curves aligned well for both conditions

- OI:)600 A (Figure 5B; R* = 0.998 and R* = 0.994, respectively).
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gray and black triangles). Importantly, although the
amount of gene expression and rhamnolipid secretion
in the presence of C4-HSL was lower than for WT

. 01 B both at the population- (Figure 2) and individual cell-
= level (as assessed by GFP divided by OD, data not
20075 )1‘ shown), the timing remained the same (Figure 4B).
% // This is consistent with previous observations that the
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o even when the medium is complemented with high
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Figure 3 Average growth, GFP expression and rhamnose secretion
in WT cells. A) Average growth of WT cells (black) with standard
deviation (gray), inoculated at 0.0025 ODgqq OVer three independent
experiments. Average GFP expression (in arbitrary units), under the
control of the PAOT rhIAB-promoter (green) with the standard
deviation (light green) constructed from the same experiments. B)
Time series of rhamnose secretion in WT from three independent
experiments (grayscale squares). The time series were constructed
using the calculated time-shifts from the respective experiments. For
each rhamnose measurement, the median is plotted with the entire
range of the measurements represented as error bars.

We then carried out experiments with an inducible
strain (IND), which expresses rilAB constitutively upon
induction with L-arabinose. The purpose of this experi-
ment was to provide a positive control showing that the
only requirement for rhamnolipid secretion is the
expression of rhlAB [24]. The growth curves for this
strain also aligned well (R* = 0.997, Figure 5C). When
IND was grown with 0.5% (w/v) L-arabinose, rhamnoli-
pid production was detected much earlier, starting
already in the exponential phase, instead of at the begin-
ning of the stationary phase (Figure 4C and 4F).

NEG QSN IND
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Figure 4 Average growth curves, GFP expression and rhamnose secretion in strains NEG, QSN and IND. A) Average growth of NEG cells
(black) with standard deviation (gray), inoculated at 0.0025 ODgqo over two independent experiments. Average GFP expression, under the
control of the PAO1 rhlIAB-promoter (green) with the standard deviation (light green) constructed from the same experiments. B) Average growth
of QSN cells in the presence of 5 uM C,-HSL (black) with standard deviation (gray), inoculated at 0.0025 ODgq Over two independent
experiments. Average GFP expression, under the control of the PAOT rhlAB-promoter (green) with the standard deviation (light green)

constructed from the same experiments. C) Average growth curve of IND cells (black) with standard deviation (gray), inoculated at 0.0025 ODgoo
over two independent experiments. NEG is not a reporter fusion strain, so there is no GFP expression. D) No rhamnose is detectable in NEG in
two independent experiments (black and gray). E) Rhamnose is undetectable in QSN in the absence of C4-HSL in two independent experiments
(black and gray squares), but is reconstituted in the presence of C4-HSL (black and gray triangles). F) Rhamnose secretion in IND in two
independent experiments (black and gray squares). The inset shows the complete range of rhamnose secretion in IND cells under our
experimental settings.
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Figure 5 Determination of the reproducibility of the lag phase in NEG, QSN and IND. For NEG, T shows a correlation to In (X/X;) with an R?
of 0.998 (p < 0.0001) and a Hmayx Of 0.28 + 0.01 h™'. The median and range over two independent experiments are plotted as squares and error
bars. For QSN in the absence of autoinducer, t shows a correlation to In (Xo/X;) with an R? of 0.998 (p < 0.0001) and @ tmay of 027 + 001 h™'. In
the presence of C4-HSL 1 shows a correlation to In (X5/X;) with an R’ of 0.994 (p < 0.0001) and a pmay Of 0.22 + 0.02 h™'. The median and range
over two independent experiments are plotted as black squares (without autoinducer) or gray triangles (with autoinducer) with their respective
error bars. For IND, T shows a correlation to In (X»/X;) with an R? of 0.997 (p < 0.0001) and a pay Of 0.27 £ 0.01 h™. The median and range over
two independent experiments are plotted as squares and error bars.

Time-shifts provide high precision measurement of
growth rate

Since the relation Tt = (1/may) In (X2/X;) governs the
time shift (1) between different growth curves, T can be
plotted as a function of In (X,/X;) yielding a straight
line with a slope of 1/py.x. This allows calculating the
maximum specific growth rate (¢,,) from the growth
curve synchronization. When performing this quantifica-
tion, we observed that WT and NEG have comparable
growth rates (Figures 3 and 5A; fmax = 0.29 + 0.02 h™*
Versus [max = 0.28 £ 0.01 hl, respectively), which was
already shown qualitatively in previous experiments with
rich media based on casamino acids and in direct com-
petition experiments [13]. QSN also showed growth
rates comparable to WT in the absence of C,-HSL (Fig-
ure 5B, squares; fimax = 0.27 + 0.01 h™'). However, when
C4-HSL was added to the media, QSN grew markedly
slower (Figure 5B, triangles; /. = 0.22 + 0.02 h'h). Cy-
HSL was solubilized in acetonitrile, but the addition of
acetonitrile without autoinducer did not affect growth
(data not shown). To the best of our knowledge, this
effect has not been observed before. The addition of
0.5% L-arabinose to the growth media of IND did not
affect their growth, as the growth rate was similar to
WT cells (Figure 5C; fmax = 0.27 + 0.01 h'h).

Discussion

We introduced the method of growth curve synchroni-
zation for the a posteriori synchronization of high-reso-
lution time series and integration of online
spectrophotometric data with endpoint measurements.
We demonstrated the method with growth curve data
from the opportunistic human pathogen Pseudomonas

aeruginosa PA14 and isogenic mutants. The quality of
the growth-curve alignments was assessed by measuring
the R*-values for the linear regression of the calculated
time-shift (t) versus the logarithm the inoculum (R? >
0.99 in all cases, Figures 3 and 5), a relationship that we
formulated based on a simple mathematical model of
exponentially growing cell cultures.

In addition to carrying out data integration, our
method provides a high-precision measurement of maxi-
mum specific growth rate. Figures 3 and 5 show the
maximum specific growth rates (Wy,,) measured from
the slope of the 1 vs. In(X,/X;). The average error of
these measurements evaluated from the regression was
5.4%. In the worst case, being QSN in the presence of
C4-HSL (Figure 5B, triangles), the error was 9.1%. This
precision is quite good for growth rates measured from
optical density, approaching the 5% error reported for a
high-precision bioluminescence-based method [36].
However, in contrast to a bioluminescence assay, our
OD-based method does not require introduction of a
constitutively expressed luciferase reporter or the use of
an expensive bioluminescence-capable reader.

Besides serving as examples of the application of the
growth curve synchronization method, the experiments
reported here help to further clarify the regulation of
rhamnolipid secretion in P. aeruginosa. The WT time
series (Figure 2A) show, as before [13,25], that rhlAB
promoter-controlled GFP was expressed at the onset of
the stationary phase. Here we complement this observa-
tion by showing for the first time that the onset of
rhamnolipid production follows the same timing as the
gene expression using the reconstructed time series of
rhamnolipid secretion (Figure 2B). This supports
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biochemical studies suggesting that expression of rhlAB
is the main step controlling the start of rhamnolipid
synthesis [24]. The strain with the reporter fusion in the
ArhlA background (NEG) showed that up-regulation of
the gene is still active and that cells would still produce
rhamnolipids if r#[A was not deleted (Figure 4A and
4D). The fact that the timing and quantity of GFP
expression for this strain (Figure 4A) resembles that of
WT expression (Figure 2A) suggests that there is no
feedback of biosurfactant synthesis on the expression of
rhlAB. Our experiments also confirmed that cells lack-
ing autoinducer synthesis (QSN) do not express rhlAB
nor produce rhamnolipids in the absence of autoinducer
(Figure 4E, black and gray squares). As expected, both
rhIAB expression and rhamnolipid secretion were recov-
ered when the autoinducer was supplied in the medium
(Figure 4B and 4E, black and gray triangles). Interest-
ingly, however, even in the presence of autoinducer in
the medium rh/AB expression and rhamnolipid secre-
tion were not constitutive but rather the delay until
entry into the stationary phase (Figure 4B and 4E, trian-
gles and [13,26,37]) that is characteristic of the wild-
type was maintained. We then confirmed that it is, in
fact, possible for P. aeruginosa to start rhamnolipid
secretion earlier in growth by using an rh/AB-inducible
strain (IND). With the level of inducer used (0.5% (w/v)
L-arabinose) IND started rhamnolipid secretion already
in the exponential phase of growth (Figure 4C and 4F).
Taken together our observations further support that
rhamnolipid secretion has additional regulation besides
quorum sensing. Such regulation was recently proposed
to be a molecular mechanism of metabolic prudence
that stabilizes swarming motility against evolutionary
‘cheaters’ [13].

Our measurements are population averages even
though systems biology is increasingly focusing on sin-
gle-cell measurements. However, there is presently no
method to measure rhamnose secretions in single cells.
Nonetheless, reconstruction of distributions of single-cell
gene expression is possible using reporter fusions either
by fluorescence microscopy [38] or flow-cytometry [39].
Such single-cell measurements can be carried out offline
and reconstructed into time series using our method of
growth curve synchronization. The colorimetric anthrone
assay used here measures the amount of rhamnose,
which is an indication of the amount of rhamnolipids.
This does not necessarily correspond linearly to the mass
of rhamnolipids secreted. The rhamnolipids secreted by
P. aeruginosa can have variable composition (reviewed in
[12]) and rhamnolipids exist both in mono- and di-L-
rhamnose forms. Methods such as thin layer chromato-
graphy, to distinguish the mono-L-rhamnose from di-L-
rhamnose rhamnolipids, or mass spectrometry [40] allow
more precise measurements. These analyses could be
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used to complement reconstructed time series and help
further characterize the regulation of rhamnolipids,
which are important virulence factors for P. aeruginosa
[9,10]. In the long term, unveiling the molecular mechan-
isms regulating the timing and quantity of rhamnolipid
secretion can lead to the rational development of new
therapies that specifically target virulent secretions to
fight P. aeruginosa infection.

Cell density in bacterial and other cell populations is
often monitored by optical density at 600 nm (ODgqy), in
spite of its inherent noisiness and limited dynamic range.
For this reason, we chose to apply our method to time
series of ODggo. We envision that any other high-resolu-
tion time series data should be useable for aligning
curves, including fluorescence or bioluminescence. The
only requirement is that the calculated time delays and
inoculum dilution must have a linear relationship for the
range of inoculum concentrations used (Figures 2 and 5).
The alignment method we used was an algorithm devel-
oped specifically for our purpose (code supplied as sup-
porting material). Nevertheless, any other algorithm that
aligns sets of growth curves and that determines conco-
mitant time delays can in principle be used. We also
tested our analysis by aligning the growth curves visually.
Although the visual alignment gave acceptable results
(not shown), an automated method using an unsuper-
vised yet robust algorithm such as the one provided here
is preferable for speed and consistency (manual align-
ment is possible through Additional File 5).

The method introduced here can potentially be
applied to many other experimental problems that have
exponentially growing cultures and where the integra-
tion of online and offline measurements is desired.
Besides the growth of P. aeruginosa and its rhamnolipid
secretion, another example is indole production by
altruistic bacteria [41]. Indole was found to be important
for antibiotic resistance of bacterial populations, but the
secreted quantities must be assessed through offline
measurements. Growth curve synchronization could be
used to quantify the timing and quantity of indole pro-
duction and help further elucidate the population
dynamics. Our method could also be extended to
include other online measurements such as pH quantifi-
cation by color change of pH indicators (e.g. phenol
red). Other endpoint measurements that can be inte-
grated include direct measurements of gene expression
(qRT-PCR or microarray analysis), quantifications of
metabolite levels or protein quantities.

Conclusions

The method of growth curve synchronization proposed
here provides a simple, inexpensive solution to integrate
rich time-resolved data with endpoint measurements. Like
other model-based data integration methods [42], our



van Ditmarsch and Xavier BMC Microbiology 2011, 11:140
http://www.biomedcentral.com/1471-2180/11/140

method aims at a major limitation in systems biology -the
scarceness of high quality time-resolved quantitative data.
In the specific case of P. aeruginosa, this method can be
used to validate and complement metabolic models. For
example, the fluxes of secreted secondary metabolites
measured for isogenic mutants can help further refine
metabolic models from whole genome reconstruction
[43,44]. Beyond P. aeruginosa, growth curve synchroniza-
tion can be a general method to help unravel regulation
dynamics in biological systems.

Additional files
General comments

In order to run the Matlab demonstration (Additional-
File3.m) place the two. csv files (AdditionalFilel.csv and
AdditionalFile2.csv) in the same folder. Inside of this lat-
ter folder both of the .m files should be saved. The
matlab code was written for Matlab R2010a with the
statistics and optimization toolboxes.

Additional material

Additional file 1: Matlab-based growth curve synchronization
algorithm. This is the main algorithm for growth curve alignment. The
script calls AdditionalFile4.m and uses functions from the statistics and
optimization toolboxes. The program draws plots of the data before
alignment, after alignment, a time series of rhamnolipid production and
the time shift versus dilution, yielding the growth rate.

Additional file 2: Matlab suite. AdditionalFile4.m is a Matlab file
implementing a suite of functions for reading, processing and plotting
growth curve data.

Additional file 3: Raw data file for growth curve synchronization.
This file contains the raw data from a typical growth curve
synchronization experiment. In this document, all the data is included,
started with the optical density measurement (called 0d600) and then
the GFP measurement (called gfp). Time is given in seconds. The first 8
samples (A1 through H1) are the blank, the second set of eight (A2
through H2) are from the culture inoculated at 0.0025 ODggo, etc. The
ninth set of eight (A9 through H9) contain the last set of data, the last
sets (A10 through H12) are empty wells. This is one of the files used by
the Matlab algorithm (AdditionalFile3.m) in order to synchronize the
growth curves.

Additional file 4: Rhamnose quantification for different time points.
This file contains an example of rhamnose quantification from the
sulfuric acid anthrone assay. The first column is from the sample
inoculated at 0.0025 ODgqp, With subsequent dilutions for the following
columns. The data is pre-processed for blank and averaged over four
replicates, as well as normalized compared to a standard ladder of
rhamnose. The first row is the average, the second row the maximal
value and the third row the minimal value. This second file allows for the
time series of rhamnolipids to be constructed.

Additional file 5: Excel-based growth curve synchronization. Excel
implementation of growth curve synchronization. Includes a spreadsheet
ReadMe that explains the procedure. The included example uses the
same data as the Matlab example.

List of abbreviations

Hmax © Maximum specific growth rate; Aeycitarion © €XCitation wavelength;
Nemission - €Mission wavelength; T timeshift; 30-C;,-HSL: N-(3-
oxododecanoyl)-L-homoserine lactone; C4-HSL: N-butyryl-L-homoserine
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lactone; GFP: green fluorescent protein; IND: strain with inducible
rhamnolipid promoter; LB: lysogeny broth; NEG: rhamnolipid-deficient strain
with GFP reporter fusion; ODgq : Optical density at 600 nm; PBS: phosphate-
buffered saline; PMN: polymorphonuclear leukocyte; rcf: relative centrifugal
force; qRT-PCR: quantitative reverse transcription polymerase chain reaction;
QSN: quorum sensing-negative strain with GFP reporter fusion; WT: wild-type
strain with GFP reporter fusion.
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