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Abstract
Background: The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from 
invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their 
host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, 
ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign 
enteric bacteria exerting pathogenic effects.

Results: We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in 
conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy 
moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate 
innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. 
Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of 
larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate 
immune response (eicosanoid inhibitors and antioxidants) increased the host's survival time following ingestion of B. 
thuringiensis.

Conclusions: This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response 
of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates 
and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among 
B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to 
decipher mechanisms of sepsis associated with bacteria of gut origin.

Background
The gut epithelium and its associated microorganisms
provide an important barrier that protects animals from
the external environment. This barrier serves both to pre-
vent invasion by potential pathogens and limit the elicita-
tion of host responses to the resident microbiota [1,2].
Dysfunction of this barrier, which can occur as a result of
alterations of the normal gut ecology, impairment of host
immune defenses, or physical disruption of intestinal epi-
thelia, may lead to pathological states [3-6].

To breach the gut barrier, many enteric pathogens have
evolved specific strategies such as production of toxins
that physically disrupt cells of the gut epithelium [7-11].

B. thuringiensis kills insects through the production of
such toxins, designated insecticidal crystal proteins. Fol-
lowing ingestion of B. thuringiensis by susceptible larvae,
these toxins initiate killing of insects through a multi-step
process that includes the formation of pores and lysis of
midgut epithelial cells [12-15]. Despite a detailed under-
standing of the mechanisms of toxin binding and disrup-
tion of the midgut epithelium, we know less about the
subsequent events that cause larval mortality. Three
mechanisms, which account for differences among host
responses, have been suggested as the ultimate cause of
larval death. The first, in which larvae die from toxin
ingestion within hours or a day, is attributed to direct tox-
emia [13,16,17]. The second, in which prolonged feeding
on B. thuringiensis leads to developmental arrest and
eventual death is thought to occur by starvation [18-20].
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The third, and most commonly cited mechanism is sepsis
due to the growth of B. thuringiensis in the hemocoel fol-
lowing translocation of spores from the toxin-damaged
gut into the hemolymph [12,13,21,22]. However, despite
numerous reports of growth of B. thuringiensis in dead or
moribund larvae [23-26], there is little evidence of B. thu-
ringiensis proliferation in insect hemolymph prior to
death. In addition, the proposed mechanism of death by
B. thuringiensis bacteremia is not supported by the ability
of cell-free preparations of toxin [12,17,27], direct injec-
tion of some activated toxins into the hemocoel [28], or
transgenic plant tissue producing the toxin [29] to kill lar-
vae without the B. thuringiensis bacterium itself.

Previously, we demonstrated that B. thuringiensis toxin
had substantially reduced ability to kill gypsy moth and
three other species of lepidopteran larvae that had been
treated with antibiotics, and that ingestion of an enteric-
derived bacterium significantly increased lethality of sub-
sequent ingestion of B. thuringiensis [30,31]. We
observed that the enteric bacterium, Enterobacter sp.
NAB3, grew to high population densities in vitro in
hemolymph extracted from live gypsy moth larvae,
whereas B. thuringiensis was rapidly cleared, which is
inconsistent with the model of B. thuringiensis bactere-
mia as a cause of larval death. However, these results did
not distinguish between the possibilities that gut bacteria
contribute to B. thuringiensis-induced lethality by bacter-
emia or by another mechanism.

There is increasing recognition that an important fea-
ture of gut microbiota of both invertebrates and verte-
brates is their ability to shape and modulate the host
immune response [32-36]. In certain circumstances this
effect can become deleterious to the host. For instance,
uncontrolled activation of the immune response by
enteric bacteria leads to chronic infection and pathogene-
sis in both invertebrates and vertebrates [37-39]. Interest-
ingly, some recent studies have also linked activation of
the immune response of Lepidoptera to ingestion of non-
lethal doses of B. thuringiensis. For example, ingestion of
low doses of B. thuringiensis by Galleria mellonella larvae
increased both oxidative stress levels in the gut [40] and
the phagocytic activity of hemocytes [41]. In Trichoplusia
ni larvae, exposure to B. thuringiensis reduced both the
numbers of hemocytes and components of the humoral
immune response (antimicrobial peptides and phenoloxi-
dase activity) [42]. It remains unclear what effectors trig-
ger this immune modulation, and the contribution of
enteric bacteria to this response is not known. Modula-
tion of the host immune response could be an indirect
mechanism by which gut microbiota alter susceptibility
to B. thuringiensis.

As an initial step to distinguish between a direct or
host-mediated role of gut microbiota in larval death fol-
lowing the ingestion of B. thuringiensis, we examined the

possible association between the host immune response
and larval susceptibility to B. thuringiensis.

Results
Effects of intra-hemocoelic injection of B. thuringiensis and 
Enterobacter sp. NAB3 on larval hemolymph
Injections of greater than 107 cells of an over-night cul-
ture of either B. thuringiensis or Enterobacter sp. NAB3
into the hemocoel of gypsy moth larvae led to a pro-
nounced cellular and humoral immune response (Figure
1). In hemolymph sampled from larvae 24 h after injec-
tion of Enterobacter sp. NAB3, melanization of plasma
and aggregation of hemocytes [43,44] were evident (Fig-
ure 1b). Hemocyte aggregation was also observed in
hemolymph samples from larvae injected with B. thuring-
iensis (Figure 1c), though these aggregates appeared
smaller than aggregates from larvae injected with Enter-
obacter sp. NAB3. Hemocyte aggregation was not
observed in hemolymph sampled from control larvae
(Figure 1a).

Effects of ingestion of B. thuringiensis on larval 
hemolymph and mortality
We examined hemocytes and hemolymph in larvae con-
taining enteric bacteria following oral ingestion of B. thu-
ringiensis cells and toxin (Table 1). Microscopic
examination of larval hemolymph revealed that the num-
ber of hemocytes declined following ingestion of B. thur-
ingiensis. Defects in larval hemocytes were commonly
observed within 14 h of ingestion of B. thuringiensis. This
decrease in hemocyte abundance and appearance of
defects occurred in advance of larval mortality. At 24 h
post-ingestion of B. thuringiensis, larval mortality
remained below 10%, even though 75% of samples con-
tained fewer hemocytes and hemocytes with abnormali-
ties (Table 1). Hemocytes from control larvae displayed
no abnormalities and no larval mortality was observed
(Figure 2; see also additional file 1). The hemolymph of
uninfected larvae contained hemocytes, predominantly
plasmatocytes and granulocytes, which displayed no
abnormal characteristics. Moreover, these plasmatocytes
retained the ability to adhere to a glass surface and form
pseudopodia (Figure 2, left panel and insets). The plasma
of control larvae remained free of debris or discoloration
in samples taken over the course of the assay period, and
no bacteria were observed over the course of the assay. In
contrast, hemocytes from larvae fed B. thuringiensis were
greatly reduced in number, lacked adhesive properties,
and contained refractive inclusions and signs of mem-
brane disruption (Figure 2, center panel and insets). As
the number of hemocytes decreased, the plasma dark-
ened and granular material or debris accumulated in
samples (Figure 2, center and right panels). The loss of
nearly all hemocytes corresponded with the onset of lar-
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val death (Table 1) and the appearance of B. thuringiensis
cells in hemolymph samples (Figure 2, right panel and
insets).

Effects of bacterial components capable of eliciting 
immune responses on larval susceptibility to B. 
thuringiensis toxin
Our observation that B. thuringiensis ingestion affected
cellular immunity suggested the hypothesis that gut bac-
teria exert their effect on larval susceptibility to B. thur-
ingiensis in part through stimulation of the host immune
response. To determine whether bacterial cell compo-
nents mediated B. thuringiensis-induced killing, we
examined the effect of cell extracts known to trigger
immune reactions in many invertebrate and vertebrate
hosts, including Lepidoptera, [45-49] on gypsy moth sus-
ceptibility to B. thuringiensis. We examined the effect of
commercial and purified lipopolysaccharide preparations
and various peptidoglycan-derived compounds on larval
mortality when co-administered with B. thuringiensis. As
shown previously [30,31], rearing larvae on antibiotics
reduced their susceptibility to B. thuringiensis (MVPII, p
= 0.0202; Dipel, p < 0.0001, Table 2), and Enterobacter sp.
NAB3 accelerated mortality of larvae fed B. thuringiensis
plus antibiotics in assays using either B. thuringiensis
Cry1Ac toxin (MVPII) or viable B. thuringiensis cells and
toxins (DiPel) (Figure 3, Table 2; see also additional files 2
and 3). Feeding peptidoglycan from Gram-negative bac-
teria, solubilized by pre-treatment with lysozyme, in
combination with B. thuringiensis reduced time to death
of antibiotic-reared larvae (Figure 3, Table 2). Regardless
of the B. thuringiensis formulation, the lysozyme-treated
peptidoglycan accelerated mortality of antibiotic-treated
larvae, and the effect of the lysozyme-treated peptidogly-
can was not significantly different from Enterobacter sp.
NAB3 (Figure 3). Restoration of killing by peptidoglycan
was not affected by the addition of lipopolysaccharide to
either B. thuringiensis formulation. There was no effect of
either crude (peptidoglycan-contaminated [50]) or puri-
fied lipopolysaccharide or non-lysozyme treated-poly-
meric peptidoglycan on larval mortality with B.
thuringiensis in antibiotic-treated larvae. Ingestion of
monomeric peptidoglycan (tracheal cytotoxin) signifi-
cantly accelerated mortality of larvae reared on antibiot-
ics and treated with the live cell formulation of B.
thuringiensis (DiPel, Figure 3, Table 2), but not with B.
thuringiensis toxin alone (MVPII, Table 2).

In the absence of antibiotics, larvae were highly suscep-
tible to the live cell formulation of B. thuringiensis and
the addition of bacterial compounds had no effect on lar-
val survival rates (Table 2). However, the addition of
Enterobacter sp. NAB3 and peptidoglycan fragments
derived from bacteria accelerated mortality caused by B.
thuringiensis toxin alone (MVPII, Figure 3). Neither

Figure 1 Effect of intra-hemocoelic injection of Enterobacter sp. 
NAB3 or B. thuringiensis cells on hemocytes of gypsy moth larvae. 
(a) 10 μl of PBS, (b) approximately 107 cells of Enterobacter sp. NAB3 or 
(c) B. thuringiensis (non-sporulated) were introduced into three sepa-
rate cohorts of 4th-instar larvae (n = 10 each). Representative images of 
samples from each treatment are shown. To monitor the growth of in-
jected bacteria, hemolymph samples were removed after 24 h and ob-
served by light microscopy at 40×. Hemocytes from uninfected larvae 
were scattered randomly in the microscope field (a). In contrast, large 
aggregates of hemocytes were observed in samples from larvae inject-
ed with NAB3 (b) and smaller aggregates in samples from larvae inject-
ed with B. thuringiensis (c).
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preparation of lipopolysaccharide nor peptidoglycan that
had not been treated with lysozyme affected mortality
induced by the cell-free formulation of B. thuringiensis
toxin (MVPII, Table 2).

Effect of eicosanoid inhibitors and antioxidants on larval 
mortality associated with ingestion of B. thuringiensis toxin
To further test the hypothesis that larval susceptibility to
B. thuringiensis toxin is modified by the host immune
response to components of enteric bacteria, we fed larvae
compounds previously demonstrated to inhibit the
humoral and cellular immune responses of insects. Spe-
cifically, inhibitors of reactive oxygen and nitrogen spe-
cies, phenoloxidase, and eicosanoid biosynthesis were fed
to larvae to assess their effect on larval susceptibility to B.
thuringiensis toxin. Five compounds, acetylsalicylic acid,
indomethacin, glutathione, N-acetyl cysteine, and S-
methyl-L-thiocitrulline, delayed mortality compared to
larvae fed B. thuringiensis toxin alone. None of the com-
pounds significantly affected final mortality and six had
no effect on either the final mortality or survival time of
larvae fed B. thuringiensis (Table 3).

Dose-response assays with acetylsalicylic acid, glutathi-
one, piroxicam, and indomethacin demonstrated com-
plex relationships between inhibitor concentration and
larval survival (Figure 4; see also additional file 4). Acetyl-
salicylic acid extended larval survival in the presence of B.
thuringiensis toxin, but only at the high concentration
(100 μg); the survival time of larvae treated with lower
concentrations did not differ significantly from toxin
alone. Most of the concentrations of indomethacin and
glutathione that we tested increased larval survival time
following ingestion of a lethal dose of B. thuringiensis
toxin (Figure 4). Survival times of larvae treated with the
highest concentrations of indomethacin and glutathione

(100 μg and 12 μg, respectively) did not differ signifi-
cantly from those treated with toxin alone.

Discussion
Four lines of evidence indicate that the innate immune
response is involved in B. thuringiensis-induced mortality
of L. dispar. First, injections of B. thuringiensis and Enter-
obacter sp. NAB3 into the insect hemocoel were accom-
panied by melanization and hemocyte aggregation, both
of which are indicators of an activated innate immune
response. Second, as demonstrated here and reported by
Ericsson et al. [42], depletion of hemocytes, the key
actors of the cellular immune response of insects, was
observed following B. thuringiensis ingestion in the
absence of bacteremia. Third, fragments of peptidogly-
can, an inducer of innate immunity, substituted for Enter-
obacter in accelerating killing of antibiotic-treated larvae
with B. thuringiensis. Fourth, antioxidants and com-
pounds that inhibit eicosanoid biosynthesis, and thereby
suppress the innate immune response, delayed B. thuring-
iensis-induced mortality.

Based on these results, we propose the hypothesis that
B. thuringiensis incites an overblown innate immune
response, in cooperation with other factors, which in turn
contributes to host death. This immune induction either
requires the normal gut microbiota or is directly sup-
pressed by antibiotic treatment, and is restored to antibi-
otic-treated larvae by addition of bacteria or
immunostimulatory cell fragments. This model is
derived, in part, from the mechanism of mammalian sep-
sis in which gut-derived microbiota serve as both sources
of infectious bacteria and modulators of the innate
immune system [51-54]. Germ-free mammals are less
susceptible to sepsis, just as gypsy moth larvae lacking
enteric bacteria are less susceptible to B. thuringiensis

Table 1: Temporal sequence of effects of ingestion of a low dose of live cell formulation of B. thuringiensis (DiPel 10 IU) on 
condition of hemocytes and larval mortality in third-instar gypsy moth.

Time (h) Larvae with hemocyte abnormalitiesa (proportion) Hemocyte ratingb Larval mortality (proportion)

No treatment Bt No treatment Bt No treatment Bt

0 0.00 0.00 +++ +++ 0.00 0.00

14 0.00 0.40 +++ ++ 0.00 0.02

24 0.00 0.75 +++ + 0.00 0.07

32 0.00 0.87 +++ +/- 0.00 0.15

a n = 5 for each treatment.
b Rating scale:
+++: hemocytes entire, adhesive properties
++: some hemocytes, inclusions present
+: very few hemocytes, ruptured cells
-: no hemocytes
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[53,55-57]. Further support for our model can be derived
from recent work demonstrating that ingestion of non-
pathogenic bacteria can induce the immune response of
lepidopteran larvae [58]. This suggests that the microbi-
ota are capable of altering the immune status of larvae
without crossing the gut epithelium and could thus influ-
ence the host response to pathogenic bacteria. Addition-
ally, Ericsson et al. [42] reported that reductions in the
larval immune response following ingestion of a low dose
of B. thuringiensis correlated with lower susceptibility to
subsequent ingestion of B. thuringiensis. Taken together,
these data provide support for the hypothesis that the
host innate immune response contributes to pathogene-
sis and killing by B. thuringiensis.

We cannot rule out other factors that might co-vary
with innate immunity. Many pharmaceutical inhibitors
have non-specific effects on animals that may confound
interpretation of the results [59-61]. While eicosanoids
mediate various cellular reactions responsible for clearing
bacterial infections from hemolymph circulation and are
induced in Lepidoptera in response to bacterial challenge
[62-64], they also have other physiological functions
including ion transport and reproduction [60,65]. Thus, it
is possible that the compounds we used have a direct
effect on the health of the insect gut or affect another cel-
lular process that, in turn, influences larval susceptibility
to B. thuringiensis. Nevertheless, it is notable that we
observed significantly delayed mortality with the antioxi-
dant glutathione and in the presence of diverse com-

Figure 2 Effect of ingestion of B. thuringiensis (DiPel 50 IU) on larval hemocytes. Third-instar gypsy moth larvae were fed either distilled water 
or 50 IU of DiPel (n = 50). Hemolymph was sampled from a separate cohort of five larvae of each treatment at 0, 14, 24, and 32 h post-infection and 
examined by light microscopy (40×). Representative images are shown, including magnification of individual hemocytes (inset). No differences were 
observed among larvae from different treatments at 0 h (Additional file 1). Hemocytes from control larvae are adherent and emit pseudopodia (left 
panel). In contrast, hemocytes from larvae that ingested B. thuringiensis are non-adherent and contain inclusions (center panel). At the time points 
sampled, the majority of larvae fed B. thuringiensis were still alive. When present, dead larvae that had been fed B. thuringiensis were also sampled (right 
panel). In dead larvae, only a few abnormal hemocytes were detected and B. thuringiensis cells were present (right panel, insets). No mortality was 
observed in the controls that were not fed B. thuringiensis. Mortality values of control and B. thuringiensis-treated larvae corresponding to each time 
point are shown in Table 1.
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Table 2: Effects of bacterial cell-derived immune elicitors on susceptibility of third-instar gypsy moth larvae reared 
without enteric bacteria (antibiotics) or with enteric bacteria (no antibiotics) to B. thuringiensis (Bt).

a) Bt cell preparation (DiPel, 50 IU)

Reared without antibiotics Reared with antibiotics

Rearing treatment Elicitor added to B. thuringiensis Bt alone Bt alone

No Antibiotics Bt alone -- < 0.0001

No Antibiotics Enterobacter sp. NAB3 0.6882 < 0.0001

Antibiotics Enterobacter sp. NAB3 0.0956 < 0.0001

No Antibiotics Crude lipopolysaccharide 0.8231 < 0.0001

Antibiotics Crude lipopolysaccharide 0.0001 0.4942

No Antibiotics Purified lipopolysaccharide 0.7268 < 0.0001

Antibiotics Purified lipopolysaccharide < 0.0001 0.5731

No Antibiotics Bacillus cereus peptidoglycan 0.0582 0.0100

Antibiotics Bacillus cereus peptidoglycan 0.0065 0.7331

No Antibiotics Vibrio fisheri peptidoglycan 0.1092 < 0.0001

Antibiotics Vibrio fisheri peptidoglycan 0.0010 0.1276

No Antibiotics Tracheal cytotoxin 0.0539 < 0.0001

Antibiotics Tracheal cytotoxin 0.4070 < 0.0001

No Antibiotics Lysozyme-digested V. fisheri 
peptidoglycan

0.2622 < 0.0001

Antibiotics Lysozyme-digested V. fisheri 
peptidoglycan

0.2356 < 0.0001

No Antibiotics Lysozyme-digested V. fisheri 
peptidoglycan + purified 
lipopolysaccharide

0.1120 < 0.0001

Antibiotics Lysozyme-digested V. fisheri 
peptidoglycan + purified 
lipopolysaccharide

0.2328 0.0002

b) Bt Cry1Ac toxin (MVPII, 20 ug)

Reared without antibiotics Reared with antibiotics

Rearing treatment Elicitor added to B. thuringiensis Bt alone Bt alone

No Antibiotics Bt alone -- 0.0202

No Antibiotics Enterobacter sp. NAB3 < 0.0001 < 0.0001

Antibiotics Enterobacter sp. NAB3 0.7182 0.0002

No Antibiotics Crude lipopolysaccharide 0.6689 0.0919

Antibiotics Crude lipopolysaccharide 0.0440 0.8517

No Antibiotics Purified lipopolysaccharide 0.8138 0.0038

Antibiotics Purified lipopolysaccharide 0.0456 0.5915

No Antibiotics Bacillus cereus peptidoglycan 0.0651 < 0.0001

Antibiotics Bacillus cereus peptidoglycan 0.0264 0.1951

No Antibiotics Vibrio fisheri peptidoglycan 0.5111 0.0056

Antibiotics Vibrio fisheri peptidoglycan 0.0196 0.8623

No Antibiotics Tracheal cytotoxin 0.9977 0.0116
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pounds that suppress the synthesis of eicosanoids. The
immune-suppressive compounds inhibit a variety of
enzymes in eicosanoid biosynthesis, and all delay killing
by B. thuringiensis, reducing the probability that the bio-
logical effects are due to a secondary activity of the phar-
maceuticals. Moreover, peptidoglycan fragments, which
induce the innate immune response, caused more rapid
mortality in insects that had been treated with antibiot-
ics.

Similarly, there is growing evidence that diverse classes
of antibiotics, including the four used in this study, have
immunomodulatory effects in addition to their antimi-
crobial activity [66]. While the immunomodulatory
mechanisms of antibiotics are not fully understood, there
is evidence that some directly reduce the host immune
response, whereas others limit the release of immune-
inducing bacterial components [67]. Further experiments
are needed to fully differentiate the extents to which the
reduction in susceptibility to B. thuringiensis when larvae
are reared on antibiotics is due to the absence of gut bac-
teria or an immuno-suppressive effect of antibiotics. In
the latter case, the re-introduction of bacteria, such as
Enterobacter sp. NAB3, would likely stimulate the host
immune response, and thus our current results do not
permit us to separate these two possibilities. In either
case, an immunomodulatory effect of antibiotics would
further support a contribution of the host immune
response in larval susceptibility to B. thuringiensis.

This is the third study, each with a different lepi-
dopteran species, to report that ingestion of B. thuringi-
ensis leads to alterations in hemocytes [41,42]. It remains
unclear, however, whether the observed changes in
hemocytes directly contribute to larval mortality or if
they merely reflect changes in immune status. Interest-
ingly, Ericsson et al. [42] reported that T. ni larvae resis-
tant to B. thuringiensis had significantly fewer hemocytes
than did susceptible larvae. Further experiments are

needed to determine whether hemocytes are functionally
required in susceptibility. Such experiments should
include a comparison of the effect of ingestion of B. thur-
ingiensis on hemocytes between larvae with and without
enteric bacteria. In addition, while our work shows that
immunogenic peptidoglycan fragments can restore B.
thuringiensis susceptibility in larvae lacking gut bacteria,
we do not know whether co-ingestion of peptidoglycan
and B. thuringiensis leads to changes in hemocytes, nor
have we identified the final immune effectors of B. thur-
ingiensis-induced killing. However, the delayed mortality
of larvae fed B. thuringiensis in combination with some
antioxidants and eicosanoid inhibitors suggests that pro-
duction of reactive oxygen species could be involved.
Interestingly, hemocytes have been shown to be key regu-
lators of the oxidative burst upon infection, particularly
by promoting activation of the phenoloxidase cascade
[68,69], which might be caused by hemocyte rupture
[70,71].

The parallels between the progression of disease and
mortality caused by B. thuringiensis with that in mamma-
lian sepsis are noteworthy. Disease and death associated
with mammalian sepsis are believed to be caused by
uncontrolled host production of local immune mediators
leading to local and systemic inflammatory responses
[52,72,73]. Peptidoglycan induces the innate immune sys-
tem of both invertebrates and vertebrates [45-49] and
contributes to both sepsis and B. thuringiensis-induced
killing in gypsy moth larvae. Eicosanoids and reactive
oxygen and nitrogen species are critical in the innate
immune response in mammals and treatments for sepsis
often target these compounds [59,74-77]. In gypsy moth
larvae, inhibitors of eicosanoid biosynthesis and antioxi-
dants prevent or slow disease progress, suggesting a role
of innate immunity.

There is increasing evidence that diseases of animals
are frequently caused by multiple microbial species.

Antibiotics Tracheal cytotoxin 0.0188 0.8914

No Antibiotics Lysozyme-digested V. fisheri 
peptidoglycan

< 0.0001 < 0.0001

Antibiotics Lysozyme-digested V. fisheri 
peptidoglycan

0.7613 0.0001

No Antibiotics Lysozyme-digested V. fisheri 
peptidoglycan + purified 
lipopolysaccharide

0.0005 < 0.0001

Antibiotics Lysozyme-digested V. fisheri 
peptidoglycan + purified 
lipopolysaccharide

0.5645 < 0.0001

Two formulations of B. thuringiensis, DiPel 50 IU (a) and MVPII 20 μg (b), were assayed. The significance (p-values) of the log-rank test 
comparing larval mortality of each experimental treatment group to Bt alone or Bt alone when reared with antibiotics is shown.

Table 2: Effects of bacterial cell-derived immune elicitors on susceptibility of third-instar gypsy moth larvae reared 
without enteric bacteria (antibiotics) or with enteric bacteria (no antibiotics) to B. thuringiensis (Bt). (Continued)
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These polymicrobial infections often include members of
the indigenous microbiota and lead to complex interac-
tions with the host immune system [74]. Using Droso-
phila as a model of cystic fibrosis, Sibley et al. [78]
demonstrated that pathogenicity depends on synergy
between Pseudomonas aeruginosa and members of the
oropharyngeal microbiota. Even in the absence of infec-
tion changes in the gut immune response can lead to
pathogenic states associated with an imbalance in com-
position of the gut microbiota [32].

Our results are consistent with the hypothesis that the
effect of gut bacteria on host killing following ingestion of
B. thuringiensis in antibiotic-treated larvae is mediated by

the innate immune response. Further experiments,
including direct monitoring of the immune response of
larvae, are needed to identify the specific defense
responses induced following ingestion of B. thuringiensis
and the impact of antibiotic treatment and enteric bacte-
ria on these events.

Conclusion
We demonstrate that larvae fed B. thuringiensis die prior
to observable growth of bacteria in the hemolymph. An
immuno-stimulatory compound, fragments of Gram-
negative peptidoglycan, confers B. thuringiensis toxin-
induced killing in the absence of indigenous enteric bac-

Figure 3 Survival of third-instar gypsy moth larvae reared without enteric bacteria (antibiotics) or with enteric bacteria (no antibiotics) fed 
bacterial cell-derived compounds and B. thuringiensis (Bt). Two formulations of B. thuringiensis, DiPel 50 IU (upper) and MVPII 20 μg (lower), were 
assayed. All experimental treatments were provided on artificial diet without antibiotics, gray shading indicates days on which larvae received treat-
ments. The effects of the compounds were assessed in comparison to B. thuringiensis toxin and significance of treatments was determined using the 
log-rank analysis of PROC LIFETEST (SAS 9.1, Table 2, Additional file 2). Treatments with a survival distribution function that differ significantly from B. 
thuringiensis toxin alone (p < 0.05) are shown; p-values of all treatments are presented in Table 2. Three independent cohorts of larvae were assayed. 
No mortality was observed when larvae were fed the compounds alone (Additional file 3).
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teria. Conversely, inhibitors of the innate immune
response delay mortality of larvae following ingestion of
B. thuringiensis toxin. We propose the hypothesis that the
resident gut bacteria in gypsy moth larvae induce an
innate immune response that contributes to B. thuringi-
ensis toxin-induced killing, suggesting a parallel with
mammalian sepsis in which gut bacteria contribute to an
overblown innate immune response that is ultimately
lethal to the host.

Methods
Insects and rearing conditions
Eggs of L. dispar were obtained from USDA-APHIS. All
eggs were surface sterilized with a solution of Tween 80
(polyoxyethylene sorbitan monooleate), bleach, and dis-
tilled water as previously described [79]. Larvae were
reared in 15-mm Petri dishes on sterilized artificial diet
(USDA, Hamden Formula) or sterilized artificial diet
amended with antibiotics (500 mg/L of diet each penicil-
lin, gentamicin, rifampicin, streptomycin). Larvae were
reared under 16:8 (L:D) photoperiod at 25°C.

Bacterial products and chemicals
Two commercial formulations of B. thuringiensis, alone
and in combination with various bacterial products and

compounds, were used in assays. The DiPel® TD formula-
tion consisted of cells, toxins (Cry1Aa, Cry1Ab, Cry1Ac,
and Cry2A), and spores of B. thuringiensis subsp. kurstaki
(Valent Biosciences, Libertyville, IL, USA). The MVPII
formulation (DOW Agrosciences, San Diego, CA, USA)
is comprised of Cry1Ac toxin encapsulated in NaCl-killed
Pseudomonas fluorescens. Enterobacter sp. NAB3, a strain
originally isolated from the midguts of gypsy moth larvae
feeding on sterile artificial diet [80], was grown with
shaking overnight in 1/2-strength tryptic soy broth at
28°C. The overnight culture was washed once and resus-
pended in 1× PBS (106 cells/μl) prior to use in assays.

Lysozyme and lipopolysaccharide from Escherichia coli
0111:B4 were obtained from commercial sources (Sigma-
Aldrich, St. Louis, MO). Peptidoglycan-free purified E.
coli lipopolysaccharide, polymeric diaminopimelic
(DAP)-type peptidoglycan from Vibrio fisheri, and mono-
meric DAP-type peptidoglycan, also called tracheal cyto-
toxin, from Bordetella pertussis were kindly provided by
the laboratories of William E. Goldman and Margaret J.
McFall-Ngai. Peptidoglycan from Bacillus cereus was
provided by S. Brook Peterson [81]. The following chemi-
cals were obtained from Sigma-Aldrich, St. Louis, MO:
acetylsalicylic acid, dexamethasone, esculetin, glutathi-
one, indomethacin, N-acetyl-cysteine, phenylthiourea,

Table 3: Effect of immune inhibitors on susceptibility of third-instar gypsy moth larvae reared without antibiotics to B. 
thuringiensis toxin (MVPII; 20 μg).

Total Mortality (mean proportion ± SE)

Compound added to
B. thuringiensis toxin 

(MVPII)

Compound activity Compound 
concentration

N without
B. thuringiensis

with
B. thuringiensis

Significance
(p-value) of

rank analysis

B. thuringiensis toxin 
control

48 0.06 ± 0.02 0.92 ± 0.15 a

Acetylsalicylic acid Eicosanoid inhibitor (COX) 100 μg 36 0.00 ± 0.00 0.81 ± 0.16 ab 0.0396

Dexamethasone Eicosanoid inhibitor (PLA2) 100 μg 24 0.00 ± 0.00 0.79 ± 0.19 ab 0.4519

Indomethacin Eicosanoid inhibitor (COX) 10 μg 48 0.04 ± 0.04 0.83 ± 0.14 ab 0.0056

Esculetin Eicosanoid inhibitor (LOX) 100 μg 24 0.00 ± 0.00 0.83 ± 0.18 ab 0.9757

Piroxicam Eicosanoid inhibitor (COX) 100 μg 36 0.04 ± 0.02 0.94 ± 0.18 a 0.2417

Glutathione Nitric oxide scavenger, 
phenoloxidase inhibitor

1.2 μg 36 0.02 ± 0.02 0.72 ± 0.14 ab 0.0154

N-acetyl cysteine Reactive oxygen 
scavenger

100 mM 36 0.03 ± 0.01 0.86 ± 0.15 a 0.0286

Phenylthiourea Nitric oxide scavenger, 
phenoloxidase inhibitor

75 mM 36 0.03 ± 0.03 0.81 ± 0.15 ab 0.3382

S-methyl-L-thiocitrulline Nitric oxide scavenger 100 mM 36 0.03 ± 0.02 0.83 ± 0.15 ab 0.0245

Tannic acid Phenoloxidase inhibitor 100 μg 24 0.00 ± 0.00 0.79 ± 0.19 ab 0.2740

S-nitroso-N-acetyl-l, l-
penicillamine

Nitric oxide donor 100 mM 36 0.00 ± 0.00 0.94 ± 0.18 a 0.4409

The value N refers to the total number of larvae tested per treatment. There were no effects by these compounds without B. thuringiensis. Log-
rank analysis was used to compare larval survival for each concentration of inhibitor, treatments with a p-value < 0.05 were considered 
significantly different from Bt toxin alone. Mean mortality values followed by the same letter do not differ significantly from each other.
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piroxicam, S-methyl-L-thiocitrulline, tannic acid, S-
nitroso-N-acetyl-I, I-penicillamine.

Intra-hemocoelic injections and hemolymph sampling
Fourth instar larvae were anesthetized by chilling on ice
for 15 min, then surface sterilized with 95% ethanol
(EtOH). Injections were performed with a 20-μl fixed-
volume pipette and a snipped 200-μl pipette tip fitted
with a 27-gauge needle. The syringe needle was inserted
into the ventral abdomen between the first and second
pair of prolegs, keeping the needle parallel to the body

wall to avoid injuring the alimentary canal. Control larvae
were injected with 10 μl of phosphate buffered saline
(PBS). Experimental larvae were injected with 10 μl of a
washed culture of Enterobacter sp. NAB3 or B. thuringi-
ensis subsp. kurstaki adjusted to a concentration of 106

cells/μl. Larvae were maintained in 15 mm Petri plates by
treatment group (n = 10) and provided with unamended
sterile artificial diet for the duration of the assay. Hemo-
lymph samples from larvae of each treatment were exam-
ined for bacteria 24 h after injection. Hemolymph was
collected by piercing the last abdominal proleg with a 27-

Figure 4 Effect of antioxidants and eicosanoid inhibitors on survival of third-instar gypsy moth larvae following ingestion of B. thuringien-
sis toxin (Bt; MVPII 10 μg). Various concentrations of three COX inhibitors (acetylsalicylic acid, indomethacin, and piroxicam) and the antioxidant glu-
tathione were fed to larvae in combination with 10 μg of the MVPII formulation of B. thuringiensis toxin. Larvae were reared with enteric bacteria (no 
antibiotics) and all treatments were provided on artificial diet without antibiotics; gray shading indicates days on which larvae received treatments. 
Three independent cohorts of larvae (n = 12-16 each) were assayed. No mortality was observed when larvae were fed the compounds alone (Addi-
tional file 4). The effect of the compounds was assessed by comparing survival to B. thuringiensis toxin alone using the log-rank anlaysis of PROC 
LIFETEST (SAS 9.1, Additional file 4). Treatments with a survival distribution function statistically different from B. thuringiensis toxin alone (p < 0.05) are 
indicated by *.
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gauge needle and collecting the hemolymph drops with a
10-μl fixed-volume pipette. Approximately 10 μl of
hemolymph was collected individually from five larvae
for each treatment and diluted in PBS, 10 μl of which was
spotted onto a plate of 1/10-strength tryptic soy agar,
while the other 10 μl was placed on a glass slide for imme-
diate microscopic observation.

Temporal monitoring of hemolymph following ingestion of 
B. thuringiensis toxin
B. thuringiensis mortality assays were performed as previ-
ously described [30]. All assays were performed on newly
molted third-instar larvae using sterile artificial diet with-
out antibiotics. Either sterile water or 50 IU of DiPel was
applied in a volume of 1 μl to a standard diet disk (3-mm
diameter, 1-mm height) and fed to larvae. Hemolymph
samples were collected as described above for micros-
copy from five control larvae and five B. thuringiensis-
treated larvae at 14, 18, 24, and 32 h after treatment.
Additionally, hemolymph samples from 5 larvae were
examined at the commencement of treatment (0 h).
Additionally, mortality was monitored in a parallel cohort
of larvae for the duration of the assay.

Feeding assays with immune elicitors
The effects of bacterial elicitors of the immune response
of invertebrates and vertebrates on mortality following
ingestion of B. thuringiensis were compared in larvae
with indigenous gut bacteria (reared on unamended ster-
ile diet) and axenic larvae (reared on diet amended with
antibiotics) using two formulations of B. thuringiensis,
MVPII and DiPel. All treatments were applied in 1-μl
doses to a standard diet disk and fed to third-instar larvae
on two consecutive days, at sample sizes shown in Table
2. All elicitors were tested alone to assess direct toxicity.
Lysozyme-treated DAP-type peptidoglycan was prepared
by incubating 5 mg/ml peptidoglycan in 1% lysozyme [5
mg/ml lysozyme in 0.1 M sodium acetate buffer (pH 5.0)]
for 20 min, followed by heating the mixture at 95°C for 5
min to inactivate lysozyme.

Feeding assays with eicosanoid inhibitors and antioxidants
The effects of eicosanoid inhibitors and antioxidants on
mortality resulting from ingestion of the MVPII formula-
tion of B. thuringiensis were assayed in larvae reared on
unamended sterile artificial diet. Each compound was fed
alone and in combination with MVPII for two days as
described above and mortality was recorded daily for 9
days, at sample sizes indicated in Table 3. Subsequently, a
dose-response for four of the inhibitors, acetylsalicylic
acid, indomethacin, glutathione, and piroxicam, was
established using the same protocol.

Statistical analysis
Mean larval mortality and standard error were deter-
mined with data from either three or four replications of
10 to 12 larvae each using PROC MEANS [82]. Means
were separated using Fisher's LSD at P = 0.05. The effect
of bacterial elicitors or chemical inhibitors on time to
death of B. thuringiensis treated larvae was analyzed
using PROC LIFETEST [82]. Median survival times and
their standard errors were obtained using the Kaplan-
Meier estimation and rank analysis of PROC LIFETEST
[82]. Survival curves of larvae fed B. thuringiensis toxin
and various concentrations of acetylsalicylic acid, indo-
methacin, glutathione, and piroxicam were compared to
B. thuringiensis toxin alone using the rank analysis of
PROC LIFETEST [82].
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