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Abstract

this organism is still technically demanding.

own endogenous promoter in Tetrahymena.

Background: Epitope tagging is a powerful strategy to study the function of proteins. Although tools for C-terminal
protein tagging in the ciliated protozoan Tetrahymena thermophila have been developed, N-terminal protein tagging in

Results: In this study, we have established a Cre/loxP recombination system in Tetrahymena and have applied this
system for the N-terminal epitope tagging of Tetrahymena genes. Cre can be expressed in Tetrahymena and localizes to
the macronucleus where it induces precise recombination at two loxP sequences in direct orientation in the
Tetrahymena macronuclear chromosome. This Cre/loxP recombination can be used to remove a loxP-flanked drug-
resistance marker from an N-terminal tagging construct after it is integrated into the macronucleus.

Conclusions: The system established in this study allows us to express an N-terminal epitope tagged gene from its

Background

Epitope tagging has been widely used for the analysis of
protein localization, interaction, and function (reviewed
in [1]). It is extremely useful in studying the proteins of
the ciliated protozoan Tetrahymena thermophila because
epitope tags can be introduced efficiently into endoge-
nous chromosomal loci by homologous recombination in
this organism [2].

In many cases, a protein of interest is tagged by intro-
ducing a tag at its C-terminus [3-5] because a drug-resis-
tance marker, which must be introduced in proximity to
the tag for the establishment of transgenic strains, rarely
disturbs the gene promoter if it is inserted downstream of
a target gene; thus, the tagged protein can be expressed at
its endogenous levels. We previously established a set of
convenient modules designed for PCR- and plasmid-
based C-terminal tagging (Kataoka et al. submitted).
However, sometimes a C-terminal tag renders the protein
dysfunctional, disturbs the localization of the protein, or
interferes with the protein's interaction with other mole-
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cules. In these cases, tagging the protein at its N-termi-
nus might be advised.

There is a drawback to the N-terminal epitope tagging
strategy in general: an insertion of a drug-resistance
marker into the upstream region of a gene could disturb
its promoter activity. This possibility is especially an issue
in the Tetrahymena system because intergenic sequences
are relatively short in this organism [6]. To avoid this
problem, in previous experiments, N-terminally tagged
proteins were expressed from ectopic genome locations,
such as rDNA or B-tubulin 1 (BTU1) loci, and/or by ecto-
pic promoters at their endogenous loci [7-10]. However,
expression levels and patterns of these ectopically
expressed N-terminally tagged proteins could differ from
those of their endogenous counterparts and thus might
cause mislocalization of proteins or artificial interaction
with other molecules. Alternatively, a drug-resistance
marker can be inserted into the downstream region of a
gene for N-terminal tagging. However, in this case, the
entire coding sequence and both the upstream and the
downstream flanking sequences of the gene have to be
cloned as a single construct, which is sometimes not easy
for large genes. In addition, if homologous recombination
occurs within the coding sequence, an epitope tag at the
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N-terminus in the construct would be lost. Moreover, the
inserted selectable marker could disturb the expression of
the downstream gene.

We intended to use the Cre/loxP recombination system
to solve these problems. Cre is a recombinase from the
bacteriophage P1 that mediates intramolecular and inter-
molecular site-specific recombination between two loxP
sites [11]. A loxP site consists of two 13 bp inverted
repeats separated by an 8 bp asymmetric spacer region.
Two loxP sites in direct orientation dictate excision of the
intervening DNA between the sites leaving one loxP site
behind. This precise excision of DNA can remove a loxP-
flanked drug-resistance marker from the N-terminal tag-
ging construct after it is integrated into the macronu-
cleus, and thus allows us to introduce epitope tags to the
N-terminus of a gene of interest without disturbing its
promoter. Here, we describe the establishment of a Cre/
loxP recombination system in Tetrahymena and demon-
strate its usefulness for the N-terminal tagging of Tet-
rahymena genes.

Results

Cre-recombinase localizes to the macronucleus in
Tetrahymena

To test if Cre-recombinase can be expressed in Tetrahy-
mena, we designed an inducible expression system for
Cre. First, we constructed an expression cassette
(PMNMM3, Fig. 1A) by which we can replace the endog-
enous MTTI coding sequence with any gene of interest.
In this cassette, genes can be expressed under the control
of the MTT1 promoter, which is induced by the presence
of heavy metals such as cadmium [12]. We synthesized a
Cre-encoding gene, crel, in which the codon-usage was
optimized for Tetrahymena. An HA-tag was added to the
N-terminus of crel and the construct was inserted into
pPMNMM3 to produce pMNMM3-HA-crel (Fig. 1B).
Finally, the expression construct was excised from the
vector backbone of pMNMM3-HA-crel and introduced
into the macronucleus of the Tetrahymena B2086 strain
by homologous recombination (Fig. 1C). Cells possessing
the Cre-expression construct were selected by their resis-
tance against paromomycin because the construct con-
tains a neoS cassette, which confers resistance to this
drug in Tetrahymena cells. The neo5 cassette has a similar
structure as neo2 (Gaertig et al. 1994) but has a codon-
optimized neomycin-resistance gene (neoTet, [13])
instead of the bacteriophage-derived neo gene.

The macronucleus is polyploid and its chromosomes
randomly segregate to the daughter nuclei. By stepwise
selection with increasing amounts of paromomycin, we
intended to obtain strains in which the majority of the
endogenous MTT1 loci were replaced by the Cre-expres-
sion construct. We realized that some strains became
resistant to a much higher concentration of paromomy-
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cin (> 4 mg/mL) than other strains (~1 mg/mL). PCR
analysis revealed that the former strains did not receive
the Cre gene, probably because homologous recombina-
tion had occurred at "MTTI-5'-1" and "MTT1-5'-2" (Fig.
1D). In contrast, the latter strains contained both neo5
and the HA-crel gene, indicating that homologous
recombination had occurred at "MTT1-5-1"and "MTT1-
3"(Fig. 1C). The reason for the limited growth of HA-
Crelp-expressing cells is probably due to weak MTT1
promoter activity caused by a paromomycin-induced
stress. HA-Crelp expression suppresses cell growth (see
below), which might be the reason for the limited resis-
tance of the HA-Crelp-expressing strain to higher con-
centrations of paromomycin. We used one of the latter
HA-crel possessing strains, CRE556, for further study. In
this strain, most of the endogenous MTTI loci were
replaced with the HA-crel expression construct (Fig. 1E).
To ask if HA-Crelp can be expressed in Tetrahymena
cells, the CRE556 strain was cultured either in a nutrient-
rich (Super Proteose Peptone (SPP)) medium with or
without 1 ug/ml CdCl, or in 10 mM Tris (pH 7.5) with or
without 50 ng/ml CdCl, and HA-Crelp expression was
detected by western blotting using an anti-HA antibody.
As shown in Fig. 2A, a ~40 kDa band, which corresponds
to the predicted molecular weight of HA-Crelp (39.7
kDa), was detected only when the CRE556 strain was
treated with CdCl,. Therefore, the CRE556 strain can
express HA-Crelp in a CdCl,-dependent manner. 1 pg/
ml CdCl, in SPP medium and 50 ng/ml CdCl, in 10 mM
Tris induced a similar expression level of HA-Crelp. This
is consistent with the fact that the MTTI promoter is
activated at lower concentration in cells starved in 10
mM Tris than in those growing in SPP medium [12].
Immunofluorescence staining using an anti-HA anti-
body indicated that HA-Crelp localized to the macronu-
cleus both in the vegetative cells and conjugating cells
(Fig. 2B) after its induction by CdCl,. Importantly, when
the CRE556 strain was crossed with a wild-type strain,
HA-Crelp protein was detected in both cells of a pair
(Fig. 2B). This result indicates that either HA-Crelp pro-
tein or HA-Crelp mRNA can be transferred from the
CRE556 strain to the partner cell during conjugation.
This is not surprising because it is known that RNA and
protein is exchanged between mating pairs [14]. There-
fore, the CRE556 strain could be used to induce homolo-
gous recombination at loxP sites introduced into the
macronucleus of any cell that can mate with this strain.

Expression of Cre-recombinase suppresses the growth of
Tetrahymena

Because Cre is a nuclease, its expression might be geno-
toxic to Tetrahymena cells. We tested this possibility by
analyzing the growth of the CRE556 strain with and with-
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Figure 1 Construction of a Cre-recombinase expressing Tetrahymena strain. (A, B) Plasmid maps of pMNMM3 (A) and pMNMM3-HA-cre 1 (B). (C,
D) Two possible homologous recombination events between the MNMM3-HA-cre1 construct and the Tetrahymena MTTT genomic locus. Homolo-
gous recombination at "MTT7-5'(1)" and "MTT1-3" integrates both neo5 and the HA-crel gene (C), whereas recombination at "MTT7-5'(1)" and "MTT1-
5'(2)" integrates only the neo5 cassette into the genome (D). (E) PCR analysis of the CRE556 strain. Genomic DNA from the CRE556 strain was used to
amplify the HA-cre1-containing locus (HA-cre1) and wild-type MTT1 locus (MTTT). The positions of the primers are represented by arrowheads in (C).

out induction of HA-Crelp expression. Indeed, growth of
the CRE556 strain was significantly suppressed when the
cells were cultured in the presence of 1 pug/mL CdCl,,
whereas the same amount of CdCl, had little effect on the
growth of the wild-type strain (Fig. 2C). The growth
defect in the CRE556 strain is not due to a reduced copy
number of the MTT1I gene as expression of HA-crel from
the BTU1I locus (Supplementary Fig. S1 in Additional file
1) caused similar growth suppression in the presence of
CdCl, (Fig. 2D). These results indicate that the expression
of HA-Crelp has a negative, possibly genotoxic effect on
the growth of Tetrahymena cells. Therefore, it is neces-
sary to minimize the exposure of cells to Crelp when it is

used for Tetrahymena transgenesis. The inducible Cre
expression system aids in minimizing this toxic effect.

Cre-recombinase can induce precise recombination at loxP
sites

To test if expression of the Cre-recombinase can induce
homologous recombination at two loxP sites, we con-
structed a strain, loxP-neo4-loxP-EGFP-TWI1, in which
the neo4 cassette was flanked by two loxP sequences in
the TWII locus (Fig. 3A). CRE556 cells starved in 10 mM
Tris (pH 7.5) were pre-treated with 50 ng/mL CdCl, for
1.5 hr to induce the expression of HA-Crelp and mated
with a loxP-neo4-loxP-EGFP-TWII strain in 10 mM Tris
(pH 7.5). Then, excision of the neo4 cassette was



Busch et al. BMC Microbiology 2010, 10:191
http://www.biomedcentral.com/1471-2180/10/191

starved

A log

1 B2086
+ B2086
I CRE556
+ CRE556
| B2086
+ B2086
| CRE556
+ CRE556

Cd2+

HA-Crelp

a-Tubulin B
B HA-Creip DNA
2 hpm
(pre-induction)

5 hpm
(1.5 h post-induction)

C -

1000000

Cells per mL
£

—h— B2086 -Cd
—— B2086 +Cd

—@— CRESS6-Cd
—@— CRES56 +Cd

10 20 EJ 40 ® ]

Time (hr) after dilution

Figure 2 Expression of Cre-recombinase in Tetrahymena. (A) Ex-
pression of HA-Cre1p in the CRE556 strain is induced by the presence
of cadmium ions. B2086 (wild-type) and CRE556 cells were cultured in
the nutrient-rich 1x SPP medium (log) or in 10 mM Tris (pH 7.5)
(starved) and were treated with (+) or without (-) CdCl,. For log and
starved cells, 1 ug/mLand 50 ng/mL CdCl, were used, respectively. HA-
Crelp was detected by western blotting using an anti-HA antibody.
For the loading control, the membrane was stripped using a 2-mer-
captoethanol- and SDS-containing buffer and re-probed with anti-
body against a-tubulin. (B) HA-Cre1p localizes to the macronucleus in
Tetrahymena. CRE556 was mated with a wild-type strain and HA-Cre1p
expression was induced at 3.5 hr post-mixing (hpm) by adding 50 ng/
mL CdCl,. Cells were fixed at 2 hpm (before induction) or at 5 hpm (1.5
hr after induction) and HA-Cre1p was localized using an anti-HA anti-
body. DNA was counter-stained by DAPI. In each picture, a non-mating
(starved) cell (circled with yellow line) and a pair of mating cells (circled
with magenta line) are shown. The macro-and micronuclei are marked
with "a" and "i", respectively. (C) Expression of HA-Cre1p suppresses
growth of Tetrahymena. B2086 (wild-type) or CRE556 were diluted to
5,000 cells/mL with 1x SPP medium with or without 1 pug/mL CdCl,. At
indicated time after dilution, cells were counted to monitor cell
growth.

Page 4 of 12

observed by PCR using the primers indicated in Fig. 3A.
As shown in Fig. 3B, in addition to a ~3 kb product that
corresponds to the intact loxP-neo4-loxP-EGFP-TWI1
locus, a ~1 kb PCR product that corresponds to the locus
lacking neo4 was detected from 6 hr post-mixing (hpm)
onwards. This neo4-excised locus will be referred to as
loxP-EGFP-TWII. DNA sequencing of the shorter PCR
product confirmed that this product resulted from the
precise excision of neo4 by homologous recombination of
two loxP sites (Fig. 3C).

The Cre/loxP system can be used for N-terminal epitope
tagging

In the loxP-neo4-loxP-EGFP-TWII locus, the loxP-neo4-
loxP sequence is inserted directly before the first methio-
nine-coding codon of the EGFP-TWII fusion gene.
Therefore, EGFP-TWII can be expressed only after the
excision of the neo4 cassette by HA-Crelp. This system
allows us to express N-terminal EGFP-tagged Twilp from
the endogenous TWII promoter. Because the parental
macronucleus is eventually destroyed at the end of conju-
gation, the loxP-neo4-loxP-EGFP-TWII locus or the
neo4-excised loxP-EGFP-TWII locus is lost in the sexual
progeny. Therefore, to use the loxP-EGFP-TWII locus for
analyses of EGFP-Twilp, parental cells must be recovered
after the induction of conjugation between the CRE556
and the loxP-neo4-loxP-EGFP-TWII strains. Around a
quarter of mating wild-type Tetrahymena cells aborts
conjugation before producing zygotic nuclei and haploid
meijotic micronuclear products are endoreplicated to
regenerate a diploid micronucleus. Parental macronuclei
are preserved in this process [15].

We established a method to efficiently recover cells
after aborting conjugation and to distinguish the loxP-
neo4-loxP-EGFP-TWI1 (or neo4-excised loxP-EGFP-
TWI1) strain from CRE556. The method is schematically
shown in Fig. 4A. First, individual mating pairs were iso-
lated into drops of 1x SPP at 2 hpm and cells aborting
conjugation in these drops by 6 hpm were isolated into
drops of fresh 1x SPP. Because mating continues until
~10 hpm if the zygotic nuclei are successfully produced,
cells separated by 6 hpm most probably maintain the
parental macronuclei. Out of 64 pairs isolated we
retrieved 19 sets of clones in which both sides of the sep-
arated cells continued to grow. They were then cultured
in 1x SPP containing 1 pg/mL CdCl,. Because the expres-
sion of HA-Crelp severely inhibits the growth of Tetrahy-
mena, one side of the clones in each set was expected to
grow slowly in the presence of CdCl,. Indeed, in 13 out of
the 19 sets of the clones studied, severe growth suppres-
sion was detected in one side of the clones. In the other 6
sets, both sides of cells grew at equal speed. These are
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Figure 3 Cre-recombinase induces precise recombination at loxP sites. (A) Diagrams of the wild-type TW!1, loxP-neo4-loxP-EGFP-TWIT and loxP-
EGFP-TWIT loci. The loxP-neo4-loxP-EGFP-TWIT construct was introduced to the TW/T locus by homologous recombination. The neo4 cassette was re-
moved from the loxP-neo4-loxP-EGFP-TWIT locus by Cre-mediated recombination to produce the loxP-EGFP-TWI1 locus. The arrowheads represent
the primers used for the DNA excision analysis shown in Fig. 3B and Fig. 4B. (B) Cre-induced recombination at loxP-neo4-loxP-EGFP-TWIT locus. Total
genomic DNA was extracted from starved CRE556 or loxP-neo4-loxP-EGFP-TWIT cells, or mating CRE556 and loxP-neo4-loxP-EGFP-TWIT PCR cells at 2,
4,6 and 8 hr post-mixing (hpm) and PCR-amplified using the primers shown in Fig. 3A. The products corresponding to the non-excised loxP-neo4-
loxP-EGFP-TWIT locus (+neo4) and the excised loxP-EGFP-TWIT locus (-neo4) are marked by arrows. (C) Sequence analysis of the loxP-£EGFP-TWI1 locus.
DNA sequence of the 1.1 kb PCR product from mating CRE556 and loxP-neo4-loxP-EGFP-TWIT PCR cells at 8 hpm was analyzed.
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likely to represent progeny cells and were not analyzed
further.

We expected that the clones growing poorly in the
presence of CdCl, were derived from the CRE556 strain,
while the normally growing clones originated from the
loxP-neo4-loxP-EGFP-TWII strain. Genomic DNA was
extracted from the latter clones and excision of the neo4
cassette was observed by PCR. As shown in Fig. 4B, the
PCR product corresponding to the neo4-excised loxP-
EGFP-TWII locus was observed in 10 out of 13 clones
studied. This result indicated that they indeed were
derived from the loxP-neo4-loxP-EGFP-TWII strain and
Cre-recombinase expressed in the CRE556 side of the
pair was transported to the loxP-neo4-loxP-EGFP-TWI1
side and efficiently induced neo4 excision. Only one clone
failed to produce any PCR products. This clone could be
either derived from the CRE556 strain or from progeny
cells that we could not correctly identify by the growth
assay in the presence of CdCl,. Therefore, the method we
established here can efficiently identify parental cells
derived from a loxP-possessing strain.

To assess the correct excision of the neo4 cassette in
these clones, they were crossed with the wild-type strain
CU428 and EGFP-Twilp expression was observed. In all
3 clones (#1, #11 and #13 in Fig. 4B) analyzed, EGFP-
Twilp was exclusively expressed during conjugation and
was localized to the macronucleus. EGFP-Twilp localiza-
tion of clone #1 is shown in Fig. 5. The expression of
EGFP indicated that neo4 was most likely excised pre-
cisely at the two loxP sites because imprecise excision
might cause a frame-shift that abolishes EGFP-Twilp
expression. The conjugation-specific expression and the
macronuclear localization of EGFP-Twilp mirror the
properties of Twilp in wild-type cells [3], strongly sug-
gesting that the endogenous TWII promoter correctly
drives the downstream EGFP-TWII expression.

Discussion
In this study, we have established a Cre/loxP recombina-
tion system in Tetrahymena and have demonstrated that
this system is useful for N-terminal EGFP tagging of the
TWII1 gene. Although we have tested only N-terminal
EGFP tagging here, we expect that this system can be
applied to any type of epitope tag. However, because one
loxP sequence remains after the Cre-mediated recombi-
nation event in this system, functionalities (e.g., antige-
nicities) of each epitope tag could be disturbed by the
presence of the short peptides (SQLRIMYAIRSY, see also
Fig. 3C) encoded by the loxP sequence. Therefore, valid-
ity of this system must be carefully examined for each
epitope tag.

We also believe that the system established in this study
can be used for internal epitope tagging. In addition, it
may be safer to use this system for C-terminal epitope
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Merged

Figure 5 Localization of EGFP-Twi1p. The loxP-EGFP-TWIT strain #1
(Fig. 4B) was mated with the wild-type B2086 and localization of EGFP-
Twilp at conjugation stages E1 (A, B), E2 (C), M1 (D) or L1 (E, F) was ob-
served using fluorescence microscopy. A detailed illustration of conju-
gation stages can be found in [3]. DNA was counterstained by DAPI. a:
macronucleus, i: micronucleus, na: new macronucleus, pa: parental
macronucleus.

tagging because intergenic sequences are relatively short
in Tetrahymena (Eisen et al. 2006) and the presence of a
drug-resistance marker at the 3'-flanking region of some
genes could disturb the promoter function of a neighbor-
ing gene. Moreover, similar to the "brainbow" mouse [16],
combinatory use of multiple loxP mutant sequences may
allow us to produce Tetrahymena cells expressing a pro-
tein tagged with several different epitope tags by a single
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transformation experiment followed by Cre-mediated
recombination.

Cre/loxP recombination systems have also been used
for conditional gene knockouts [17] and recycling drug-
resistance markers for multiple transformations [18-20]
in other model organisms. We expect that the system
described here can be used for these applications in Tet-
rahymena as well. However, because Tetrahymena has a
polyploid (~50 copies) macronucleus and because the
loxP excision did not occur in all of the macronuclear
copies in the condition we tested (see Fig. 4B), it will be
necessary to improve the recombination efficiency to use
the Cre/loxP system for these applications in Tetrahy-
mena. Nonetheless, the existing technique is already
applicable to recycle a drug-resistance marker. The
macronuclear chromosomes segregate randomly to
daughter nuclei, and thus we can obtain cells in which all
copies of a locus have a loxP-excised form by phenotypic
assortment [21].

We chose a relatively complex procedure to introduce
Crelp into cells: HA-crel expressing cells were mated
with cells possessing the loxP target locus. Because of the
following two reasons, we believe this strategy has great
advantage over other possible methods such as introduc-
ing the HA-crel gene and a loxP target locus into the
same cell. First, as shown in Fig. 2C, expression of HA-
Crelp suppresses cell growth, suggesting that HA-Crelp
is probably toxic to Tetrahymena. Therefore, it is neces-
sary to minimize the exposure of cells to HA-Crelp.
Although the MTT1I promoter, which is driving the HA-
Crelp expression, is inducible by the presence of cad-
mium, it is known that in the absence of cadmium leaky
expression occurs [12]. In our strategy the exposure of
cells to HA-Crelp can be tightly controlled and thus
potential cell damages are avoided. Second, if we intro-
duce HA-crel and a loxP-flanked marker locus into the
same cell, leaky expression of HA-Crelp from the MTT1I
promoter may eliminate the marker. This possibly makes
phenotypic assortment difficult. Our strategy is free from
this problem because strains containing HA-crel and the
loxP-flanked marker are prepared separately.

Conclusions

Cre-recombinase can be expressed in Tetrahymena and
localizes to the macronucleus. It can induce precise
recombination at two loxP sequences in direct orienta-
tion in the macronuclear chromosome. The successful
construction of a strain expressing N-terminal EGFP-
tagged TWII from the endogenous TWII locus let us
conclude that the Cre/loxP recombination system estab-
lished in this study is a useful tool for N-terminal epitope
tagging of Tetrahymena genes.
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Methods

Tetrahymena strains and culture conditions

Wild-type B2086, CU427 and CU428 strains of Tetrahy-
mena thermophila were provided by Dr. P. J. Bruns (Cor-
nell University). These strains are also available at the
Tetrahymena Stock Center (Cornell University). The cells
were grown at 30°C in 1x Super Proteose Peptone (SPP)
medium [22] containing 2% proteose peptone. Before
mating, the cells were washed and resuspended (~5 x 10>
cells/mL) in 10 mM Tris buffer (pH 7.5). After 12-24 h of
incubation at 30°C, equal numbers of cells were mixed
and mated.

Oligo DNAs
Oligo DNAs used in this study are listed in Table 1.

Plasmid constructions

To construct pMNMM3 (Fig. 1A), which contains an
expression cassette that allows inducible gene expression
under the control of the MTTI promoter, first, a ~2 kb
region upstream of the MTTI translational start codon
(MTT1-5") and a ~1 kb region downstream of the MTT1I
translational stop codon (MTT1I-3") were amplified from
genomic DNA of CU427 by the PCR Extender System (5-
PRIME) with the combinations of primers
MTT5FWXho + MTT5RV and MTT3FW +
MTT3'RVSpe, respectively. Then, MTTI-5'and MTT1-3'
were connected by overlapping PCR with primers
MTT5FWXho and MTT3'RVSpe. The overlapping PCR
produced Ndel, BamHI and BglII sites between MTT1-5'
and MTTI-3'". The PCR product was cloned into the Xhol
and Spel sites of pBlueScript SK(+) vector (Stratagene) to
produce pMMM. Then, the plasmid was digested with
Accl, which cuts approximately in the middle of MTT1-5'
and was blunt-ended by T4 DNA polymerase. A neo2 cas-
sette (a hybrid H4.1/neo/BTU2 gene) was digested out
from pNeo2 (Gaertig et al. 1994) by BamHI and Xhol,
blunt-ended, and ligated with the Accl digested/blunt-
ended pMMM, resulting in pMNMM. The insertion of
neo2 splits MTTI-5" into two ~1 kb segments, named
MTTI-5'-1 and MTTI1-5'-2. MTTI-5'-2 contains the ~0.9
kb MTTI promoter [12], which is sufficient to drive the
gene expression in a heavy metal ion-dependent manner.
Next, a multi-cloning site, including AvrIl, Nhel, Mfel,
Pstl, Sbfl and Mlul, was produced by inserting the
annealed MCSfw and MCSrev oligo DNAs into the
BamHI site of pMNMM. The resulting plasmid was
named pMNMM2. We could obtain only a few paromo-
mycin-resistant transformants using this construct and
experienced difficulties with phenotypic assortments. As
the neo2 coding sequence is derived from a bacteriophage
and therefore not codon-optimized for Tetrahymena, the
expression level of the Neo protein may not be sufficient
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Table 1: Oligo DNAs used in this study
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Table 1: Oligo DNAs used in this study (Continued)

Names DNA Sequences (5' to 3')

MTT5 'FWXho GGCTCGAGTCTTTGCATTCTACTTCGAGC

MTT5 'RV GATCTGGATCCATATGTTTAAGTTTAGT
ATTATTATTTATTTTATTAGAGC

MTT3'FW CATATGGGATCCAGATCTATATGTTAAT
TAAAATTTAAAATATGTTGATG

MTT3 'RVSpe GCACTAGTAAATATCCAAAGATGTTTAT
GAG

MCSfw GATCCTAGTAGCCTAGGTAGTAGGCTAG
CTAGTAGCAATTGCCTGCAGGACGCGTG
ATGAT

MCSrev GATCATCATCACGCGTCCTGCAGGCAAT
TGCTACTAGCTAGCCTACTACCTAGGCT
ACTAG

H4fw CGCAAGCTTGAGGTCGACGGTATCGATA
AGCTTGATATCTTCAAAGTATGG

H4rev GCGTGTAAACCATCTTGTTCAATCATTT
TTGTAAGTTTTTATAATCTTATTTGTTT
TTCTATTTATTG

Neo4FW AGACAATTTATTTCTAAAAAATATTTAA
AAATAAAAAATAATAAGGG

Neo4RV TGCATTTTTCCAGTAAAAATTTGAAAAT

HA-GA-Cre-NdeFW

TTAATGGC

GGAATTCCATATGTATCCTTATGATGTT
CCTGATTATGCTGGTGCTAGCAACCTGC
TGACCGTTCATC

Cre-M1uRV CGACGCGTCGTCAATCGCCATCTTCCAG
CAGGC

LoxNeoFWXho GCGCTCGAGATAACTTCGTATAATGTAT
GCTATACGAAGTTATGGGCTGCAGGAAT
TCGATAGAC

LoxNeoRV CACCCTTAGAAACCATATAACTTCGTAT
AGCATACATTATACGAAGTTATGGGCTG
CATTTTTCCAG

LOXGFPFW GCTATACGAAGTTATATGGTTTCTAAGG
GTGAAGAACTTTTCACTGG

LoxGFPRVBam GCCGGATCCACTAGTCTTATATAATTCA
TCCATACC

TWI15LOXFW GTCAGAAGATCCTTTCTATGTGTCC

TWI15LoxRVATGplus CCTGCAGCCCATAACTTCGTATAGCATA
CATTATACGAAGTTATGACATGGATGTT
AATTATATCGC

TWIINGFPFW GGATGAATTATATAAGACTAGTATGTCT
AACAAAGGCCTTGTC

TWI1INGFPRV GAGGCTAGTTTGGGTCGATGTTACC

EGFP-NtermRV

XbaBTU15FW

BTU1_5RV_SSS

CCATAAGTAAGAGTAGTAACTAAAGTAG
GCCAAGG

GGCGTCTAGAGTTGTTTGGATAATTAGA
TCTCTCTC

ACTAGTCCCGGGGTCGACATCACCCAAA
TAAATACACGC

BTUl_3FW_SSS GTCGACCCCGGGACTAGTTGAGCGAACT

GAATCGGTCAGC

BTU13RVXho GCGGCTCGAGAAGATGTGGCTATTGATG

GGC

CCGCGTCGACTTGATATCTTCAAAGTAT
GG

neo5_FW_Sal

MTT1_MCS_RV CGCCACTAGTAGATCTGGATCATCATCA

CGCGTC

PBNMB_addXhoAS CCAAACAACTCTAGACTCGAGCGGCCGC

CACCGC

GCGGTGGCGGCCGCTCGAGTCTAGAGTT
GTTTGG

PBNMB_addXhos

to produce enough paromomycin-resistant transfor-
mants that can be assorted appropriately. Therefore, we
replaced neo2 with meo5, in which the neo coding
sequence was optimized for Tetrahymena codon usage
[13]. To create neoS5, a neo4 cassette was amplified from
pNeo4 [13] by PrimeStar HS DNA Polymerase (Takara)
with Neo4FW and Neo4RV and its MTTI promoter was
replaced using overlapping PCR with the histone H4.1
promoter, which was amplified from pMNMMI1 with
primers H4fw and Hé4rev. Then, neo2 from pMNMM?2
was removed by Sall and Smal and replaced with the
amplified neo5 cassette, resulting in pMNMM3 (Fig. 1A).
The DNA sequence of pMNMM3 can be found in the
Additional file 1.

A Cre-recombinase (DDBJ/EMBL/GenBank AAG34515)
encoding DNA, which was optimized for Tetrahymena
codon-usage, was synthesized (MR. GENE GmbH,
Regensburg, Germany) and named crel. An HA sequence
including a short two-amino acid linker (GA) was added
at the N-terminus of crel by PCR amplifying the crel
coding sequence using PrimeStar HS DNA Polymerase
(Takara) with the primers HA-GA-Cre-NdeFW and Cre-
MIuRV. Then, this PCR product was cloned into Ndel
and Mlul sites of p MNMM3 to produce pMNMM3-HA-
crel (Fig. 1B). The MTT1-5-1-neo5-MTT1-5'-2-HA-
crel-MTTI1-3' construct was excised from the vector
backbone by digesting pMNMM3-HA-crel with Xhol
and Spel. The DNA sequence of p MNMM3-HA-crel can
be found in the Additional file 1.

Construction of the loxP-neo4-loxP-EGFP-TWI1 construct by
PCR

First, the loxP-neo4-loxP sequence was generated by PCR
amplifying the neo4 cassette with the primers LoxNeoF-
WXho and LoxNeoRV. These primers had loxP
sequences at their 5'-termini. PrimeStar HS DNA Poly-
merase (Takara) was used for all PCR reactions in this
section. In parallel, EGFP was amplified by PCR with the
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primers LoxGFPFW and LoxGFPRVBam using pOp-
tiGFP as a template. pOptiGFP has a EGFP sequence
optimized for Tetrahymena codon-usage (Kataoka et al.
submitted with this manuscript). A short complementary
sequence was designed at the 3'-terminus of loxP-neo4-
loxP and the 5'-terminus of EGFP. Then, loxP-neo4-loxP
and EGFP PCR products were concatenated by overlap-
ping PCR with LoxNeoFWXho and LoxGFPRVBam. The
resulting loxP-neo4-loxP-EGFP was cloned into the
BamHI and Xhol sites of pBlueScript SK(+) to create
ploxP-neo4-loxP-EGFP.

The loxP-neo4-loxP-EGFP-TWII construct (see Fig.
3A) was generated by PCR. The 5'-flanking and N-termi-
nal regions of the TWII gene were amplified using the
primers TWII5LoxFW + TWII5LoxRVATGplus and
TWII NGFPFW + TWIINGEPRYV, respectively, resulting
in TWII-5F and TWII-N. Also, loxP-neo4-loxP-EGFP
was excised from ploxP-neo4-loxP-EGFP using BamHI
and Xhol. This fragment had overlapping sequences with
the 3' terminus of TWII-5F and with the 5'- terminus of
TWII-N, respectively. Finally, the three DNA segments,
TWI1-5F, loxP-neo4-loxP-EGFP and TWII-N were com-
bined by overlapping PCR using TWII5LoxFW and
TWIl NGFPRV. The PCR product loxP-neo4-loxP-
EGFP-TWII was purified and used directly for the trans-
formation of Tetrahymena.

Construction of Tetrahymena strains CRE556 and loxP-
neo4-loxP-EGFP-TWI1

Biolistic gun transformation was performed as described
[2] to introduce the constructs into the macronucleus by
homologous recombination. The B2086 and CU428 wild-
type strains were transformed with the digested
PMNMM3-HA-crel and the loxP-neo4-loxP-EGFP-
TWI1 PCR products, respectively. The transformants
were selected using 100 pg/mL paromomycin. To select
loxP-neo4-loxP-EGFP-TWII possessing cells, 1 pg/mL
cadmium chloride was added to the medium because neo
expression is controlled by the cadmium-dependent
MTTI promoter in neo4. In contrast, cells transformed
with the MNMM3-HA-crel construct were selected
without cadmium due to the two following reasons: 1) the
expression of neo in the neoS cassette is driven by the
constitutive histone H4.1 promoter and thus is not
dependent on cadmium ions, and 2) the presence of cad-
mium ions induces the expression of HA-crel from the
MTTI promoter in this construct and causes the sup-
pression of cell growth (see Fig. 2C). The endogenous
MTTI or TWII loci were replaced with the constructs by
phenotypic assortment and selection using increasing
concentrations of paromomycin. One of the established
strains, CRE556 (mating type II), was used for further
studies.
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Western blotting

Whole-cell protein extracts were separated by SDS-PAGE
and transferred to PVDF membranes. Blots were incu-
bated in blocking solution (1% BSA, 1% skim milk, 0.1%
Tween 20 in PBS) with 1:2,000 diluted mouse anti-HA
antibody (16B12, Covance) or with 1:10,000 diluted
mouse anti-B-tubulin antibody (12G10, Developmental
Studies Hybridoma Bank, University of Iowa) and were
visualized by incubation with a 1:10,000 dilution of HRP-
conjugated anti-mouse IgG antibody (Jackson Immu-
noResearch) in the blocking solution followed by a
chemiluminescent reaction (GE Healthcare).

Immunofluorescence staining

Cells were fixed in 3.7% formaldehyde and 0.5% Triton-X
100 for 30 min at RT, resuspended in 3.7% formaldehyde
and 3.4% sucrose, and dried on poly-L-lysine (Sigma)-
coated cover slips. The samples were blocked for 1 hr at
37°C with 3% BSA (Sigma), 10% normal goat serum
(Invitrogen), and 0.1% Tween 20 in PBS followed by incu-
bation in blocking solution containing a 1:2,000 dilution
of mouse anti-HA antibody (16B12, Covance) for 2 hr at
RT. After washes with PBS containing 0.1% Tween 20,
samples were incubated with a 1:2,000 dilution of anti-
mouse antibody conjugated with Alexa 488 (Invitrogen)
for 1 hr at RT. The samples were washed, incubated with
10 ng/mL DAPI (Sigma) in PBS, mounted with ProLong
Gold (Invitrogen), and observed by fluorescence micros-

copy.

Tetrahymena cell growth assay

Late log cultures of B2086 and CRE556 were diluted to 5
x 103 cells/mL in a fresh 1x SPP medium with or without
1 pg/mL CdCl, and cultured at 30°C with rotation at 100
rpm. Every 5 hours, cells were counted to monitor cell
growth using a model ZB1 Coulter counter (Coulter Elec-
tronics Inc).

Construction of Tetrahymena strains expressing HA-cre1
from BTUT locus

To express HA-crel from the BTU1 locus, pBNMB-HA-
crel was created. First, a ~0.8 kb upstream (BTU1_5") and
a ~0.8 kb downstream (BTUI_3') region of the BTUI
gene were amplified from the genomic DNA of B2086 by
the PrimeStar HS DNA Polymerase (Takara) with the
combinations  of  primers = XbaBTU15FW  +
BTU1_5RV_SSS and BTU1_3FW_SSS + BTU13RVXho,
respectively. Then, two PCR products were connected by
overlapping PCR with primers XbaBTUI5FW and
BTU13RVXho. The overlapping PCR produced Sall,
Smal and Spel sites between BTUI1_5" and BTUI1_3'. The
PCR product was cloned into the Xbal and Xhol sites of
pBlueScript SK(+) vector (Stratagene) to produce pBB.
The neo5-MTTI-5-2 segment was amplified from
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PMNMM3 by the PrimeStar HS DNA Polymerase with
primers neo5_FW_Sal and MTT1_MCS_RYV and cloned
into the Sall and Spel site of pBB. Then, an Xhol site was
introduced between Xbal and NotlI sites by site-directed
mutagenesis with primers pBNMB_addXhoS and
pBNMB_addXhoAS to produce pBNMB. neo5-MTT1-5'-
2-HA-cre segment of pMNMM3-HA-crel was excised
out by Sall and Mlul and cloned into the Sall and Mlul
site of pBNMB to produce pBNMB-HA-crel. The plas-
mid map and the DNA sequence of pPBNMB-HA-crel can
be found in the Additional file 1.

The CU427 wild-type strain was transformed with the
BTUI1-5'-neo5-MTTI1-5-2-HA-crel-BTUI1-3' construct
which was digested out from pBNMB-HA-crel and the
transformants were selected using 100 pg/mL paromo-
mycin. The endogenous BTUI loci were replaced with
the construct by phenotypic assortment and selection
using increasing concentrations of paromomycin. Six
strains were selected for further studies.

Induction of Cre-mediated loxP recombination

For the experiment shown in Fig. 2A, exponentially grow-
ing B2086 or CRE556 cells were cultured in 1x SPP
medium with or without 1 pg/mL CdCl, for 1.5 hr, or
starved B2086 or CRE556 cells were cultured in 10 mM
Tris (pH 7.5) with or without 50 ng/mL CdCl, for 1.5 hr.

For the experiment shown in Fig. 2B, CRE556 and loxP-
neo4-1oxP-EGFP-TWII strains, both pre-starved over
night in 10 mM Tris (pH 7.5) were mated and 50 ng/mL
CdCl, was added to the culture at 3.5 hr post-mixing
(hpm). At the times indicated, cells were collected for
immunofluorescence staining.

For the experiment shown in Fig. 3B, starved CRE556
cells were pre-treated with 50 ng/mL CdCl, for 1.5 hours
and then mated with starved loxP-neo4-loxP-EGFP-
TWI1 cells in 10 mM Tris (pH 7.5) in the presence of 25
ng/mL CdCl,. At 2, 4, 6 and 8 hpm, genomic DNA was
extracted for loxP excision analysis.

For the experiment shown in Fig. 4B, starved CRE556
cells were pre-treated with 50 ng/mL CdCl, in 10 mM
Tris (pH 7.5) for 1.5 hr and then mated with pre-starved
loxP-neo4-loxP-EGFP-TWII strains in the presence of 25
ng/mL CdCl,. At 2 hpm, single mating pairs were isolated
into drops of 1x SPP medium. Cells were observed about
every 2 hr until 6 hpm; then, cells were cloned into fresh
drops of 1x SPP medium, in cases where pairs had sepa-
rated. Cells were cultured for 2 days at 30°C and estab-
lished clones were cultured in 1 mL 1x SPP medium for
~24 hr. The cells were then inoculated into 1x SPP
medium containing 1 pg/mL CdCl,. Clones growing at
normal speed in this medium were chosen as candidates
for loxP-neo4-loxP-EGFP-TWII strain derived cells. This
selection is based on the fact that HA-Crelp expression
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severely suppresses cell growth (see text for details). The
selected strains were used for loxP excision analysis.
These procedures are schematically drawn in Fig. 4A.

loxP excision analysis by PCR

Cells were lysed in guanidine solution (4 M guanidine thi-
ocyanate, 0.5% N-lauroyl sarcosine sodium, 25 mM Tris-
HCI pH 8.0, 0.1 M 2-mercaptoethanol) and genomic
DNA was extracted by conventional extraction with phe-
nol/chloroform (1:1) and precipitated with isopropanol.
The loxP-neo4-loxP-EGFP-TWII locus or the neo4-
excised loxP-EGFP-TWII locus was detected using the
PCR Extender System (5-PRIME) with the primers
TWI15LoxFW and EGFP-NtermRV.

Observation of EGFP-Twilp

loxP-EGFP-TWII cells were mated with the wild-type
B2086 strain. Cells were fixed and stored in 25% metha-
nol and 10% formaldehyde over night at 4°C. The samples
were incubated with 10 ng/mL DAPI and observed by flu-
orescence microscopy.

Additional material

Additional file 1 Supplementary Figure S1 and plasmid DNA
sequences. Supplementary Figure S1 describing construction and analyses
of a Tetrahymena strain expressing Cre-recombinase from BTUT locus, and
DNA sequences of pMNMM3, pMNMM3-HA-cre1 and pBNMB-HA-cre1
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