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Introduction
Recent statistics indicate that chronic kidney disease 
(CKD) affects approximately 15–20% of adults world-
wide [1]. Alarmingly, it is projected to become the fifth 
leading cause of death globally by 2040, experiencing 
the largest anticipated increase among all major causes 
of death [2]. End-stage renal disease (ESRD)  is the final 
stage of CKD, characterized by a glomerular filtration 
rate (GFR) below 15 mL/min/1.73 m2 [3]. As one of the 
main therapy methods for ESRD patients, peritoneal 
dialysis has been widely used in clinical treatment [4, 
5]. An important part of peritoneal dialysis is using the 
peritoneum as a semi-permeable membrane to get dialy-
sate into the abdominal cavity. The primary objective is 
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Abstract
The concept of the gut-kidney axis is gaining significant attention due to the close relationship between gut 
microbiota and kidney disease. Peritoneal dialysis is recognized as a crucial renal replacement therapy for end-
stage renal disease (ESRD). The alterations in gut microbiota and related mechanisms after receiving this dialysis 
method are not fully understood. This study conducted shotgun metagenomic sequencing on fecal samples from 
11 end-stage renal disease patients who did not receive dialysis (ESRD_N) and 7 patients who received peritoneal 
dialysis (ESRD_P). After quality control and correlation analysis of the data, our study is aimed at exploring the 
impact of peritoneal dialysis on the gut microbiota and health of ESRD patients. Our research findings indicate 
that the complexity and aggregation characteristics of gut microbiota interactions increase in ESRD_P. In addition, 
the gut microbiota drives the biosynthesis pathways of sesquiterpenes and triterpenes in ESRD_P patients, which 
may contribute to blood purification and improve circulation. Therefore, our research will lay the foundation for the 
prevention and treatment of ESRD.
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to facilitate the elimination of metabolic byproducts and 
toxic substances and the correction of water and electro-
lyte imbalances in the body via diffusion and permeation 
[6]. Notably, peritoneal dialysis offers advantages over 
traditional hemodialysis, including better preservation of 
residual kidney function, enhanced patient quality of life, 
and an improved post-kidney transplantation prognosis 
[7].

Increasing evidence suggested a close relationship 
between gut microbiota and kidney diseases, leading to 
growing attention on the concept of the gut-kidney axis 
[8]. Notably, research has demonstrated significant dif-
ferences in the gut microbiota composition between 
patients with ESRD and those with CKD but without 
ESRD [9]. This suggests an association between the gut 
microbiota and the occurrence and progression of kid-
ney disease. Furthermore, studies comparing rats that 
received fecal microbiota transplants from healthy peo-
ple to those that received them from people with ESRD 
showed that the latter group had higher levels of serum 
uremic toxins, as well as worsened renal fibrosis and oxi-
dative stress [10]. Additionally, investigations have iden-
tified distinct variations in the gut microbiota of ESRD 
patients undergoing dialysis compared to those not 
receiving dialysis (ESRD_N). Interestingly, ESRD patients 
undergoing peritoneal dialysis (ESRD_P) exhibited gut 
microbiota compositions that were more like those of 
healthy individuals than ESRD patients undergoing 
hemodialysis [11, 12].This observation may be attributed 
to the potential benefits associated with peritoneal dialy-
sis. However, the precise alterations in the gut microbiota 
and the underlying mechanisms in ESRD patients follow-
ing peritoneal dialysis are not fully understood.

Therefore, to find out how peritoneal dialysis affects 
people with ESRD, we performed shotgun metagenomic 
sequencing on ESRD_P patients and ESRD_N patients. 
We aimed to investigate alterations in the gut microbiota 
and elucidate the associated underlying mechanisms. 
Our findings have significant implications, as they will 
provide solid groundwork for the development of ESRD-
related drugs and further treatment of ESRD.

Methods and materials
Study subjects and sample collection
18 participants, including 11 ESRD_N patients and 7 
ESRD_P patients (continuous regular peritoneal dialy-
sis > 1 year), were recruited from the Department of 
Nephrology at the Third Xiangya Hospital of Central 
South University in Changsha, Hunan, China. Exclusion 
criteria included previous history of intestinal disease, 
cancer, diabetes, kidney transplant, hemodialysis, spe-
cial diets (such as vegan, pure meat, etc.), as well as tak-
ing antibiotics, hormones, immune agents, probiotics, 
yogurt, laxatives, antipurgatives in the last six months. 

Additionally, patients with a BMI greater than 28 were 
also excluded. This study was approved by the Eth-
ics Committee of the Third Xiangya Hospital according 
to the ethical guidelines of the Declaration of Helsinki 
(NO. 23836). All participants were interviewed, and they 
signed informed consent forms. Recorded the clinical 
and demographic information of each patient, including 
age, gender, condition, clinical examination, and other 
information. All fecal samples collected were first stored 
at -80  °C, labeled, and then simultaneously subjected to 
shotgun metagenomic sequencing [13]. The fecal samples 
were collected from May 2023 to June 2023.

DNA extraction and metagenome shotgun sequencing
All fecal samples were subjected to DNA extraction and 
metagenome shotgun sequencing. According to the man-
ufacturer’s instructions, DNA from microbial genomes 
in samples was extracted using the Omega Soil DNA 
Kit (D5625-01). The extracted DNA is stored at -20  °C 
for further evaluation. After that, a NanoDrop ND-1000 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA) was used to measure the concentration of 
the extracted DNA. Agarose gel electrophoresis was 
then used to measure the quality of the DNA. The quali-
fied microbial DNA was processed to construct metage-
nome shotgun sequencing libraries with insert sizes 
of 400  bp by using the Illumina TruSeq Nano DNA LT 
Library Preparation Kit. Each library was sequenced by 
the Illumina HiSeq X-ten platform (Illumina, USA) with 
the PE150 strategy at Personal Biotechnology Co., Ltd. 
(Shanghai, China).

Metagenomic analysis
Raw sequencing reads were processed to obtain quality-
filtered reads for further analysis. Cutadapt was used to 
remove sequencing adapters from the sequencing reads 
[14]. Then, Fastp was chosen to remove low quality reads 
by using a sliding window algorithm and achieve data 
quality control [15]. Bowtie2 was employed to filter the 
sequences from humans (hg37dec_v0.1) to make sure 
that the reads were not influenced by host [16]. Kraken2 
was used for taxonomic classification of high-quality 
reads based on a custom Kraken2 microbial database 
[17]. Bracken was used to estimate the relative abundance 
of different microbial taxa at different levels [18]. Subse-
quently, high-quality reads were used for gene function 
prediction. Megahit was used to assemble contigs from 
the selected reads [19]. Prodigal was used to predict 
coding sequences (CDSs) in the generated contigs [20]. 
The redundant predicted genes were removed by using 
CD-HIT [21]. Samlon was used to estimate gene quan-
tification across different samples [22]. Functional gene 
annotation was performed using eggNOG-mapper [23]. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
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was generated from the annotation results of eggNOG-
mapper. Finally, the gene abundance table was obtained 
by adding the same orthologs (OGs) annotated by egg-
NOG- mapper. The obtained microbial abundance table 
and gene abundance table were used for further statisti-
cal analysis. All analyses refer to previous methods [24, 
25].

Exploration of abundance and correlation of species
All statistical analyses were conducted using R (V6.2.561) 
[26]. The microbial co-occurrence networks of two 
groups were constructed using the “Hmisc” package to 
establish the Spearman correlation matrix of the micro-
biota [27]. The “igraph” package was used to correct the 
P value matrix [28]. The Benjamini and Hochberg false 
discovery rate (FDR) was employed to adjust the P value. 
The Spearman correlation coefficient and the adjusted P 
value were 0.7 and 0.05, respectively. The visualization 
of the network graph was performed using the Gephi 
software (https://gephi.org/) [29].The Wilcox test was 
employed for differential analysis of the microbial spe-
cies, considering a significance threshold of P < 0.05 to 
identify differential species. The “Psych” package was 
used to find the Spearman correlation between clinical 
indicators and microbiota that was significantly different. 
The Benjamini and Hochberg false discovery rate (FDR) 
was then used to fix the P values [30]. The Spearman cor-
relation coefficient and the adjusted P value were 0.7 and 
0.05, respectively. Additionally, the relative abundance 
changes of significant microbiota were visualized using 
the “Pheatmap” package [31]. Unless otherwise specified, 
all results were visualized using the “ggplot2” package 
[32].

Analysis of differential genes
The Wilcox test was used for screening genes with sig-
nificant changes based on abundance. The P values were 
adjusted using the Benjamini and Hochberg false dis-
covery rate (FDR). The “log2 FoldChange” was defined 
as log2 FoldChange = log2[(A + 1)/(B + 1)], where A and 
B represent the abundance of OGs in different groups. 
Genes meeting the criteria of P < 0.05 and |log2FC| > 1 
were considered to have significant differences [33]. The 
“Psych” package was used to calculate the Spearman cor-
relation between top 10 genes with significant differences 

and differential species, with the P values being adjusted 
using the Benjamini and Hochberg method for false 
discovery rate (FDR) [30]. The Spearman correlation 
coefficient and the adjusted P value were 0.7 and 0.05, 
respectively. Additionally, the “Pheatmap” package was 
used to visualize the correlation [31].

Detection of KEGG pathway and other statistical analysis
Enrichment of KEGG pathways was performed on the 
top 10 genes with significant differences, and 12 KEGG 
pathways were found. Besides, to identify significantly 
changed KEGG pathways, we calculated the P value using 
the Wilcox test. P < 0.05 was considered to have a signifi-
cant difference. The “Venn Diagram” package was used 
to create Venn diagrams, illustrating the intersection 
between enriched pathways and differential pathways 
[34]. Meanwhile, clinical indicators showing significant 
changes were identified using the Wilcox test (P < 0.05). 
Unless otherwise specified, all results were visualized 
using the “ggplot2” package [32].

Results
Peritoneal dialysis significantly changes clinical indicators 
in ESRD patients
To investigate the impact of peritoneal dialysis on the 
body, the demographic characteristics of the ESRD_N 
and ESRD_P groups are presented in Table 1. In the base-
line data, there were no significant differences in gender 
or age between these two groups of patients (P > 0.05). 
Furthermore, we found significant changes in some clini-
cal indicators of ESRD patients after receiving peritoneal 
dialysis (Fig.  1A). Among them, HDL-C, eGFR, Cl, K 
(Fig. 1B), and ALB showed significant decreases, while Cr 
and CO2 significantly increased (Fig. 1C).

Effects of peritoneal dialysis on gut microbiota in ESRD 
patients
We analyzed the changes in gut microbiota between the 
ESRD_N and ESRD_P groups. Firstly, the differences in 
microbial interactions between ESRD_N and ESRD_P 
groups were evaluated through network analysis. In the 
ESRD_N group, the network graph showed 199 nodes 
and 1379 edges (Fig.  1D), while the ESRD_P group had 
199 nodes and 1808 edges (Fig.  1E). Furthermore, we 
found that the weighted degree and clustering were 

Table 1  Characteristics of study subjects
Variables ESRD_N

(n = 11)
ESRD_P
(n = 7)

P value

Age [year, median(range)] 56 (40–75) 59 (22–66) 0.659
Gender, n (%) 0.285
female 5 (45.5%) 2 (25%)
male 6 (54.5%) 6 (75%)
ESRD_N, No dialysis treatment; ESRD_P, Peritoneal dialysis treatment

https://gephi.org/
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higher in the ESRD_P group compared to the ESRD_N 
group (Table S1). This suggested that after peritoneal 
dialysis, there was increased complexity and clustering 
characteristics in the interaction of gut microbiota in 
patients. To investigate how peritoneal dialysis affects the 
gut microbiota, we selected the top 12 species in relative 
abundance from the ESRD_N and ESRD-P groups for the 
display of relative microbial abundance. After peritoneal 

dialysis, the ESRD_P group had changes in the composi-
tion of their gut microbiota (Fig. 2A). To learn how peri-
toneal dialysis affects the microbiota in the gut, we used 
the Wilcox test on the 3341 species that had been anno-
tated. This showed that 83 species had significantly dif-
ferent relative abundances (Fig.  2B). We conducted the 
Spearman correlation analysis between these 83 species 
and 7 different clinical indicators in the ESRD_P group 

Fig. 1  Changes in clinical indicators and gut microbiota stability in peritoneal dialysis patients. (A) The changes in clinical indicators after peritoneal di-
alysis in ESRD patients. The difference in clinical indicators HDL-C, eGFR, Cl, K (B), Cr, CO2, and ALB (C) between the ESRD_P group and the ESRD_N group 
(Wilcox test, *P < 0.05, **P < 0.01). The co-occurrence network of microbiota in the ESRD_N group (D) and the ESRD_P group (E). ESRD_N, no dialysis 
treatment; ESRD_P, peritoneal dialysis treatment
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Fig. 2  Gut microbial composition and correlation analysis in the ESRD_N and ESRD_P patients. (A) The specific changes in the top 10 abundance mi-
crobiota in the ESRD_N and ESRD_P groups. (B) Difference abundance analysis at species level based on the Wilcox test. The P values less than 0.05 are 
considered differential bacteria. (C) The Pearson correlation between differential species and differential clinical indicators. The color bar represented the 
Pearson correlation index after Z score standardization. (D) The heatmap showed the relative abundance differences of 25 different species in the ESRD_N 
and ESRD_P groups. The color bar represented the relative abundance of different species after Z score standardization. (E) The correlation and network 
analysis among 25 species with significant differences in the ESRD_P group. The color bar represented the strength of the correlation. Edges in different 
colors between two genera represented the positive or negative correlation. ESRD_N, no dialysis treatment; ESRD_P, peritoneal dialysis treatment
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and found 25 species that showed significant correla-
tions (Table S2, Fig. 2C). The results indicated that these 
25 species were primarily associated with changes in 
CO2, ALB, and K. We further visualized the distribution 
of these 25 species in the ESRD_N and ESRD_P groups 
through a heatmap (Fig. 2D). We also used spearman cor-
relation to look at the relationships between these 25 spe-
cies and found important connections between UBA733 
SP900539595 and UBA1234 SP900765095. Both interac-
tions were negatively related to changes in K.

The influence of peritoneal dialysis on gut microbiota 
genes and metabolism in ESRD patients
To further explore the changes in gut microbiota and 
their functional implications after peritoneal dialysis, we 
analyzed the ESRD_P group on the gene level. The Wil-
cox test and log2Fold Change were used to determine 
the significant changes in OGs in the ESRD_P group. 
The P < 0.05 and |Log2FoldChange| > 1 were consid-
ered significantly different. Compared to the ESRD_N 
group, ESRD_P showed that 187 OGs were significantly 
lower (P < 0.05 and Log2FC < -1), while 7 OGs were sig-
nificantly higher (P < 0.05 and Log2FC > 1) (Fig.  3A). 
We selected the top 10 OGs with the most significant 
changes and performed Spearman correlation analy-
sis on the 25 differential species (Fig.  3B). The results 
showed a significant correlation between K00511 and 
UBA733 SP900539595. Furthermore, we demonstrated 
the enriched pathways for these 10 OGs (Fig S1). A total 
of 12 KEGG pathways were enriched by these 10 OGs. 
We plotted a bar plot showing the read counts of these 12 
pathways in the ESRD_N and ESRD_P groups (Fig. 3C). 
We found that the enzymes with the EC number path-
way had the highest read counts in the two groups. 
The Wilcox test was used to see how the ESRD_N and 
ESRD_P groups were different to learn more about how 
the KEGG pathways changed after peritoneal dialysis. 
Meanwhile, we found 16 KEGG pathways that were sig-
nificantly different (Fig.  3D).  Among them, 6 pathways 
showed changes that were different in OGs.

Sesquiterpene and triterpene biosynthesis critical to the 
impact of peritoneal dialysis on ESRD patients
We performed an intersection analysis between the 
12 KEGG enrichment pathways and the 16 KEGG dif-
ferential pathways that were enriched by the top 10 
differential OGs. The Venn diagram showed that ses-
quiterpenoid and triterpenoid biosynthesis might be the 
main pathways affected in ESRD patients after peritoneal 
dialysis (Fig.  3E). In the sesquiterpenoid and triterpe-
noid biosynthesis pathways, we found that the differen-
tially expressed gene K00511 (SQLE) participates in the 
conversion of squalene to (S)-Squalene–2,3-epoxide 
(Fig.  4A). In this pathway, K00801 (FDFT1), which is 

also differentially expressed, was involved as well. Both 
SQLE and FDFT1 exhibited a significant increase in the 
ESRD_P group, suggesting that they have a synergis-
tic regulatory effect in promoting the formation of trit-
erpenoid compounds. There is a significant correlation 
between SQLE and UBA733 SP900539595, with UBA733 
SP900539595 being related to K metabolism. Therefore, 
based on these results, we found that gut microbiota 
drives the biosynthesis pathways of triterpenes and tri-
terpenoid compounds in ESRD patients after peritoneal 
dialysis, which may contribute to blood purification and 
improve circulation (Fig. 4B).

Discussion
In this study, we investigated the differences in gut micro-
biota between ESRD_N and ESRD_P patients through 
shotgun metagenomic sequencing. We found that perito-
neal dialysis affects the composition and function of the 
gut microbiota. The changes in gut microbiota were cor-
related with some biochemical indicators of the human 
body, suggesting that peritoneal dialysis may affect the 
complications and prognosis of ESRD by changing gut 
microbiota. This is consistent with the conclusion of the 
study by Dan Luo et al. [12]. Disruption of the normal gut 
microbiota may lead to intestinal barrier dysfunction and 
bacterial translocation. Meanwhile, the dynamic change 
of the gut microbiota can produce excessive uremic tox-
ins, such as indolyl sulfate and trimethylamine-N-oxide, 
which cause oxidative stress damage to the kidneys, car-
diovascular system, and endocrine systems [35]. When 
the gut microbiota of ESRD patients was compared with 
healthy controls, approximately 190 microbial opera-
tional taxonomic units were significantly different in 
the relative abundance. The abnormal gut microbiota 
of ESRD patients shapes a deleterious metabolome that 
aggravates clinical symptoms [10, 36]. Some uremic tox-
ins can be removed by peritoneal dialysis, along with 
water, electrolyte, and acid-base imbalances. This keeps 
the body’s internal environment stable and improves the 
outlook for people with ESRD [6].

To further explore the potential mechanism of peri-
toneal dialysis, we comprehensively analyzed the gut 
microbiota, gut microbiota genes, and relative KEGG 
pathways. It was found that there were significant dif-
ferences between K and UBA733 SP900539595 in the 
ESRD_P group. This change in the microbial composition 
also affects the upregulation of the SQLE gene, which 
makes it easier for squalene to break down and makes it 
easier for triterpenes to form. These effects may contrib-
ute to blood purification and improved circulation.

The kidney is the main organ that maintains potas-
sium ion balance, so ESRD patients are at a higher risk of 
developing hyperkalemia [37]. ESRD patients with hyper-
kalemia are at increased risk for subsequent adverse 
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Fig. 3  Identification of differential genes and their enriched metabolic pathways of the gut microbiota in the ESRD_N and ESRD_P Patients. (A) The differ-
ential gene analysis of ESRD_N and ESRD_P based on the Wilcox test. (Enriched, P < 0.05 & Log2FC > 1; Depleted, P < 0.05 & Log2FC < -1.) (B) The Spearman 
correlation between the top 10 genes with the most significant differences and 25 different species. The color bar represented the Spearman correlation 
index after Z score standardization. (C) The total number of gene reads counts in the 12 metabolic pathways enriched by the top 10 differential genes. (D) 
Differential analysis showed 16 differential pathways in the ESRD_P group compared to the ESRD_N group. (E) The commonalities between 16 differential 
pathways and 12 enrichment pathways. ESRD_N, no dialysis treatment; ESRD_P, peritoneal dialysis treatment
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Fig. 4  Sesquiterpene and triterpene biosynthesis plays a key role in patients on peritoneal dialysis. (A) The specific steps for differentially expressed 
genes to participate in this pathway and the changes in the reads count of differential genes (Wilcox test, *P < 0.05, **P < 0.01). The red triangle indicates 
differential genes. The straight arrow represents a direct reaction, while the dashed arrow represents an indirect reaction. (B) Peritoneal dialysis affects the 
blood potassium and intestinal microbiota composition of patients, promotes the synthesis of triterpenoids, and ultimately achieves blood purification 
and circulation promotion. ESRD_N, No dialysis treatment; ESRD_P, Peritoneal dialysis treatment
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events, including cardiovascular morbidity and mortality 
[38]. After peritoneal dialysis, patients’ blood potassium 
will decrease. Compared with ESRD_N, ESRD_P patients 
are less likely to develop hyperkalemia [39]. There is cur-
rently a paucity of literature on serum potassium and gut 
microbiota. Our study found that UBA733 SP900539595 
are related to hypokalemia after peritoneal dialysis. Stud-
ies have found that in ESRD patients, Bacteroidetes are 
positively correlated with serum K, while Dorea is neg-
atively correlated with serum K [12]. Research about 
oral microbiota demonstrates that periodontal pocket 
potassium levels increase the virulence of the entire oral 
community and change the immune response of the gin-
gival epithelium. It suggested that potassium levels in 
periodontal pockets may be an important factor in oral 
microbiome dysbiosis [40]. These seem to indicate that 
potassium ions are closely related to the microbiota.

Our study found that the differentially expressed gene 
K00801 (FDFT1) is involved in the formation of squalene. 
Squalene is a naturally occurring triterpene hydrocarbon. 
It is a polyunsaturated hydrocarbon produced during 
metabolic processes and found in many natural products, 
such as olive oil and shark liver oil. Squalene currently 
has a wide range of medical uses, including antibacte-
rial, anticancer, and anti-inflammatory. In vitro animal 
experiments have found that adding squalene to the diet 
can increase the abundance of probiotics and promote 
the antioxidant capacity of the blood and jejunal mucosa, 
affecting blood biochemistry index [41]. Besides, squa-
lene also increased HDL cholesterol and paraoxonase 1 
and reduced oxidative stress [42]. Studies have also found 
that multi-drug nanoparticles of squalene can improve 
uncontrolled inflammation in rodents [43]. Squalene 
is non-polar in nature and has a high affinity for this 
unbound compound, helping to remove xenobiotic com-
pounds from the body and acting as a detoxifier [44]. This 
may be related to the potential benefit of the differentially 
expressed gene K00801 (FDFT1) in ESRD_P patients.

The study also discovered that the differentially 
expressed gene K00511 (SQLE) helps turn squalene into 
(S)-squalene-2,3-ethylene oxide, which then promotes 
the generation of triterpenoids. Triterpenoids have 
anti-cancer, anti-inflammatory, and other effects. Many 
studies have shown that taking triterpenoid drugs can 
correct gut microbiota disorders and improve prognosis 
in patients with chronic kidney disease [45, 46]. Besides, 
changes in specific gut microbiota can stimulate the pro-
duction of triterpenoids [47, 48]. Research indicates that 
asiatic acid, a triterpenoid compound, induces significant 
shifts in the abundance of specific intestinal flora, dis-
playing anti-renal fibrosis effects [45, 49]. Another triter-
penoid substance, asiaticoside, inhibits TGF-β1-induced 
mesothelial-mesenchymal transition and oxidative stress 
through Nrf2 activation, safeguarding the peritoneum 

and preventing peritoneal fibrosis [50]. Studies with lab-
grown animals have shown that two triterpenoids, called 
Poria A and Poria, can lower the number of glycine-
conjugated compounds and polyamine metabolites in 
the blood. This reduction has shown efficacy in mitigat-
ing both hypertension and renal fibrosis [46]. Triptolide, 
yet another triterpenoid substance, mitigates oxidative 
stress and vascular calcification in chronic kidney disease 
by upregulating heme oxygenase-1 [51]. Hence, based 
on these results, we found that alterations in gut micro-
biota following peritoneal dialysis stimulate the synthe-
sis of triterpenoids. The triterpenoids can demonstrate 
the ability to prevent and diminish renal and peritoneal 
fibrosis, counteract oxidative stress, resist vascular calci-
fication, and regulate blood pressure.

Although our research sample size needs to be further 
increased, our study innovatively found that peritoneal 
dialysis promotes microbial-driven biosynthesis path-
ways of sesquiterpenes and triterpenes compounds in 
end-stage renal disease patients. This will lay the founda-
tion for the development of ESRD-related drugs and fur-
ther treatment of ESRD.

Conclusion
In conclusion, we performed shotgun metagenomic 
sequencing on ESRD_N patients and ESRD_P patients 
and comprehensively analyzed it at the level of gut micro-
biota, gut microbiota genes, and related KEGG path-
ways. We found that there is a noteworthy impact on K 
and UBA733 SP900539595  after peritoneal dialysis. The 
changes of microbiota further influence an increase in 
SQLE, facilitating the decomposition of squalene and 
ultimately promoting the formation of triterpenoids, 
which may contribute to blood purification and improve 
circulation.
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