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Abstract

Background: The secreted enzyme EndoS, an endoglycosidase from Streptococcus pyogenes, hydrolyzes the N-
linked glycan of the constant region of immunoglobulin G (IgG) heavy chain and renders the antibody unable to
interact with Fc receptors and elicit effector functions. In this study we couple targeted allelic replacement
mutagenesis and heterologous expression to elucidate the contribution of EndoS to group A Streptococcus (GAS)
phagocyte resistance and pathogenicity in vitro and in vivo.

Results: Knocking out the EndoS gene in GAS M1T1 background revealed no significant differences in bacterial
survival in immune cell killing assays or in a systemic mouse model of infection. However, exogenous addition and
heterologous expression of EndoS was found to increase GAS resistance to killing by neutrophils and monocytes in

certain GAS strains may contribute to virulence.

vitro. Additionally, heterologous expression of EndoS in M49 GAS increased mouse virulence in vivo.

Conclusions: We conclude that in a highly virulent M1T1 background, EndoS has no significant impact on GAS
phagocyte resistance and pathogenicity. However, local accumulation or high levels of expression of EndoS in

Background

Group A Streptococcus (GAS, S. pyogenes) is a human-
specific pathogen producing diseases ranging from phar-
yngitis and impetigo to severe, invasive conditions such
as necrotizing fasciitis and streptococcal toxic shock
syndrome [1]. Causing an estimated 500,000 deaths
annually [2], GAS is one of the world’s most important
pathogens, reflecting its wide repertoire of virulence fac-
tors that interfere with host immune clearance mechan-
isms [3]. A hypothesized GAS immune evasion factor is
the secreted enzyme EndoS, an endoglycosidase posses-
sing a highly specific hydrolyzing activity toward the N-
linked glycan of immunoglobulin G (IgG) [4]. The IgG
heavy chain is N-glycosylated at asparagine 297 with a
complex biantennary oligosaccharide that is crucial for
the interaction with Fc gamma receptors (FcyRs) on
phagocytic cells [5-7]. Experimentally, enzymatic degly-
cosylation of murine IgG can decrease complement
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activation, binding of IgG to FcyRs on macrophages, and
antibody-mediated cytotoxicity [5].

EndoS is specific to native IgG, which is in contrast to
many related endoglycosidases that requires denatura-
tion of their glycoprotein substrates [8,9]. Furthermore,
pretreatment of IgG with recombinant EndoS
diminishes its ability to opsonize bacteria and interact
with FcyRs on leukocytes [10,11]. The activity of EndoS
on IgG heavy chain glycans is well characterized and
conserved among GAS serotypes [12]. However, a
potential role of endogenous EndoS expression by the
GAS bacterium in phagocyte resistance and virulence
has not been elucidated. We hypothesize that EndoS
contributes to GAS virulence by hydrolyzing the N-
linked glycan on IgG and thereby impairing antibody
mediated functions in the immune system. Here we
couple targeted allelic replacement mutagenesis and het-
erologous gene expression to study EndoS activity dur-
ing bacterial-host cell interaction in vitro and in vivo.
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Results

Generation of EndoS mutants and heterologous
expression

To investigate the contribution of EndoS to GAS and
host-cell interactions an allelic replacement knockout in
the M1T1 background was constructed and denoted 5448
AndoS. Heterologous expression of EndoS in a non-native
EndoS producing GAS strain, NZ131 (serotype M49), was
established by transformation of the EndoS expressing
plasmid pNdoS. Loss- and gain-of-function was confirmed
by Western immunoblot (Figure 1A) and IgG glycan
hydrolysis assays (Figure 1B) [8]. As suspected no detect-
able EndoS was identified in the supernatants of the
5448AndoS strain, and heterologous expression of EndoS
in NZ131 was successful. In addition, higher levels of
EndoS were observed in the overexpressing strain NZ131
[pPNdoS] compared to the wild-type M1 strain 5448.

Neutrophil killing assay

The phagocytic resistance of GAS with and without
EndoS contribution was investigated in a human neutro-
phil killing assay with GAS strains 5448AndoS and wild-
type 5448. Loss-of-function did not reveal significant
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difference in GAS resistance to phagocyte killing in the
M1T1 background (Figure 1C). In the same M1T1 back-
ground, exogenous recombinant EndoS, rEndoS, or PBS
was used to pretreat plasma to investigate phagocytic
resistance contribution of the enzyme itself. It was
found that rEndoS increases GAS survival in the pre-
sence of neutrophils and plasma containing GAS antibo-
dies (Figure 1D). The contribution of EndoS to GAS
virulence was also studied in the less virulent strain
NZ131 (serotype M49) in gain-of-function analysis. The
results reveal that heterologous overexpression of EndoS
in M49, NZ131[pNdoS] increased GAS resistance to
killing by human neutrophils (Figure 1E).

Monocyte killing assay

As with neutrophil killing assays, no significant differ-
ence in bacterial survival was detected in the monocytic
killing assays when comparing M1T1 GAS strain 5448
to the isogenic ndoS knockout strain (Figure 2A). Pre-
treatment of plasma with exogenous rEndoS resulted in
a significant increase in GAS resistance to killing by
monocytes (Figure 2B), as did heterologous expression
of EndoS in the less virulent strain NZ131 (Figure 2C).
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Figure 1 EndoS expression and activity, and neutrophil killing assays. (A) Western immunoblot showing EndoS expression in bacterial
supernatants. SpeB is shown as a loading control. (B) Lectin blot analysis of murine IgG incubated with bacterial supernatants or rEndoS as a
positive control. Opsonized bacterial survival in the presence of human neutrophils: (C) M1T1 GAS strain 5448 and isogenic ndoS knockout,
5448AndoS. (D) Exogenous treatment of plasma with rEndoS prior to opsonization of GAS. (E) Heterologous expression of EndoS in NZ131
(serotype M49). Error bars indicate standard deviation from the mean. Experiments were performed in triplicate. * indicates P < 0.05, *** indicates
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Figure 2 Opsonized bacterial survival in U937 monocytic cell
killing assays. (A) M1T1 GAS strain 5448 and isogenic ndoS
knockout, 5448AndoS. (B) Exogenous pretreatment of plasma with
rEndoS prior opsonization of GAS. (C) Heterologous expression of
EndoS in NZ131 (serotype M49). Error bars indicate standard
deviation from the mean. * indicates P < 0.05, ** indicates P < 0.01,
*** indicates P < 0.001, ns indicates no significant difference.

In vivo mouse model

Many major GAS virulence factors have been shown to
decrease overall virulence when knocked out and stu-
died in murine infection models [13-16]. It has also
been shown that EndoS has activity on all subclasses of
murine IgG [17]. Taken together, this led us to believe
that the contribution of EndoS to GAS virulence could
be studied in vivo. However, in this murine model of
infection GAS strain 5448AndoS showed no significant
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difference in virulence compared to wild-type 5448 (Fig-
ure 3A).

However, when we studied the less virulent GAS
strain NZ131 (serotype M49) overexpressing EndoS, it
was found that strain NZ131[pNdoS] showed increased
virulence in vivo (Figure 3B) compared to wild-type
NZ131[empty vector]. This may be a function of the
relatively high level of expression of EndoS in NZ131
[pNdoS] compared to 5448 (Figure 1A).

Discussion

A single clone of the M1T1 serotype has disseminated
globally during the last few decades to represent the
leading cause of severe, invasive GAS infections [18].
The unique virulence of the M1T1 clone has been asso-
ciated with many factors including the phage-encoded
DNAse Sdal, allowing escape from neutrophil extracel-
lular traps [13,19,20], the streptococcal inhibitor of com-
plement (SIC) protein, promoting serum and
antimicrobial peptide resistance [14,21], pro-inflamma-
tory and phagocyte resistance properties of the M1T1
protein [15,22], high level expression of the pore-form-
ing cytotoxin streptolysin O (SLO) [16], and a propen-
sity for genetic mutations in the covR/S regulatory locus
promoting hypervirulence [23,24]. There exist many
inherent limitations of modeling a secreted bacterial
virulence factor in vitro and of the mouse as a surrogate
host for GAS infection studies. However, our studies do
strongly suggest that the endogenous expression of
EndoS may be redundant or dispensable for M1T1 GAS
phagocyte resistance and pathogenicity, since targeted
mutation of the other factors described above do yield
clear attenuation of virulence phenotypes in similar in
vitro and in vivo assay systems.

Conversely, pretreatment of plasma containing antibo-
dies against GAS with recombinant EndoS reduced
opsonphagocytic killing of GAS, and heterologous over-
expression of EndoS in a less virulent M49 GAS strain
conferred increased phagocyte resistance and increased
lethality in the mouse infection model. These results
suggest that high level expression or local accumulation
of EndoS in tissues could contribute to virulence in cer-
tain GAS strain backgrounds or infection scenarios, a
subject that could merit future analysis in larger clinical
or molecular epidemiologic surveys.

EndoS is highly conserved among GAS serotypes and
can also be found in Streptococcus equi and zooepidemi-
cus [12]. Therefore, it was somewhat surprising that we
could not detect a significant contribution to GAS viru-
lence in vivo. This may be due to the limitations of the
mouse model used, and the expression levels of EndoS
during the murine infection. The expression level of this
enzyme during a human infection could have an impact
on GAS immune cell killing resistance but this remains
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to be investigated. The specificity of EndoS activity
towards IgG suggests that the enzyme may have an
important role in the pathogenesis of GAS, yet to be
discovered.

Finally, whether or not GAS can effectively deploy this
unique enzymatic activity targeted IgG N-glycosylation
to promote its own survival in the host (as is intuitively
appealing), the enzyme itself has already proven a pro-
mising lead biotherapeutic for treatment of antibody-
mediated inflammatory pathologies [17,25-29].

Conclusions

We conclude that in a highly virulent M1T1 back-
ground, EndoS has no significant impact on GAS phago-
cyte resistance and pathogenicity. However, our
overexpression experiments could indicate that local
accumulation or high levels of expression of EndoS can
contribute to virulence in certain GAS strains, or in
other infection scenarios than the systemic infection
model used in this study.

Methods

Bacterial strains and growth

GAS strain 5448 (serotype M1T1, ndoS-positive) and
GAS strain NZ131 (serotype M49, ndoS-negative) are
well-characterized and were selected for use in this
study [30,31]. Escherichia coli MC1061 was used as
cloning tool [32]. The streptococcal and E. coli strains
were propagated on Todd-Hewitt agar (THA). For selec-
tion, erythromycin (erm) was used at 5 pg/mL (5448), 2
pg/mL (NZ131) and 500 pg/mL (MC1061). GAS and its
isogenic mutant were grown in Todd-Hewitt broth
(THB (Difco, Detroit, MI)) at 37°C without shaking. For
in vitro and in vivo experiments, fresh overnight cultures
were diluted 1:10 in THB and grown to mid logarithmic
phase (ODggg = 0.4) and resuspended in PBS, or in mid-
log supernatants for neutrophil assays with NZ131. For
analysis of streptococcal supernatants, strains were

grown in C-medium (0.5% (w/v) Proteose Peptone no. 2
(Difco), 1.5% (w/v) yeast extract, 10 mM K,HPO,, 0.4
mM MgSO,, 17 mM NaCl pH 7.5) to maximize EndoS
expression.

GAS mutants

EndoS is encoded by the gene ndoS. A precise, in-frame
allelic replacement of ndoS with chloramphenicol trans-
ferase, cat, was created in M1T1 GAS strain 5448 by a
method previously described [13] and was denoted
5448AndoS. Briefly, a 798 bp fragment upstream, and
987 bp fragment downstream of ndoS was amplified
using polymerase chain reaction, PCR, using primers
ndoS-up-F-Xbal (GCATCTAGAGCTTGTCGGTCTT
GGGGTAGC), ndoS-up-R (GGTGGTATATCCAGT-
GATTTTTTTCTCCATTTGGACACTCCTTATTTTT
GGTACTAAGT C) and ndoS-dn-F (TACTGCGATG
AGTGGCAGGGCGGGGCGTAAACAAAGTAACTT
TCTTAGATAGCAACATT CAG), ndoS-dn-R-Bam
HI (GCGGATCCGTTCTTGCGCCATGACACCTCCQ)
respectively. The primers adjacent to ndoS contained 30
bp overhang of the cat gene corresponding to the 5" and
3" ends of cat, respectively. The upstream and down-
stream fragments were combined with the 650 bp cat
gene in a fusion PCR using primers ndoS-up-F-Xbal and
ndoS-dn-R-BamHI. This triple fragment was digested
using restriction enzymes Xbal and BamHI and ligated
using T4 ligase into the temperature sensitive vector
pHY304, bearing erythromycin resistance, to generate
the knockout plasmid pHY-ndoS-KO. pHY-ndoS-KO
was transformed into GAS 5448 by electroporation and
transformants were grown at the permissive temperature
of 30°C with erythromycin. Transformants were then
grown at the non-permissive temperature of 37°C with
erythromycin present to select for homologous recombi-
nation and integration of the plasmid into the genome.
Single crossovers were confirmed by PCR analysis.
Relaxation of the plasmid was carried out at 30°C with
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no antibiotic selection to allow the plasmid to reform,
outside the chromosome. Growing the bacteria at 37°C
without antibiotic pressure resulted in loss of the plas-
mid. Finally, screening for erythromycin sensitive colo-
nies was used to identify double crossover events and
allelic replacement mutants were confirmed by PCR. In
frame allelic replacement ndoS mutant, 5448AndoS, was
confirmed by multiple PCR reactions showing the inser-
tion of the cat gene and absence of the ndoS gene in
the genome. Heterologous expression of EndoS in M49
GAS strain NZ131 was established by transformation
with the EndoS expression plasmid pNdoS. ndoS was
amplified from the M1 genome using primers ndoS-F-
EcoRI (GCGAATTCATGGATAAACATTTGTTGG-
TAAAAAGAAC) and ndoS-R-BamHI (GCGGATCCT-
TATTTTTTTAGCAGCTGCCTTTTCTC), digested
with EcoRI and BamHI prior to T4-ligation into the
expression vector pDCerm, denoted pNdoS. As a con-
trol, GAS strain NZ131 was transformed with the empty
vector pDCerm to generate NZ131[empty vector].

Western blot

Supernatants from stationary phase (16 h) GAS strains
5448, 5448AndoS, NZ131[empty vector] and NZ131
[pNdoS] were precipitated with 5% final concentration
of trichloroacetic acid and separated on a 10% SDS-
PAGE gel and blotted onto a methanol activated PVDF
membrane. The membrane was blocked in 5% skimmed
milk (Difco) for 1 h and washed 3 x 10 minutes in
phosphate buffered saline, PBS (137 mM NaCl, 2.7 M
KCl, 10 mM Na,HPO,, 2 mM KH,PO,, pH 7.4). The
membrane was then incubated with polyclonal rabbit
antiserum against rEndoS at 1:2000 dilution in 0.5%
skimmed milk and incubated for 1 h at 37°C. The mem-
brane was washed as before and incubated with goat
anti-rabbit IgG conjugated with Horse radish peroxidase
(Bio-Rad), at 1:5,000 in 0.5% skimmed milk for 1 h at
37°C. After washing, the membrane was developed using
Supersignal West Pico Chemiluminescent (Thermo
Scientific, Rockford, IL) and analyzed on a Chemidoc
XRS (Bio-Rad, Hercules, CA).

Lectin blot

Supernatants from GAS strains 5448, 5448AndoS,
NZ131[empty vector] and NZ131[pNdoS] at stationary
phase (16 h) was incubated with 1 pg murine IgG
(mIgG) for 2 h at 37°C at static conditions. As a positive
control, IgG was incubated with 1 pg rEndoS. The gly-
can hydrolyzing activity was analyzed with SDS-PAGE
and lectin blot using biotinylated Lens culinaris aggluti-
nin (LCA) (Vector Laboratories, Burlingame, CA). LCA
lectin recognizes the a-1,3 mannose residue found on
the N-linked glycan on IgG. Briefly, the supernatants
and mlIgG were separated on 10% SDS-PAGE gels,
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onestained with Coomassie blue and the other blotted
onto Immobilon PVDF membranes (Millipore, Bedford,
MA). The membrane was blocked in lectin buffer (10
mM HEPES, 0.15 M NaCl, 0,1% Tween 20, 0.01 mM
MnCl,, 0.1 mM CaCl,, pH = 7.5) for 1 h. 10 pg LCA in
lectin buffer was incubated with the membrane for 1 h
at RT. The membrane was then washed for 3 x 10 min
in lectin buffer and incubated with 2 pg streptavidin
linked HRP (Vector Laboratories) for 1 h. After washing
as above the blot was developed using Supersignal West
Pico Chemiluminescent (Thermo Scientific) as described
for Western blots.

Neutrophil killing assay

Neutrophils were purified from healthy donors using
PolyMorphPrep-kit (Axis-Shield, Oslo, Norway) and
RBCs lysed with sterile H,0 as previously described [33].
Neutrophils were seeded at 2 x 10° cells/well in 96-well
microtiter plates in RPMIL.

Plasma was obtained from healthy volunteers as pre-
viously described [33]. All neutrophil and plasma donors
exhibited high serum titer (>1:20,000) against serotype
M1 and M49 GAS (Additional file 1 Table S1). GAS
strains were grown as described and opsonized for 1 h
at 37°C in 80% plasma, with or without pretreatment
using recombinant EndoS (rEndoS) under rotating con-
ditions. For pretreatment, 1 mL of plasma was incubated
with 50 pg of rEndoS or PBS (control) at 37°C for 2 h
with rotation. The bacteria were then diluted to the
desired concentration in RPMI with a final concentra-
tion of 2% plasma and added to the neutrophils at a
multiplicity of infection (MOI) of 10 bacteria per cell.
Control wells contained GAS in RPMI and 2% plasma
without neutrophils. The plate was centrifuged at 500 x
g for 10 min and incubated for 30 min at 37°C with 5%
CO, before being serially diluted in sterile H,O and tri-
plicate wells were plated on Todd-Hewitt agar (THA)
plates for enumeration. Percent survival of the bacteria
was calculated relative to control wells. Data from three
separate experiments were normalized to 5448 or
NZ131[empty vector] and combined.

Monocyte killing assay

The human monocytic cell line U937 was seeded at 5 x
10° cells/well in RPMI supplemented with 10% fetal
bovine serum (FBS) in 24-well plates. GAS was grown
and pre-opsonized in human plasma with or without
rEndoS treatment, as described above. Bacteria were
grown as described above and added to the U937 cells
at MOI = 10 and incubated at 37°C with 5% CO,. Sam-
ples were collected at 1, 2, 3 and 4 h when monocytes
were lysed with 0.025% Triton X-100 (MP Biomedicals,
Aurora, OH) and triturated vigorously. Surviving bac-
teria from triplicate wells were plated on THA for
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enumeration. Percentage of surviving bacteria was calcu-
lated relative to the initial innoculum. Data from at least
three separate experiments were normalized to 5448 or
NZ131[empty vector] and combined.

Determination of donor serum titers

Blood from healthy human donors was collected in glass
venous blood collection tubes with no additives (BD
Biosciences, San Jose, CA) and clotted at room tempera-
ture for 15 min. Blood was centrifuged at 3,200 x g for
10 min at 4°C. The serum fraction was collected and
stored at -80°C.

GAS strains NZ131 (serotype M49) and 5448 (sero-
type M1) were grown to mid-log phase in THB. Bacteria
were resuspended in PBS and heat-killed at 95°C for 10
min. Heat-killed bacteria were mixed with a final con-
centration of 0.1 M NaHCO3 pH 9.6 and 10° bacteria
per well were coated to 96-well high-bind ELISA plates
(Costar, Cambridge, MA) at 4°C overnight. Plates were
washed with PBS + 0.05% Tween (PBS-T) and blocked
with 4% BSA + 10% FBS in PBS-T for 1 h at 37°C.
Serum samples were diluted in blocking solution and
incubated for 2 h at 37°C. Plates were washed with PBS-
T and incubated with 1:5000 dilution of HRP-conju-
gated goat anti-human IgG antibody (Promega, Madi-
son, WI) for 1 h at room temperature. Plates were
washed five times with PBS-T and incubated with TMB
substrate reagent (BD OptEIA TMB Substrate Reagent
Set, BD Biosciences) at room temperature for 30 min.
The reaction was stopped with an equal volume of 0.2
N sulfuric acid, and the plate was read at 450 nm. End
point titer was determined as the dilution giving signal
above a calculation cutoff determined using a mouse
serum negative control and the calculation method
described in [34].

In vivo mouse model

To evaluate the contribution of EndoS to GAS virulence
in vivo, we utilized a murine model of systemic infec-
tion. GAS strains were grown as described and resus-
pended in PBS with 5% mucin for an inoculum of 2 x
107 cfu for WT MITI1 strain 5448 and isogenic mutant
5448AndoS, and 5 x 10® cfu for NZ131[empty vector]
and NZ131[pNdoS]. 8-10 week old female CD-1 mice (n
= 6 for 5448, n = 10 for NZ131) were infected intraperi-
toneally with GAS strains and mortality was monitored
daily for 10 days.

Statistical analysis

Cfu enumeration in neutrophil and monocyte killing
assays were statistically analyzed by unpaired Student’s
t-test. Differences were considered significant if P <0.05.
The in vivo results were evaluated with log-rank (Man-
tel-Cox) test for comparison of survival curves.
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Differences in survival were considered significant if P <
0.05. All statistical analysis was performed using Graph-
Pad Prism v.5 (GraphPad Software).

Ethical approval
Permission to collect human blood under informed con-
sent was approved by the UCSD Human Research Pro-
tections Program. All animal use and procedures were
approved by the UCSD Institutional Animal Care and
Use Committee.
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Acknowledgements and Funding

AH was supported by a Department of Employment Sciences and
Technology (Australia) International Science Linkages grant to Prof. Mark
Walker (U. Queensland) and VN. Additional support was provided by the
Swedish Research Council (projects 2005-4791 and 2010-57X-20240 to MQ),
the Foundations of Crafoord (MC), Bergvall (MC), Osterlund (MC), Wiberg
(MQ), Soéderberg (MC), Kock (MC) the Swedish Society for Medicine (MC), the
Royal Physiografic Society (MC), King Gustaf V's Memorial Fund (MC), and
Hansa Medical AB (MC). CYMO is a San Diego IRACDA Postdoctoral Fellow
supported by NIH Grant GM06852.

Author details

"Division of Infection Medicine, Department of Clinical Sciences, Lund
University, SE-221 84 Lund, Sweden. 2Departmem of Pediatrics, University of
California San Diego, 9500 Gilman Drive, Mail Code 0687, La Jolla, CA 92093,
USA. *Skaggs School of Pharmacy and Pharmaceutical Sciences, University of
California San Diego, 9500 Gilman Drive, Mail Code 0687, La Jolla, CA 92093,
USA. “School of Biological Sciences, University of Wollongong, Wollongong,
New South Wales, Australia.

Authors’ contributions

JS participated in the design of the study, performed experiments and
drafted the manuscript. MC and VN conceived of the study. CO performed
experiments. AH designed the study and performed experiments. All authors
read and approved the final manuscript.

Conflicts of interests

Patents for the in vitro and in vivo use of EndoS have been applied for by
Genovis AB and Hansa Medical AB, respectively. MC is listed as inventor on
these applications that are pending. Hansa Medical AB in part funded this
study, but had no influence on the design of study, interpretation of data,
or the final form of the manuscript. MC is a part time scientific consultant
for Hansa Medical AB.

Received: 5 February 2011 Accepted: 27 May 2011
Published: 27 May 2011

References

1. Cunningham MW: Pathogenesis of group A streptococcal infections. Clin
Microbiol Rev 2000, 13(3):470-511.

2. Carapetis JR, Steer AC, Mulholland EK, Weber M: The global burden of
group A streptococcal diseases. Lancet Infect Dis 2005, 5(11):685-694.

3. Kwinn LA, Nizet V: How group A Streptococcus circumvents host
phagocyte defenses. Future Microbiol 2007, 2:75-84.

4. Collin M, Olsén A: EndoS, a novel secreted protein from Streptococcus
pyogenes with endoglycosidase activity on human IgG. EMBO J 2001,
20(12):3046-3055.

5. Nose M, Wigzell H: Biological significance of carbohydrate chains on
monoclonal antibodies. Proc Natl Acad Sci USA 1983, 80(21):6632-6636.


http://www.biomedcentral.com/content/supplementary/1471-2180-11-120-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/10885988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16253886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16253886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17661677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17661677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11406581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11406581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6579549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6579549?dopt=Abstract

Sjogren et al. BMC Microbiology 2011, 11:120
http://www.biomedcentral.com/1471-2180/11/120

20.

21.

22.

23.

24.

25.

Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P: Structural analysis
of human IgG-Fc glycoforms reveals a correlation between glycosylation
and structural integrity. J Mol Biol 2003, 325(5):979-989.

Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA: The impact of
glycosylation on the biological function and structure of human
immunoglobulins. Annu Rev Immunol 2007, 25:21-50.

Collin M, Olsén A: Effect of SpeB and EndoS from Streptococcus pyogenes
on human immunoglobulins. Infect Immun 2001, 69(11):7187-7189.
Tarentino AL, Plummer TH Jr: Enzymatic deglycosylation of asparagine-
linked glycans: purification, properties, and specificity of
oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum.
Methods Enzymol 1994, 230:44-57.

Collin' M, Svensson MD, Sjoholm AG, Jensenius JC, Sjobring U, Olsén A:
EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-
mediated opsonophagocytosis. Infect Immun 2002, 70(12):6646-6651.
Allhorn M, Olin Al, Nimmerjahn F, Collin M: Human IgG/Fc gamma R
interactions are modulated by streptococcal IgG glycan hydrolysis. PLoS
One 2008, 3(1):e1413.

Collin M, Olsén A: Extracellular enzymes with immunomodulating
activities: variations on a theme in Streptococcus pyogenes. Infection and
Immunity 2003, 71(6):2983-2992.

Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, Feramisco J,
Nizet V: DNase expression allows the pathogen group A Streptococcus to
escape killing in neutrophil extracellular traps. Curr Biol 2006,
16(4):396-400.

Pence MA, Rooijakkers SH, Cogen AL, Cole JN, Hollands A, Gallo RL, Nizet V:
Streptococcal inhibitor of complement promotes innate immune
resistance phenotypes of invasive M1T1 group A Streptococcus. J Innate
Immun 2010.

Herwald H, Cramer H, Morgelin M, Russell W, Sollenberg U, Norrby-
Teglund A, Flodgaard H, Lindbom L, Bjérck L: M protein, a classical
bacterial virulence determinant, forms complexes with fibrinogen that
induce vascular leakage. Cell 2004, 116(3):367-379.

Miyoshi-Akiyama T, Zhao J, Kikuchi K, Kato H, Suzuki R, Endoh M,

Uchiyama T: Quantitative and qualitative comparison of virulence traits,
including murine lethality, among different M types of group A
streptococci. J Infect Dis 2003, 187(12):1876-1887.

Albert H, Collin M, Dudziak D, Ravetch JV, Nimmerjahn F: In vivo enzymatic
modulation of IgG glycosylation inhibits autoimmune disease in an IgG
subclass-dependent manner. Proc Natl Acad Sci USA 2008,
105(39):15005-15009.

Aziz RK, Kotb M: Rise and persistence of global M1T1 clone of
Streptococcus pyogenes. Emerg Infect Dis 2008, 14(10):1511-1517.

Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, Long RD,

Bailey JR, Parnell MJ, Hoe NP, Adams GG, et al: Extracellular
deoxyribonuclease made by group A Streptococcus assists pathogenesis
by enhancing evasion of the innate immune response. Proc Natl Acad Sci
USA 2005, 102(5):1679-1684.

Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK,

Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, et al: DNase
Sda1 provides selection pressure for a switch to invasive group A
streptococcal infection. Nat Med 2007, 13(8):981-985.

Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Bjorck L: SIC, a secreted
protein of Streptococcus pyogenes that inactivates antibacterial peptides.
J Biol Chem 2003, 278(19):16561-16566.

Pahlman LI, Mérgelin M, Eckert J, Johansson L, Russell W, Riesbeck K,
Soehnlein O, Lindbom L, Norrby-Teglund A, Schumann RR, et al:
Streptococcal M protein: a multipotent and powerful inducer of
inflammation. J iImmunol 2006, 177(2):1221-1228.

Sumby P, Whitney AR, Graviss EA, DelLeo FR, Musser JM: Genome-wide
analysis of group a streptococci reveals a mutation that modulates
global phenotype and disease specificity. PLoS Pathog 2006, 2(1):e5.
Maamary PG, Sanderson-Smith ML, Aziz RK, Hollands A, Cole JN, McKay FC,
McArthur JD, Kirk JK, Cork AJ, Keefe RJ, et al: Parameters governing
invasive disease propensity of non-M1 serotype group A streptococci. J
Innate Immun 2010.

Allhorn M, Briceno JG, Baudino L, Lood C, Olsson ML, Izui S, Collin M: The
IgG-specific endoglycosidase EndoS inhibits both cellular and
complement-mediated autoimmune hemolysis. Blood 2010,
115(24):5080-5088.

Page 7 of 7

26. Nandakumar KS, Collin M, Olsén A, Nimmerjahn F, Blom AM, Ravetch JV,
Holmdah! R: Endoglycosidase treatment abrogates IgG arthritogenicity:
importance of IgG glycosylation in arthritis. Eur J Immunol 2007,
37(10):2973-2982.

27. Collin M, Shannon O, Bjorck L: IgG glycan hydrolysis by a bacterial
enzyme as a therapy against autoimmune conditions. Proc Natl Acad Sci
USA 2008, 105(11):4265-4270.

28. Allhorn M, Collin M: Sugar-free antibodies - the bacterial solution to
autoimmunity? Ann N Y Acad Sci 2009, 1173:664-669.

29. van Timmeren MM, van der Veen BS, Stegeman CA, Petersen AH,
Hellmark T, Collin M, Heeringa P: IgG glycan hydrolysis attenuates ANCA-
mediated glomerulonephritis. J Am Soc Nephrol 2010, 21(7):1103-1114.

30. Chaussee MS, Ajdic D, Ferretti JJ: The rgg gene of Streptococcus pyogenes
NZ131 positively influences extracellular SPE B production. Infect Immun
1999, 67(4):1715-1722.

31, Kansal RG, McGeer A, Low DE, Norrby-Teglund A, Kotb M: Inverse relation
between disease severity and expression of the streptococcal cysteine
protease, SpeB, among clonal M1T1 isolates recovered from invasive
group A streptococcal infection cases. Infect Immun 2000,
68(11):6362-6369.

32. Casadaban MJ, Cohen SN: Analysis of gene control signals by DNA fusion
and cloning in Escherichia coli. J Mol Biol 1980, 138(2):179-207.

33, Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke |, Peschel A, Gallo RL,
Nizet V: D-alanylation of teichoic acids promotes group a streptococcus
antimicrobial peptide resistance, neutrophil survival, and epithelial cell
invasion. J Bacteriol 2005, 187(19):6719-6725.

34. Frey A Di Canzio J, Zurakowski D: A statistically defined endpoint titer
determination method for immunoassays. J Immunol Methods 1998,
221(1-2):35-41.

doi:10.1186/1471-2180-11-120

Cite this article as: Sjogren et al: Study of the IgG endoglycosidase
EndoS in group A streptococcal phagocyte resistance and virulence.
BMC Microbiology 2011 11:120.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/12527303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12527303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12527303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17029568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17029568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17029568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11598100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11598100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8139511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8139511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8139511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12438337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12438337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18183294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18183294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16488874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16488874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15016372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15016372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15016372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12792864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12792864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12792864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18815375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18815375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18815375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18826812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18826812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15668390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15668390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15668390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17632528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17632528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17632528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12621031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12621031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16818781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16818781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16446783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16446783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16446783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20357243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20357243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20357243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17899548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17899548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18332429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18332429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20448018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20448018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10085009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10085009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11035746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11035746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11035746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11035746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6997493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6997493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16166534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16166534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16166534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9894896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9894896?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Generation of EndoS mutants and heterologous expression
	Neutrophil killing assay
	Monocyte killing assay
	In vivo mouse model

	Discussion
	Conclusions
	Methods
	Bacterial strains and growth
	GAS mutants
	Western blot
	Lectin blot
	Neutrophil killing assay
	Monocyte killing assay
	Determination of donor serum titers
	In vivo mouse model
	Statistical analysis
	Ethical approval

	Acknowledgements and Funding
	Author details
	Authors' contributions
	Competing interests
	References

