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Abstract
Background: West Nile virus (WNV) causes viremia after invasion to the hosts by mosquito bite. Endothelial cells could 
play an important role in WNV spread from the blood stream into the central nervous system and peripheral tissues. 
Here, we analyzed the capacity of virus-like particles (VLPs) of the highly virulent NY99 6-LP strain (6-LP VLPs) and the 
low virulence Eg101 strain (Eg VLPs) to cross cultured human endothelial cells.

Results: 6-LP VLPs were transported from the apical to basolateral side of endothelial cells, whereas Eg VLPs were 
hardly transported. The localization of tight junction marker ZO-1 and the integrity of tight junctions were not impaired 
during the transport of 6-LP VLPs. The transport of 6-LP VLPs was inhibited by treatment with filipin, which prevents the 
formation of cholesterol-dependent membrane rafts, suggesting the involvement of raft-associated membrane 
transport. To determine the amino acid residues responsible for the transport of VLPs, we produced mutant VLPs, in 
which residues of E protein were exchanged between the 6-LP and Eg strains. Double amino acid substitution of the 
residues 156 and 159 greatly impaired the transport of VLPs.

Conclusion: Our results suggest that a transcellular pathway is associated with 6-LP VLPs transport. We also showed 
that the combination of the residues 156 and 159 plays an important role in the transport of VLPs across endothelial 
cells.

Background
West Nile virus (WNV), a mosquito-borne single-
stranded RNA virus, had been known to cause endemic
febrile disease in Africa, the Middle East, Europe and
Asia [1-4]. Since the concurrent outbreaks of encephalitis
among humans, horses and birds in New York in 1999 [5-
7], WNV has spread rapidly across North America [8].
WNV has considerable public health impact because of
large annual epidemics of human neuroinvasive disease
[9]. WNV proliferates in birds and is transmitted to
humans, horses and other animals by mosquitoes. After
invading the hosts, WNV seems to proliferate in lym-
phoid tissue and causes viremia [10]. WNV then pene-
trates the blood brain barrier (BBB) and causes
encephalitis with neuronal cell death. Neurons are the

main target of the virus in the central nervous system
(CNS), since viral antigens are mainly detected in these
cells [11].

In addition to the neuronal disease, WNV-associated
inflammation outside the CNS can occur in humans.
Khouzam [12] reported the case of a patient who had dif-
fuse myocardial damage secondary to WNV infection.
Rhabdomyolysis was reported in a patient with WNV
encephalitis [13]. Armah et al. [14] reported systemic dis-
tribution of WNV infection in 6 human cases in which
viral antigens were detected in CNS, kidney, lungs, pan-
creas, thyroid, intestine, stomach, esophagus, bile duct,
skin, prostate and testis. These studies suggest that WNV
can invade and proliferate in multiple tissues.

Shirato et al. [15] suggested that the difference in the
neuroinvasiveness between the highly virulent NY99
strain and the non-lethal Eg 101 (Eg) strain is associated
with the viral replication in spleen. One of the reasons
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NY99 strain gains this virulent phenotype might be an
enhancement of invasiveness to the peripheral tissues.
Blood-borne pathogens must encounter endothelial cells
of blood capillaries to invade the target organs. Verma et
al. [16] demonstrated the mechanism by which WNV
crosses endothelial cells using human brain microvascu-
lar endothelial (HBMVE) cell culture. Their data sug-
gested that WNV crosses HBMVE cells via a transcellular
pathway after viral replication in endothelial cells. How-
ever, the possibility that WNV crosses endothelial cells
without viral replication cannot be excluded, since WNV
infection of endothelial cells is rarely detected in human
cases [17]. It is still unclear if a transcellular mechanism is
also involved in viral invasion to endothelial cells of
peripheral tissues.

In this study, we assessed the possibility that WNV has
an ability to cross human endothelial cells. To eliminate
the influence of viral replication in endothelial cells, we
used virus-like particles (VLPs) which can infect suscep-
tible cells without production of progeny virions. Our
results suggest that VLPs of the NY99-6922 6-LP (6-LP)
strain cross human umbilical vein endothelial cells
(HUVEC) by a transcellular pathway. We also showed
that the 6-LP VLPs were transported greater than VLPs
of the low-virulence Eg strain, which depends on Ser 156
and Val 159 of E protein.

Results
WNV 6-LP VLPs are transferred across human endothelial 
cells
HUVEC were seeded on the membranes of transwells,
which have 0.4 μm pores. The presence of the tight junc-
tion with an increase of transendothelial electrical resis-
tance (TEER; 66-77 Ωcm2) was confirmed 3 days after
seeding. Here we used VLPs previously reported by
Scholle et al. [18]. VLPs can infect cells because of the
presence of the structural proteins (C, prM/M and E pro-
tein) that are present in infectious virions. VLPs contain
replicon RNA, which encodes the WNV nonstructural
proteins and the enhanced green fluorescent protein
(eGFP), but lacks the sequence of structural proteins.
After VLP infection of susceptible cells, replicon RNA is
released and replicates in the cytoplasm accompanied by
the expression of eGFP. However, progeny particles are
not produced because of the lack of expression of struc-
tural proteins in VLP-infected cells.

To assess the possibility that HUVEC can transport
VLPs, HUVEC were exposed to 6-LP VLPs or Eg VLPs at
a multiplicity of infection (m.o.i.) of 2 (4 × 104 infectious
unit/transwell). The number of VLPs transferred to the
lower chambers was determined by infectious unit (IFU)
assay at 0, 8 and 24 h post infection (p.i.) (Fig. 1). 6-LP
VLPs were detected at 8 h p.i. and increased approxi-
mately 2-fold at 24 h p.i. On the other hand, few Eg VLPs

were detected at 8 and 24 h p.i. The amount of the trans-
ferred 6-LP VLPs was significantly higher than that of Eg
VLPs at 8 and 24 h p.i. (p < 0.01). These results suggested
that 6-LP VLPs were transferred across HUVEC and that
the transfer of Eg VLPs was much less efficient.

6-LP VLPs were transported without altering the integrity 
of tight junction
Verma et al. [16] suggested that WNV replicates in the
HBMVE cells and that the progeny virus crosses the BBB
via a transcellular pathway without impairing the integ-
rity of tight junction. However, VLPs used in this study do
not produce progeny virions. Thus, there is a possibility
that 6-LP VLPs cross from the apical to the basolateral
side by disrupting tight junction.

To assess this possibility, the distribution of a tight
junction marker ZO-1 was analyzed by immunocy-
tochemistry at 24 h p.i. (Fig. 2A). The localization of ZO-
1 was not visibly affected in 6-LP VLP-exposed HUVEC,
when compared to the untreated control. We also mea-
sured the permeability of 70k Dextran (Dx) to check the
integrity of the tight junction (Fig. 2B). The permeability
of 70k Dx in VLP-exposed HUVEC was similar to that in
untreated cells by this assay. It has been known that TNF-
α exposure induces changes in endothelial cell morphol-
ogy and permeability [19]. Therefore, we treated the cells
by TNF-α as a control. Treatment of HUVEC with TNF-α
at 2 μg/ml greatly impaired the integrity of the tight junc-
tion (p < 0.01; Figs. 2A and 2B).

Figure 1 Transport of 6-LP and Eg VLPs across a monolayer of HU-
VEC. HUVEC were exposed to VLPs for 0, 8 or 24 h. The numbers of 
transferred VLPs were determined by IFU assay. Gray bars, 6-LP VLPs. 
White bars, Eg VLPs. The graphs show the mean of three determina-
tions. The error bars show SD. The results are representative of 2 inde-
pendent experiments. *p < 0.01.
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Figure 2 Transcellular transport of 6-LP VLPs in HUVEC. (A) Distribution of tight junction marker ZO-1 in HUVEC. HUVEC were exposed to 6-LP VLPs 
or treated with TNF-α for 24 h. The cells were fixed and processed for immunofluorescence staining of ZO-1. Bars represent 50 μm. (B) Transfer of Dx70k 
into a monolayer of untreated, 6-LP VLP-exposed or TNF-α treated HUVEC. HUVEC were exposed to 6-LP VLPs or treated with TNF-α in the presence 
of FITC-labeled 70k Dx (FITC-70k Dx). After 24 h, media were collected from lower chambers and the fluorescence of transferred 70k Dx was measured 
by a fluorescent plate reader. Relative transfer of FITC-70k Dx was calculated as described in METHODS. The graphs show the mean of three determi-
nations. The error bars show SD. The results are representative of 2 independent experiments. *p < 0.01. (C) Transport of 6-LP VLPs in HUVEC treated 
with endocytosis inhibitors. HUVEC were exposed to 6-LP VLPs in the presence or absence of 5 μg/ml of chlorpromazine or 1 μg/ml of filipin. The cells 
treated with 0.1% DMSO were used as control. After 24 h, media at the lower chamber were collected and subjected to IFU assay. *p < 0.01. (D) Transfer 
of FITC-70k Dx in HUVEC treated with endocytosis inhibitors. FITC-70k Dx was added to HUVEC with or without 5 μg/ml of chlorpromazine or 1 μg/ml 
of filipin. After 24 h, medium was collected from the lower chambers and the fluorescence was measured. Relative transfer of FITC-70k Dx was calcu-
lated as described in METHODS. The graphs show the mean of three determinations. The error bars show SD. The results are representative of 2 inde-
pendent experiments.
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6-LP VLPs cross HUVEC via a transcellular pathway
To assess the involvement of a transcellular pathway, we
examined the effects of chlorpromazine and filipin on
VLP transport. Chlorpromazine disrupts the recycling of
AP-2 from endosomes and prevents the assembly of
clathrin-coated pits on the plasma membrane [20]. Filipin
is a sterol-binding agent and prevents the formation of
cholesterol-dependent membrane rafts [21]. The optimal
concentration of chlorpromazine and filipin was deter-
mined by the inhibition of the uptake of transferrin and
cholera toxin subunit B, which are known as ligands for
clathrin-and lipid-rafts-dependent endocytosis, respec-
tively (data not shown). HUVEC were exposed to 6-LP
VLPs in the presence or absence of the inhibitor. FITC-
labeled 70k Dx was also added to the transwells with 6-LP
VLPs to evaluate the tight junction integrity. The trans-
port of VLPs was inhibited by filipin (p < 0.01), but was
not significantly by chlorpromazine (Fig. 2C). In contrast,
the permeability of 70k Dx was not impaired by either
chlorpromazine or filipin (Fig. 2D). These results sug-
gested that lipid rafts are involved in VLPs transport.

Transport of 6-LP VLPs depends on E protein
It is known that E protein interacts with viral receptors on
the host cells [22-28] resulting in the induction of recep-
tor mediated endocytosis [25,29,30]. To examine whether
E protein is involved in the transport of VLPs, we gener-
ated chimeric VLPs using 6-LP and Eg VLPs. 6-LP CM Eg
E VLPs have C and M/prM proteins derived from 6-LP
strain and E protein from Eg strain. Eg CM 6-LP E VLPs
have C and M/prM protein from Eg strain and E protein
from 6-LP strain. HUVEC were exposed to wild type or
chimeric VLPs and transported VLPs were detected by
IFU assay at 24 h p.i (Fig. 3). The transport of Eg CM 6-LP
E VLPs was similar to that of wild type 6-LP VLPs and
was significantly higher than those of 6-LP CM Eg E VLPs
and wild type Eg VLPs (p < 0.01). 6-LP CM Eg E VLPs
were rarely transported across HUVEC as well as wild
type Eg VLPs. These results suggest that the transport of
VLPs across HUVEC is strongly affected by E protein.

Multiple amino acid residues of E protein influence the 
transport of 6-LP VLPs
The E proteins of the 6-LP and Eg strain differ at 4 amino
acid residues. To determine the residues that enhance the
transport of 6-LP VLPs, we produced mutant VLPs
(Table 1). 6-LP S156P VLPs and 6-LP V159I VLPs had
significantly reduced transport compared to wild type 6-
LP VLPs (p < 0.01) although the amount of transported
VLPs was much higher than that of Eg VLPs (p < 0.01;
Fig. 4A). As shown in Fig. 4B, Eg K93R VLPs and Eg
T126I VLPs showed increased transport compared to
wild type Eg VLPs (p < 0.05). The transport of Eg I159V
was significantly increased (p < 0.01), although it was

much lower than 6-LP VLPs. Previous studies reported
that Ser 156 is involved in the N-linked glycosylation at
154, which is important for virulence and neuroinvasion
[31-34]. Therefore, we expected that the transport of Eg
P156 S would be increased. However, the transport of Eg
P156 S VLPs was significantly lower than that of WT Eg
VLPs (p < 0.01). These results suggest that multiple resi-
dues of E protein can influence the transport of VLPs.

The combination of Ser 156 and Val 159 is important for the 
transport of 6-LP VLPs
From the result of Fig 4B, the transport of Eg P156 S did
not increase. This finding suggests the possibility that the
combination of amino acids at the position of 156 and
159 might affect the transport of VLPs. To assess this
hypothesis, we generated double mutants, 6-LP S156P
V159I and Eg P156 S I159V (Table 1). As shown in Fig. 5,
the transport of 6-LP S156P V159I was greatly reduced (p
< 0.01; versus 6-LP VLPs) to the level of wild type Eg
VLPs. The transport of Eg P156 S I159V was greatly
increased (p < 0.01; versus Eg VLPs) to the level of wild
type 6-LP VLPs. These results suggest that the combina-
tion of Ser 156 and Val 159 is important for the transport
of 6-LP VLPs across HUVEC.

Combination of amino acid sequence at 156 and 159 does 
not affect the N-linked glycosylation of E protein
From the results of Figs. 4 and 5, we speculated that the
combination of amino acid sequence at 156 and 159
might affect N-linked glycosylation at the position 154

Figure 3 Role of WNV E protein in the transport of VLPs. HUVEC 
were exposed to 6-LP, Eg, 6-LP CM Eg E or Eg CM 6-LP E VLPs. After 
24 h, media at the lower chamber were collected and subjected to IFU 
assay. The graphs show the mean of three determinations. The error 
bars show SD. The results are representative of 2 independent experi-
ments. * represents p < 0.01 (versus 6-LP).



Hasebe et al. BMC Microbiology 2010, 10:165
http://www.biomedcentral.com/1471-2180/10/165

Page 5 of 10
resulting in unglycosylation of E protein of Eg P156 S. To
assess this possibility, we analyzed the glycosylation of E
protein in 6-LP VLPs, Eg VLPs, 6-LP S156P, Eg P156 S, 6-
LP V159I, Eg I159V, 6-LP S156P V159I and Eg P156 S
I159V. Western blotting of E protein showed the band of
wild type 6-LP strain was higher than that of Eg strain
(Fig. 6. lanes 2 and 3) because of glycosylation. E protein

of 6-LP S156P, Eg I159V and 6-LP S156P V159I was ung-
lycosylated (Fig. 6. lanes 4, 7 and 8), whereas E protein of
6-LP V159I and Eg P156 S I159V was glycosylated (Fig. 6.
lanes 6 and 9). Interestingly, E protein of Eg P156 S was
also glycosylated (Fig. 6. lane 5). These results suggest
that the combination of the residues 156 and 159 does
not affect the N-linked glycosylation and that glycosyla-
tion of E protein is not the determinant of the transport
of VLPs.

Discussion
WNV NY strains have a highly virulent phenotype com-
pared to the Eg strain which was isolated in Africa. Their

Table 1: Single and double mutant VLPs

Name Wild type Position1 Substitution2

6-LP R93K 6-LP 93 RTK

6-LP I126T 6-LP 126 ITT

6-LP S156P 6-LP 156 STP

6-LP V159I 6-LP 159 VTI

Eg K93R Eg 93 KTR

Eg T126I Eg 126 TTI

Eg P156S Eg 156 PTS

Eg I159V Eg 159 ITV

6-LP S156P V159I 6-LP 156, 159 STP, VTI

Eg P156 S I159V Eg 156, 159 PTS, ITV

1 Amino acid position of E protein.
2 Amino acid substitution from wild type to mutant.

Figure 4 Effect of single amino acid substitutions in E protein on 
the transport of VLPs. HUVEC were exposed to mutant VLPs. After 24 
h, media at the lower chamber were collected and subjected to IFU as-
say. (A) Transport of mutant 6-LP VLPs. *represents p < 0.01 (versus 6-
LP). (B) Transport of mutant Eg VLPs. * and ** represent p < 0.01 and p 
< 0.05, respectively (versus Eg). The graphs show the mean of three de-
terminations. The error bars show SD. The results are representative of 
2 independent experiments.

Figure 5 Effect of double amino acid substitutions of E protein on 
the transport of VLPs. HUVEC were exposed to 6-LP, 6-LP S156P 
V159I, Eg P156 S I159V or Eg VLPs. After 24 h, media at the lower cham-
ber were collected and subjected to IFU assay. * p < 0.01 (versus 6-LP). 
The graphs show the mean of three determinations. The error bars 
show SD. The results are representative of 2 independent experiments.
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enhanced replication in peripheral tissues may lead to
long-lasting viremia resulting in increasing incidence of
viral invasion to CNS. The interaction of the virus with
endothelial cells of blood capillaries could be involved in
WNV invasion to target organs. In this study, we assessed
the transport of WNV NY99 6-LP strain and Eg strain
across human endothelial cells. Our data demonstrate
that VLPs of the 6-LP strain were transported across
human endothelial cells more than VLPs of the Eg strain.

Microbial invasion across endothelial cells can occur
through transcellular pathway mediated by vesicles, para-
cellular entry after disruption of the tight junctions, or
"Trojan horse" mechanism by transport within circulating
phagocytic cells [35,36]. Our data indicate that 6-LP
VLPs are transported by a transcellular pathway, because
the transport of VLPs was inhibited by the treatment with
filipin, a modifier of lipid raft-associated membrane
transport. Clathrin-dependent pathways seem to be less
important because the treatment with chlorpromazine
had no significant effect on the transport of VLPs. Para-
cellular entry is unlikely to be involved in transport of
VLPs because the structure of ZO-1 and the permeability
of Dx 70k were not altered during VLP transport.

Our data partially support the results by Verma et al.
[16] which suggested that WNV crosses HBMVE cells
without altering the integrity of tight junction. The
authors concluded that WNV replicates in endothelial
cells and the progeny viruses are transported from the
apical to basolateral side. However, our data suggest that
WNV can be transported across endothelial cells without
viral replication. Cell type difference could be the most
reasonable explanation, because several studies showed
that there are differences between HBMVE cells and
HUVEC in the production of growth factors, immuno-
regulatory factors and adhesion molecules [37-39].
HBMVE cells and HUVEC differentially respond to

cytokine treatment resulting in the different cytokine
production and leukocyte recruitment [40,41]. Particu-
larly, modulation of adhesion molecules can affect endo-
cytosis [37]. Therefore, our data seem to reflect events
that can occur in peripheral tissues having tight junction
such as heart and muscles rather than in CNS.

In WNV-infected mice, viral replication in peripheral
tissues results in the inflammatory cytokine production
such as TNF-α, IL-6 and macrophage migration inhibi-
tory factor [42-45]. Although the role of these cytokines
in infection still remains controversial, vascular permea-
bility can be affected by the presence of these cytokines
[45]. One of the mechanisms for the impairment of vas-
cular permeability by these cytokines is disruption of
tight junctions of endothelial cells [46]. Promotion of
vesicular transport of endothelial cells, including pinocy-
tosis and transcytosis, is also affected by these cytokines
[47]. Paracellular invasion by disruption of the tight junc-
tion induced by cytokines could occur in vivo, however,
there is a possibility that WNV also utilizes a transcellular
pathway, which might be promoted by inflammatory
cytokines.

The analysis of VLPs with chimeric E proteins showed
that E protein determines the difference in the transport
across HUVEC between the 6-LP and Eg strains. Our
data also suggest that multiple amino acid residues of E
protein are influential. It has been well known that the
sequence NYS/T at the residues 154-156 is important for
glycosylation associated with the virulence of WNV and
that strains possessing proline at the residue 156 lack gly-
cosylation [10,31-33]. The prototype WNV strain B956
has a 4 amino acid deletion in the residues 156-159
resulting in absence of glycosylation [48]. The position of
glycosylation seems to be also important, since the WNI-
25 and WNI-25A strains which have N-glycosylation at
the residue 155, do not show neuroinvasive phenotype
[49,50]. The present study suggests that the combination
of Ser 156 and Val 159 is important for transport of VLPs
across endothelial cells, which might be associated with
the invasion of WNV into the target organs.

The transport of Eg P156 S VLPs was lower than that of
WT Eg VLPs in spite of the presence of glycosylation.
The residues 156-160 form two turns of α-helix, termed
αA', although E proteins of Dengue virus serotype 2
(DENV-2) and Tick-borne encephalitis virus (TBEV) lack
the amino acids 157-160 resulting in the absence of this
structure[51]. The α-helix shifts the glycosylation site
about 5 Å to the exterior and lateral surfaces of E protein
with respect to those of E proteins of DENV-2 and TBEV.
Davis et al. [52] showed that modulation of N-glycosyla-
tion of WNV E protein modified the attachment to DC-
SIGNR. As well as the existence of proline and the dele-
tion of the amino acids between the residues 156-160,
there is a possibility that the combination of amino acid

Figure 6 Glycosylation of E protein in wild type and mutant VLPs. 
293T cells were cotransfected with replicon RNA and plasmids encod-
ing structural genes or empty vector for mock control. The superna-
tants were collected and subjected to Western blotting with anti-WNV 
E protein monoclonal antibody.
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residues at 156 and 159 might affect the structure of αA'
and position of glycosylation site, resulting in modulation
of the binding affinity to a lectin or unknown binding
molecules on HUVEC. This, in turn, could be a reason for
the unsuccessful transport of Eg P156 S VLPs.

Conclusion
In this study, we propose a transcellular mechanism by
which WNV crosses endothelial cells and enters the tar-
get organs. We also suggest that higher transendothelial
migration ability could be one of the determinants of the
different virulence of the NY and Eg strains, and that this
depends on Ser 156 and Val 159 of E protein.

Methods
Cell culture
HUVEC were purchased from Lonza Group Ltd. and cul-
tured in EGM-2 Endothelial Cell Growth Medium-2 sup-
plemented with SingleQuots growth factors, cytokines
and supplements (Lonza). The cells at passage 5 were
used for experiments. Vero cells were cultured in Eagle's
minimum essential medium (MEM; Nissui, Tokyo, Japan)
supplemented with 5% fetal bovine serum (FBS; Sigma).
Baby hamster kidney (BHK) cells were cultured in MEM
supplemented with 10% FBS. HEK293T cells were cul-
tured in Dulbecco's Modified Eagle Medium (Nissui).

Plasmid Constructs
The WNV 6-LP and Eg strains were provided by Dr. I.
Takashima, Hokkaido University, Japan [15,34]. 6-LP
strain was established by plaque purification from WNV
NY99-6922 strain, which was isolated from mosquitoes
in 1999 [34]. Complement DNA (cDNA) of the structural
genes (C, prM/M and E) of the 6-LP and Eg strains were
prepared by RT-PCR and subcloned into pCXSN, which
was generated from pCMV-Myc (Takara Bio, Shiga,
Japan) by replacing the sequence of the Myc tag and mul-
ticloning site with restriction enzyme sites of Xho I, Sal I
and Not I. The resultant plasmids were designated
pCXSN 6-LP CME and pCXSN Eg CME, respectively. For
the construction of chimeric VLPs between 6-LP and Eg,
a Sma I site was generated by substitution of t to c (in 6-
LP) and a to g (in 6-LP and Eg) at nucleotide positions
460 and 463, respectively, of the prM gene by PCR. The
sequence containing the prM gene (nucleotides 461-555)
and E gene (nucleotides 1-1500) was digested by Sma I
and Not I from pCXSN 6-LP CME or pCXSN Eg CME
and inserted into pCXSN Eg CME or pCXSN 6-LP CME.
The resultant plasmids were designated pCXSN Eg CM
6-LP E and pCXSN 6-LP CM Eg E, respectively. The con-
structs for single or double mutant VLPs were generated
by PCR with pCXSN 6-LP CME or pCXSN Eg CME.

VLP preparation
WNV replicon cDNA construct (pWNR NS1-5 EG2 AN),
was generously provided by Dr. Peter W. Mason, Univer-
sity of Texas Medical Branch, USA [18]. WNVR NS1-5
EG2 AN encodes the nonstructural proteins (NS1-5) of
WNV 3356 strain isolated from American crow in 2000
[53], eGFP, autocatalytic foot-and mouth disease virus 2A
protease and neomycin phosphotransferase II under the
translational control of encephalomyocarditis virus inter-
nal ribosomal entry site. One μg of pWNR NS1-5 EG2
AN was linearized with Xba I and purified with a PCR
purification kit (QIAGEN Inc), followed by ethanol pre-
cipitation. WNV replicon RNA was produced with in
vitro transcription with an mMESSAGE mMASHINE T7
kit (Applied Biosystems) according to the manufacture's
instructions. BHK cells (5 × 106) were trypsinized,
washed three times with phosphate-buffered saline (PBS)
and resuspended in 450 μl of PBS. Then, 5 μg of replicon
RNA was added to the cell suspension and introduced by
using a GenePulser II elecroporation apparatus (Bio-Rad
Laboratories) at 750 V, 25 μF with the resistance set to ∞.
Cells were cultured in 10 cm dishes with MEM supple-
mented with 10% FBS for 24 h. The culture media were
replaced with Opti-MEM (Invitrogen) and incubated at
37°C for 30 min. The cells were transfected with 12 μg of
the plasmid encoding the sequence of WNV structural
genes by Lipofectamine (Invitrogen). After 48 h, superna-
tants were collected and cell debris was removed by cen-
trifugation at 1000 g for 5 min. The supernatants were
concentrated with Centriplus (Millipore). For the IFU
assay, Vero cells in 24 well plates were infected with serial
10-fold dilutions of VLP preparations. After a 1 h incuba-
tion at 37°C, the solutions were removed and replaced
with the culture media. After 48 h p.i., the number of
VLPs-infected cells was counted by eGFP signals and the
IFU value was calculated.

Monolayer cultures of HUVEC and transport assay of VLPs
HUVEC were seeded in transwell inserts for 24 well
plates with polycarbonate membranes having 0.4 μm
pores (Millipore). The media volumes were 200 μl for
transwells and 700 μl for the lower chambers, respec-
tively. The cells were cultured for 3 days and the integrity
of tight junctions was evaluated by measuring TEER
using a Millicell ERS (Millipore). The wells showing
TEER elevation (more than 66 Ωcm2) were used for
experiments. For VLPs transport assay, HUVEC were
exposed to 4 × 104 IFU/transwell of VLPs (2 m.o.i.). The
media in the lower chambers were collected at the indi-
cated time points and subjected to the IFU assay on Vero
cells.
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Immunofluorescence of ZO-1
HUVEC seeded in transwells were exposed with 6-LP
VLPs or treated with TNF-α. After 24 h, the cells were
washed with PBS once and fixed with 4% paraformalde-
hyde (PFA) in PBS for 10 min at room temperature. After
washing with PBS three times, the cells were permeabi-
lized with 0.1% Triton X-100 in PBS and blocked with 2%
bovine serum albumin in PBS (blocking solution) for 15
min at room temperature. The primary antibody incuba-
tion was performed overnight at 4°C with rabbit antise-
rum to human ZO-1 (BD Transduction Laboratories)
diluted at 1:1000 in blocking solution. Then the cells were
washed with PBS three times, and Alexa 488 conjugated
donkey anti-rabbit IgG antibodies (Invitrogen) were
added at 1:1000 dilution in blocking solution for a 1 h
incubation at room temperature. After a PBS wash, the
membranes were cut from transwell, placed on cover
glasses and observed by fluorescent microscopy.

70k Dextran transfer assay
Fluorescein (FITC)-labeled 70k Dx (Invitrogen) was
added into HUVEC with 6-LP VLPs, TNF-α (positive
control) or media (negative control). After 24 h incuba-
tion at 37°C, 100 μl of medium was collected from each
well and transferred into a 96-well plate. The FITC signal
was read by a fluorescent plate reader, Mithras LB940
(Berthold). The relative transfer of 70k Dx was calculated
by dividing the FITC signal of samples incubated with 6-
LP VLPs or TNF-α by the mean of the signal of the nega-
tive control. The relative transfer of 70k Dx in the nega-
tive control was defined as 1.

Effect of endocytosis inhibitors on the transport of 6-LP 
VLPs
For stock solutions, chlorpromazine (Sigma) and filipin
III (Sigma) were dissolved in dimethyl sulfoxide (DMSO)
at 5 and 1 mg/ml, respectively. HUVEC in transwells were
preincubated with the inhibitor at the indicated concen-
tration for 30 min, and exposed to 6-LP VLPs for 24 h.
For the control, DMSO was added in the media at con-
centration of 0.1%. The evaluation of the transported
VLPs was performed as described above. The integrity of
monolayer of HUVEC was confirmed by the 70k Dx
transfer assay described above.

Western blotting for E protein
Wild type or mutant VLPs were produced with 293T cells
as described above. Supernatants from cell cultures were
subjected to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and Western blotting with a mouse
monoclonal antibody to WNV E protein clone 3.91 D
(Millipore) for the primary antibody and horseradish per-
oxidase (HRP)-conjugated goat antibodies to mouse
immunoglobulin (1:5,000 dilution; Biosource). The
immunocomplex was visualized with Immobilon™ West-

ern chemiluminescent HRP substrate (Millipore) and
LAS-1000 mini (FIJIFILM, Tokyo, Japan).

Statistical analysis
Quantitative data are expressed as means ± standard
deviation (SD) and were compared with Student's t test.
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