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Abstract
Background: Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter 
culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. 
Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food 
fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the 
primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in 
meat and fish.

Results: Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase 
and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and 
glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also 
affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain 
down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall 
two-dimensional gel electrophoresis (2-DE) protein expression pattern was similar for the different strains, though 
distinct differences were seen between the two subspecies (sakei and carnosus), and a variation of about 20% in the 
number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher 
expression of stress related proteins growing on both carbon sources.

Conclusions: It is obvious from the data obtained in this study that the proteomic approach efficiently identifies 
differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains 
metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application 
point of view, an understanding of regulatory mechanisms, actions of catabolic enzymes and proteins, and preference 
of carbon source is of great importance.

Background
Lactobacillus sakei is an important food-associated lactic
acid bacterium (LAB). Although initially characterized
from rice wine [1] and isolated from plant fermentations
[2,3] and fermented fish [4,5], its main habitat is meat [6].
It is widely used as starter culture in the production of
fermented meat products [7], and is regarded as a poten-
tial meat and fish biopreservative [8-10]. L. sakei resists
harsh conditions which often prevail during preservation,
such as high salt concentration, low water activity, low
temperature and pH [11]. An important property of the
bacterium is the production of lactic acid that acidifies

the product and both inhibits growth of spoilage bacteria
and food pathogens, and confers taste and texture to the
fermented products. The species has also been observed
as a transient inhabitant of the human gastrointestinal
tract [12-15]. Sequence analysis of the L. sakei 23K
genome has provided valuable information, showing a
specialized metabolic repertoire that reflects adaptation
to meat products [16].

Among the few sugars available in meat and fish, L.
sakei utilizes glucose and ribose for growth. The two sug-
ars are fermented through different metabolic pathways:
sugar hexose fermentation is homolactic and proceeds
via the glycolytic pathway leading to lactate, whereas pen-
toses are fermented through the heterolactic phosphoke-
tolase pathway ending with lactate and other end
products such as acetate [17,18]. A correlation between
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glucose and ribose metabolism has been suggested for L.
sakei, and this metabolism could be advantageous in
competition with the other microbial flora found on meat
[17,19]. With regard to glucose metabolism, the central
glycolytic operon, also called the gap operon (cggR-gap-
pgk-tpi-eno), encodes enzymes that catalyse steps of the
glycolysis and the putative central glycolytic gene regula-
tor (CggR) [20]. Glucose is transported and phosphory-
lated by the phosphoenolpyruvate (PEP)-dependent
phosphotransferase system (PTS) encoded by the ptsHI
operon, and by one or more additional non-PTS per-
meases [18]. A unique L. sakei rbsUDKR (LSA0200-0203)
gene cluster responsible for ribose catabolism has been
described, which encodes a ribose transporter (RbsU), a
D-ribose pyranase (RbsD), a ribokinase (RbsK) and the
ribose operon transcriptional regulator (RbsR) [16,17,21].
RbsR was shown to function as a local repressor on
rbsUDK, and as a ptsI mutant increased transport and
phosphorylation of ribose, the PTS was suggested to neg-
atively control ribose utilization [16,17,21,22]. Moreover,
regulation by carbon catabolite repression (CCR) medi-
ated by catabolite control protein A (CcpA) has been sug-
gested, as a putative catabolite responsive element (cre)
site, the binding site of CcpA, was found preceding rbsD
[23-25].

It has been proposed that the species can be divided
into two subspecies described as L. sakei subsp. sakei and
L. sakei subsp. carnosus based on results from numerical
analyses of total cell soluble protein content and ran-
domly amplified polymorphic DNA (RAPD) patterns [26-
28]. L. sakei species display a large genomic diversity with
more than 25% variation in genome size between isolates
[29]. In a previous study, we investigated the diversity of
ten L. sakei strains by phenotypic and genotypic methods,
and could report a wide phenotypic heterogeneity and
the presence of two genetic groups which coincide with
the subspecies [30]. The growth rates of the strains on
glucose and ribose varied, indicating different abilities to
metabolize the two sugars. Acidification properties in a
meat model also showed differences between the strains,
possibly reflecting that some are more suited as starter or
protective cultures than others [30]. In this study, we used
a proteomic approach to compare the same ten strains,
which are isolates from meat and fermented meat prod-
ucts, saké, and fermented fish [30]. We investigated their
metabolic routes when growing in a defined medium [31]
supplemented with glucose and ribose. Two-dimensional
gel electrophoresis (2-DE) combined with mass spec-
trometry (MS) allowed identification of proteins, the
expression of which varied depending on the carbon
source used for growth. Previous studies used 2-DE to
obtain an overview of global changes in the L. sakei pro-
teome as function of uracil deprivation [32], anaerobiosis
[33], adaption to cold temperatures and addition of NaCl

[34], and high hydrostatic pressure [35]. However, studies
on the global protein expression patterns during growth
of this bacterium on various carbohydrates have not been
reported, and importantly, studies to detect specific dif-
ferences between strains of L. sakei are needed. Our aim
in this study was to gain further knowledge about the pri-
mary metabolism in L. sakei, and to look at strain diver-
sity in this regard.

Methods
Bacterial strains, media and growth conditions
The bacterial strains included in this work are listed in
Table 1. The organisms were maintained at -80°C in MRS
broth [36] (Oxoid) supplemented with 20% glycerol. The
complex medium MRS (Oxoid) was used for L. sakei
propagation, and a completely defined medium (DML)
[31], supplemented with either 0.5% glucose (DMLG),
0.5% ribose (DMLR) or 0.5% ribose + 0.02% glucose
(DMLRg), was used for liquid cultures. Optical density at
600 nm (OD600) was monitored on an Ultrospec 3000
UV/Visible Spectrophotometer (Pharmacia Biotech).
Cells were grown at 30°C in MRS to early exponential
phase (OD600 = 0.2-0.5), before inoculation (about 104

times diluted) in DML. Under these conditions the cul-
tures were in exponential phase after an overnight incu-
bation. The subcultures were used to inoculate to an
initial concentration of 0.07 OD600 in fresh DML medium.
To monitor the growth rate, flasks containing the cell cul-
tures were stirred moderately to keep bacteria in suspen-
sion. For 2-DE analysis samples were prepared from
DMLG and DMLRg cultures. Samples were extracted
from two independent 100 ml cultures grown to mid-
exponential phase (OD600 = 0.5-0.6).

Extraction of soluble proteins
Proteins were prepared as described by Marceau et al.
[32] with the following modifications: Cultures of 100 ml
were centrifuged at 2800 × g at 4°C and washed twice in
0.01 M Tris-HCl buffer, pH 7.5 for 15 min. Bacterial pel-
lets were resuspended in 0.5 ml of the same buffer and
500 mg glass beads were added (acid-washed <106
microns; Sigma-Aldrich). Cells were mechanically dis-
rupted with an FP120 FastPrep cell disruptor (BIO101,
Thermo Savant) by four 30 s cycles of homogenization at
speed 6.5 with 1 min intervals in ice. Unbroken cells and
large cellular debris were removed by centrifugation at 20
800 × g for 30 min at 4°C. Protein concentrations of the
supernatant (cytosolic fraction) were measured using the
colorimetric assay RC DC Protein Assay (Bio-Rad), using
bovine serum albumin (BSA) as standard protein, accord-
ing to the manufacturer's instructions. The supernatants
were stored in aliquots at -80°C.
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Two-dimensional gel electrophoresis conditions
Aliquots of the L. sakei cytosolic fraction corresponding
to 50 μg (analytical gel) or 200 μg (preparative gel) of pro-
tein were diluted by adding a rehydration buffer (6 M
urea (Merck), 2 M thiourea (Merck), 4% 3- [(3-cholami-
dopropyl)-dimethylammonio]-1-propanesulfonate
(CHAPS; Sigma-Aldrich), 0.5% immobilized pH gradient
(IPG) buffer pH 4-7 (GE Healthcare Bio-Sciences), and
2.5% dithiothreitol (DTT; Bio-Rad)) to a final volume of
380 μl. This solution was used to rehydrate 18-cm pH 4-7
linear IPG strips (GE Healthcare BioSciences). Strips
were passively rehydrated at room temperature for 12-16
h under mineral oil, before isoelectric focusing (IEF) was
performed in an Ettan IPGphor II unit (GE Healthcare
Bio-Sciences, Uppsala, Sweeden) as follows: 200 V for 1 h,
500 V for 1 h, 1000 V for 1 h, from 1000 to 8000 V in 30
min, and finally 8000 V for 6 h. The strips were incubated
at room temperature for 15 min in equilibration buffer
(50 mM Tris-HCl pH 8.8, 6 M urea, 30% (v/l) glycerol
(Merck) and 2% (w/v) sodium dodecyl sulfate (SDS; Shel-
ton Scientific)) supplemented with 1% (w/v) DTT, fol-
lowed by 15 min in equilibration buffer containing 2.5%
(w/v) iodoacetamide (Merck). SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) using 12.5% acrylamide gels
was carried out with an Ettan DALT II system (GE
Healthcare Bio-Sciences, Uppsala, Sweeden). Proteins
were resolved at 20°C at a current of 2.5 mA/gel for 45
min and then at 25 mA/gel until the tracking dye had
migrated to the bottom of the gel. Analytical gels were sil-

ver stained as described by Blum et al. [37] and prepara-
tive gels according to Shevchenko et al. [38]. For the final
analysis, three 2-DE gels were run from each strain from
each of the two independent bacterial cultures.

Image and statistical analysis
Digitized 2-DE images (16-bit greyscale, 300 dpi) of the
stained gels were acquired with an office scanner (Epson
Perfection 4990 Photo, Epson) and imported into Progen-
esis SameSpots software v.3.1 (Nonlinear Dynamics). For
each strain, five glucose images and five ribose images
were aligned using one selected glucose image as a refer-
ence [39]. Spots were detected simultaneously across the
images leading to one spot map, an approach which
addresses the problems of missing values and reduces
variance in spot volume across biological or technical
replicates by applying the same spot outline across the
image series [39,40]. The spot pattern was manually
edited, gel artefacts were removed, and images were
grouped glucose vs. ribose. An automatic analysis (spot
detection, background subtraction, normalisation, and
matching) was performed by the software, creating one
way ANOVA p-values and q-values as measures of statis-
tical significance, and fold change based on spot normal-
ized volumes of the two groups. Whereas the p-value is a
measure of significance in terms of false positive rate, the
q-value (or FDR adjusted p-value) is a measure in terms
of the false discovery rate (FDR) [41]. Spot normalized
volumes were in addition imported into 50-50 MANOVA

Table 1: Strains used in this study.

Bacterial strain Source Reference

L. sakei 23K Sausage [66,67]

L. sakei MF1053 Fermented fish (Norwegian "Rakfisk") [30]

L. sakei LS 25 Commercial starter culture for salami 
sausage

[68]

L. sakei Lb790x Meat [69]

L. sakei LTH673 Fermented sausage [70,71]

L. sakei MF1328 Fermented sausage [30]

L. sakei MF1058 (TH1) Vakuum-packed cooked meat, protective 
culture

[9,10]

L. sakei CCUG 31331a (DSM 15831b, R 14 b/a) Fermented sausage, type strain for L. sakei 
subsp. carnosus

[27,72]

L. sakei DSM 20017b (ATCC 15521c) Sake, alcoholic beverage made by 
fermenting rice, type strain for L. sakei 
subsp. Sakei

[27]

L. sakei Lb16 (Lb1048d, CCUG 42687a) Minced meat [31,73]

a CCUG, Culture Collection, University of Gothenburg, Sweden.
b DSM, Deutsche Samlung von Microorganismen und Zellkulturen, Braunschweig, Germany.
c ATCC, American Type Culture Collection, Manassas, VA, USA.
d Designation used in the strain collection at Federal Institute for Meat research, Kulmbach, Germany.
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http://www.langsrud.com/stat/ffmanova.htm for statisti-
cal analysis. Rotation tests were performed with 9999
simulations for spot normalized volumes, producing q-
values. Differential protein expression was considered to
be significant at the level of q < 0.05 from both the
SameSpots software and rotation tests, and the expres-
sion patterns were checked visually to observe how the
spot intensity differed. For strain comparison, a represen-
tative image from the sequenced strain L. sakei 23K was
used as a reference. Selected images from each of the
other strains from both carbon sources were compared to
detect distinct strain differences.

Protein identification
The protein spots of interest presenting a change in vol-
ume depending on carbon source used for growth were
excised from preparative gels from the sequenced strain
23K. To confirm the identity of the same spots in other
strains, we also excised the spots from strains MF1053
and LS 25. Spots presenting distinct strain differences
were excised from strain 23K and MF1053. Samples were
prepared for matrix-assisted laser desorption/ionization-
time of flight (MALDI-TOF) MS analysis according to the
method of Jensen et al. [42] with modifications described
previously [43]. For purification of digested proteins col-
umns were prepared by packing a plunge of C18 material
(3 M Empore C18 extraction disc, Varian) into a gel
loader tip (20 μl, Eppendorf ). An Ultraflex MALDI-TOF/
TOF mass spectrometer with the LIFT module (Bruker
Daltonics, GmbH, Bremen, Germany) was used for pro-
tein identification. Peptide calibration standard I (Bruker
Daltonics) was used for external calibration. The software
FlexAnalysis 2.4 (Bruker Daltonics) was used to create
peak lists using median baseline subtraction with 0.8 in
flatness and smoothing by the Savitzky-Golay filter of 0.2
m/z in width. BioTools 3.1 (Bruker Daltonics) was used
for interpretation of MS and MS/MS spectra. Proteins
were identified by peptide mass fingerprinting (PMF)
using the database search program MASCOT http://
www.matrixscience.com/, searching against the NCBInr
database http://www.ncbi.nih.gov/ with the following set-
tings: Other firmicutes, MS tolerance of 50 ppm and MS/
MS tolerance of 0.5 Da, maximum missed cleavage sites
was 1, Carbamidomethyl (C) and Oxidation (M) were set
as fixed and variable modification, respectively. The
number of peptide matches, sequence coverage, pI and
MW were used to evaluate the database search results.

Results and Discussion
In this study, we used proteomics to compare ten L. sakei
food isolates regarding their metabolic routes when
growing on glucose and ribose.

Growth of L. sakei strains on glucose and ribose
The ten strains investigated showed faster growth rates
when utilizing glucose as the sole carbon source (DMLG;
glucose 0.5%) compared with ribose (DMLR; ribose
0.5%), a finding in agreement with previous observations
[16-18,30], confirming that glucose is the preferred car-
bon source in L. sakei. Preliminary 2-DE analysis of
strains 23K, MF1053 and LS 25 resulted in gels with large
differences in protein spot resolution (results not shown).
Gels of samples issued from bacteria grown on ribose as
the sole carbon source were of poor quality. Cell proteoly-
sis due to slow growth and prolonged incubation time
may result in protein degradation and solubilization
defect, as has previously been proposed [44]. Previous
studies suggested a regulation of ribose utilization by the
PTS and co-metabolism of these two sugars that are pres-
ent in meat [17,19,21]. Since the addition of small
amounts of glucose has been described to enhance
growth on ribose [45], we used DMLRg (ribose 0.5%, glu-
cose 0.02%) for further experiments. This indeed resulted
in faster growth rates and a better spot resolution of the
resulting 2-DE gels that were comparable to the gels from
bacterial samples grown in DMLG (results not shown).
Thus further experiments were performed by growing
bacteria in DMLG and DMLRg to study the glucose and
ribose metabolisms, respectively.

Protein patterns of the ten L. sakei strains
After growth on glucose (in DMLG) and ribose (in
DMLRg) an average of approximately 400 spots was
observed after 2-DE in the pI range investigated. A varia-
tion of about 20% in the number of spots was detected
between the strains, as previously observed within the
species [29,35]. The overall protein expression pattern
was similar for the different strains grown on both carbon
sources (data not shown), though distinct differences in
the 40-kDa region of the 2-DE gels were observed (Figure
1). These differences were identified as resulting from
two different migration profiles of four isoforms (differ-
ent pI) of the glyceraldehyde-3-phosphate dehydrogenase
(GapA) protein. The isoforms displayed a size variation,
previously described by Chaillou et al. [29] to differenti-
ate two L. sakei subgroups. Grouping of our ten strains
based on the GapA isoforms migration profile was identi-
cal to the two genetic clusters previously obtained from
rapidly amplified polymorphic DNA (RAPD), amplified
fragment length polymorphism (AFLP), and microarray-
based comparative genome hybridization (CGH) analyses
[30]. If those grouping methods reflect the subspecies
division of L. sakei, eight of our strains including the
sequenced strain 23K and the type strain CCUG 31331
belong to L. sakei subsp. carnosus, while the type strain
DSM 20017 and the commercial starter culture strain LS
25 belong to L. sakei subsp. sakei.

http://www.langsrud.com/stat/ffmanova.htm
http://www.matrixscience.com/
http://www.matrixscience.com/
http://www.ncbi.nih.gov/
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Comparison of protein patterns obtained from cells
grown on glucose or ribose revealed, for all the strains,
differences in the expression profiles. The spots present-
ing a volume change depending on the carbon source
used for growth and identified by MALDI-TOF MS are
shown in Figure 1ab in representative 2-DE gel images.
All the proteins could be identified against L. sakei 23K
proteins, as shown in Additional file 1, Table S2. Data
obtained for a few spots gave less statistically significant
results (q = 0.05-0.1) due to co-migration of proteins
which made quantification measurements unreliable.
However, visual inspection of these protein spots in the
2-DE gels confirmed a modification in their volume. Nine
proteins displayed a different level of expression in all
tested strains, whereas 11 proteins varied in at least one
of the strains (Additional file 1). Moreover, when com-
pared to the other strains we observed that L. sakei
MF1053 over-expressed a set of seven proteins after

growth on both carbon sources, as shown in Additional
file 2, Table S3. The proteins could be identified against L.
sakei 23K proteins, except for two proteins which identi-
fied against proteins from other L. sakei strains and were
similar to proteins from Lactobacillus plantarum and
Lactobacillus buchneri (Additional file 2). The presence
of several isoforms with different pIs was also noticed for
several proteins (Additional files 1 and 2). Many proteins
are modified after synthesis by different types of post-
translational modifications (PTM) which may control the
protein activity, and the most common PTM accounted
for pI differences is phosphorylation [46].

Proteins differentially expressed between growth on 
glucose and ribose
In total, ten proteins were up-regulated in all or most of
the strains after growth on ribose. Among those, three
are directly involved in ribose catabolism: RbsD, the D-

Figure 1 Silver-stained 2-DE gels images of Lactobacillus sakei strain 23K grown in a completely defined medium supplemented with glu-
cose (a) or ribose (b), and the lower part of a 2-DE gel image from L. sakei strain MF1053 grown on glucose (c). Protein (50 μg) was loaded, and 
2-DE was performed using a pH range of 4-7 in the first dimension and SDS-PAGE (12.5%) in the second dimension. Protein size (kDa) is shown on the 
right side of each gel image. Spots listed in Additional files 1 and 2, Tables S2 and S3 are indicated. The black rectangle (a) shows the region of the 
GapA isoforms which differ among the strains.
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ribose pyranase, RbsK, the ribokinase, and Xpk, the puta-
tive phosphoketolase. This is in accordance with finding
by Stentz et al. [17] who observed the induction of the
rbsUDKR operon transcription and an increase of phos-
phoketolase and ribokinase activity after growth on
ribose. The two pyruvate oxidases and two of the four
components of the pyruvate dehydrogenase complex
(PDC) were also detected as up-regulated in ribose grow
cells. In addition, GlpK and GlpD, the glycerol kinase and
glycerol-3-phosphate dehydrogenase were detected in
higher quantities in most of the strains after growth on
ribose. Conversely, six proteins were down-regulated on
glucose, of which four were involved in glycolysis. The
inosine-5-monophosphate dehydrogenase (GuaB),
involved in purine metabolism, and the putative oxi-
doreductase Lsa0165 were down-regulated, whereas the
elongation factor Ts (EF-Ts) was up-regulated on ribose.
An overview of the catabolic pathways for glucose (glyco-
lysis) and ribose (phosphoketolase pathway) utilization in
L. sakei is shown in Figure 2. Proteins whose expression
was modified in cells grown on ribose are shown.

It is likely that the induction of RbsK and Xpk and
hence the phosphoketolase pathway in the cells restricts
the flow of carbon down the glycolytic route. In many
microorganisms, the glycolytic flux depends on the activ-
ity of 6-phosphofructokinase (Pfk) and pyruvate kinase
(Pyk) [47,48]. Similar to several other LAB [48-50] these
two enzymes are encoded from a pfk-pyk operon [34],
and as reflected at the level of genetic structure, a lower
expression of both enzymes was seen on ribose in all
strains examined. A lower expression of Pfk was also
observed by Stentz et al. [17] during growth on ribose.
The glycolytic enzymes fructose-1,6-bisphosphate aldo-
lase (Fba) and a phosphoglycerate mutase (Gpm3)
showed a lower expression in most of the strains, and
interestingly, strains LS 25 and MF1058 showed a lower
expression of three more glycolytic enzymes compared to
the rest of the strains. It is possible that these strains have
a more efficient mechanism of down-regulating the glyc-
olytic pathway. LS 25 is an industrially used starter cul-
ture for fermented sausages, while MF1058 is suitable as a
protective culture in vacuum packed fresh meat [9,10].
From a meat model system based on minced meat fer-
mentation we previously observed that these two strains
performed the fastest acidification of the ten strains, and
also had the ability to compete with the indigenous
microbiota of the meat batter [30]. Although the triose-
phosphate isomerase (Tpi), GapA, phosphoglycerate
kinase (Pgk), and enolase (Eno) are all encoded from the
gap operon [20], our proteome data showed a signifi-
cantly lower expression only for GapA, Pgk and Eno. In
addition, expression of the L-lactate dehydrogenase
(LdhL) responsible for the reduction of pyruvate to lactic
acid was observed to be lower in the two strains.

The bacterium alters its pyruvate metabolism growing
on ribose compared to glucose, possibly since during
ribose utilization, more ATP is generated from pyruvate
per ribose unit when acetate is produced than when lac-
tate is produced [51]. The up-regulated pyruvate oxidases
convert pyruvate into acetyl-phosphate, and the PDC
catalyses the transformation of pyruvate to acetyl-CoA
(Figure 2).

The increased GlpD enzyme belongs to the glycerol/
glycerolipid catabolic pathway, a pathway linked to mem-
brane properties as glycerol-3-phosphate can be con-
verted to phosphatidic acid, which leads to membrane
phospholipid synthesis. Also when exposed to low tem-
perature, this protein shows an increased expression in L.
sakei [34]. Modified membrane properties could poten-
tially also exist as a response to the higher level of acetate
produced when utilizing ribose. Acetate has a higher
antimicrobial effect than lactate, with pKa values of 4.74
and 3.86, respectively, and the proportion of antimicro-
bial undissociated acetic acid molecules is increased as
the pH is lowered. The glpD gene is associated in a glp
operon with glycerol kinase (glpK), which also showed an
increased expression on ribose, and glycerol uptake facili-
tator protein (glpF) genes [34].

The role of CcpA in CCR in L. plantarum has previ-
ously been established, and CcpA was shown to mediate
regulation of the pox genes encoding pyruvate oxidases
[52,53]. Rud [54] observed an up-regulation of several
genes and operons including the pox genes, the pdh
operon encoding the PDC, and the glp operon, during
growth on ribose compared with glucose. As putative cre
sites [55] were identified in promoter regions, their
expression was suggested to be regulated by CcpA-medi-
ated CCR. The putative cre site found preceding rbs in L.
sakei [25], could indicate that this bacterium possesses
global regulation mediated by CcpA. In an rbsR mutant
overexpressing RbsUDK, the growth on ribose was not
accelerated, whereas in a ptsI mutant, the transcription of
rbsUDK was not modified, but transport and phosphory-
lation of ribose increased. Thus it was concluded that the
PTS negatively controls ribose utilization, by a direct or
indirect way [17,22]. Nevertheless, a change in expression
of the PTS enzymes could not be detected in our ribose
2-DE gels. Further experiments are needed to elucidate
the mechanism by which the rbs operon is regulated.

The EF-Ts, with an increased expression on ribose, is
involved in protein synthesis and translation elongation,
and the less expressed GuaB is involved in nucleotide bio-
synthesis, where ribose is a source for the basic molecule
phosphoribosylpyrophosphate (PRPP). Finally, the puta-
tive oxidoreductase Lsa0165, also less expressed on
ribose, belongs to the short-chain dehydrogenases/
reductases family (SDR), possibly a glucose dehydroge-
nase.



McLeod et al. BMC Microbiology 2010, 10:120
http://www.biomedcentral.com/1471-2180/10/120

Page 7 of 10
Proteins over-expressed in L. sakei MF1053
Interestingly, compared to the other strains L. sakei
MF1053 showed a higher expression of seven proteins
related to stress whatever the carbon source used for
growth (Figure 1c). A list of the proteins and references
where their involvement in different stresses are
described [56-65], are listed in Additional file 2, Table S3.
The reason for the observed difference in expression of
these stress proteins remains to be elucidated.

Conclusions
At present, the complete L. sakei genome sequence of
strain23K is available [16], and the genome sequence of

strain DSM 15831 is currently under assembly http://
www.ncbi.nlm.nih.gov/genomes/lproks.cgi. It is obvious
from the data obtained in this study that the proteomic
approach efficiently identify differentially expressed pro-
teins caused by the change of carbon source. However,
the absence of genome sequence remains a limiting factor
for the identification of proteins in the non sequenced
strains. Sequence analysis has provided valuable informa-
tion, showing a metabolic repertoire that reflects adapta-
tion to meat, though genomic analyses provide a static
view of an organism, whereas proteomic analysis allows a
more dynamic observation. Despite the basic similarity in
the strains metabolic routes when they ferment glucose

Figure 2 Overview of the metabolic pathways for glucose and ribose fermentation in L. sakei. Enzymes which expression is up- or down-reg-
ulated on ribose compared with glucose in the majority of the ten L. sakei strains (see Additional file 1, Table S2) are indicated with upward and down-
ward pointing arrows, respectively. End-products are boxed. PTS, phosphotransferase system; T, transport protein; P, phosphate; B, bis; Glk, 
glucokinase; Pgi, phosphoglucoisomerase; Fbp, fructose-1,6-bisphosphatase; Pfk, 6-phosphofructokinase; Fba, fructose-bisphosphate aldolase; RbsU, 
ribose transporter; RbsD, D-ribose pyranase; RbsK, ribokinase; Rpi, ribose-5-phosphate isomerase; Rpe, ribulose-phosphate 3-epimerase; Xpk, xylulose-
5-phosphate phosphoketolase; Tpi, triose-phosphate isomerase; GapA, glyceraldehyde-3-phosphate dehydrogenase; Pgk, phosphoglycerate kinase; 
Gpm3, phosphoglycerate mutase; Eno, enolase; Pyk, pyruvate kinase; LdhL, L-lactate dehydrogenase; PdhBD, pyruvate dehydrogenase complex sub-
units B and D; Pox1,2, pyruvate oxidase; Ack, acetate kinase; GlpD, glycerol-3-phosphate dehydrogenase; GlpK, glycerol kinase; GlpF, glycerol uptake 
facilitator protein.
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and ribose, there were also differences. We are currently
combining proteomic and transcriptomic data of differ-
ent L. sakei strains and hope to reveal more about the pri-
mary metabolism. From the application point of view, to
understand regulatory mechanisms, actions of catabolic
enzymes and proteins, and preference of carbon source is
of great importance.

Additional material
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