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Abstract
Background Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and 
grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the 
agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a 
feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni 
in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to 
broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a 
direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this 
interaction in vitro by co-incubation and RNA-sequencing.

Results The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of 
incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating 
that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo 
data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. 
Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for 
Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-
like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm 
formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler 
chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins.

Conclusion The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni 
to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) 
engagement of different metabolic pathways. The results provide insight into the response of an important intestinal 
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Introduction
Food and feed safety is an important issue worldwide, 
and Campylobacter (C.) jejuni, being primarily associated 
with poultry, is the most important foodborne patho-
gen causing gastroenteritis in humans [1]. A high preva-
lence of campylobacteriosis in humans together with an 
increasing level of antimicrobial resistance became a seri-
ous problem in recent years [2–4]. Understanding how 
Campylobacter species, especially C. jejuni, establishes 
successful colonization in chickens remains a foremost 
research priority as this gastrointestinal pathogen not 
only overcomes the host’s defense system, but also com-
petes with the microbial community for nutrients and 
space. Therefore, further research on the pathogenesis of 
C. jejuni infections in chickens and counteracting strate-
gies are needed. Colonization of the avian gut by C. jejuni 
is very complex and is influenced by many parameters. 
Dietary factors have been found to alter the resistance 
to infection in general and to influence the microbial 
dynamics of the gut [5–7]. It was also demonstrated that 
feed composition, age, as well as breed of birds, influ-
enced the outcome of C. jejuni colonization, the immune 
system, and the gut microbiota [8–10]. Recently, in vari-
ous studies, we were able to show that C. jejuni, contrary 
to the general belief, increases intestinal permeability or 
“leaky gut” and promotes not only the translocation of 
C. jejuni itself but also the spread of Escherichia coli to 
internal organs [10–12].

Contamination of animal feed with mycotoxins is a 
worldwide problem and the presence of mycotoxins in 
poultry feed compromises the health of birds in a multi-
faceted way. Deoxynivalenol (DON) is the most common 
trichothecene mycotoxin detected in feedstuffs world-
wide [13, 14]. It is known that DON poses a health risk 
in livestock and can have consequences on production 
parameters. The toxicity of this mycotoxin is connected 
to the epoxide ring in the molecular structure that binds 
to ribosomes and inhibits protein synthesis [15]. This 
effect is particularly problematic in rapidly dividing cells 
of the intestine and the immune system. Beside the effect 
on protein synthesis, trichothecenes inhibit both RNA 
and DNA synthesis, presumably as a secondary effect of 
protein synthesis inhibition [16]. Inhibition of DNA syn-
thesis also results in inhibition of mitosis [16]. In addi-
tion, trichothecenes trigger a ribotoxic stress response in 
various cell lines that stimulates mitogen-activated pro-
tein kinase (MAPK) components of a signal transduction 
pathway, which regulates cell survival and stress response 

[16–18]. Consequently, DON increases the susceptibility 
to diseases [19–21].

So far, few studies have investigated the interaction 
between DON and enteric pathogens. It was found 
that the co-exposure of pigs to DON and Salmonella 
Typhimurium promoted Salmonella invasion and trans-
location across the intestinal epithelium [19]. It has also 
been demonstrated that feeding of DON is a predisposing 
factor for the development of necrotic enteritis in broiler 
chickens [20]. In agreement with this we found that the 
co-exposure of broiler chickens to DON and C. jejuni 
supported C. jejuni colonization in the gut at certain time 
points post infection, revealing that DON might provide 
a favourable condition for C. jejuni growth [22].

To mitigate the toxicity of DON, various approaches 
have been formulated, with one of them being bacterial 
biotransformation which relies on the ability of microor-
ganisms to produce metabolites of DON with decreased 
toxicity [23]. Biotransforming of DON occurs mainly 
through de-epoxidation, oxidation or isomerization. The 
de-epoxidation process consists of a reductive chemical 
transformation that breaks open the 12,13-epoxy ring, 
leading to the conversion of DON into its deepoxide 
derivative known as de-epoxy-deoxynivalenol (deepoxy-
DON or DOM-1) [23]. Incubating DON with contents 
from the large intestine of hens showed complete trans-
formation to deepoxy-DON [24]. Earlier investigations 
indicated that the deepoxidation of DON results in a loss 
of toxicity [25]. It has also been demonstrated in various 
studies that a microbial feed additive with de-epoxida-
tion activity could neutralize the toxic effects induced by 
DON in chickens [26–30]. Formation of deepoxy-DON 
(DOM-1) in pigs, rats, mice, chickens, and cows has been 
shown in different studies [31–34]. Pierron [35] showed 
that administration of pure DOM-1 by gavage for 21 
days in pigs does not have toxic effects on zootechnical 
parameters, intestinal histology, intestinal and inflam-
matory response and liver histology. The implications of 
co-exposure to DOM-1 in combination with a pathogen 
like C. jejuni or other species have not been studied. To 
our knowledge, we have shown for the first time that the 
feeding of DOM-1 reduced the colonization of C. jejuni 
NCTC 12744 in the intestine by approximately 1.5–3.0 
log10 (CFU/g) within the first two weeks post infection 
compared with co-exposure of C. jejuni to DON [36]. 
Such findings highlight the need for further investi-
gations of DON and DOM-1 effects on C. jejuni at the 
transcriptome level as a model prokaryote. Therefore, 

microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation 
mechanisms in chickens.

Keywords Deoxynivalenol (DON), Deepoxy-deoxynivalenol (DOM-1), Prokaryotes, Campylobacter jejuni, RNA 
sequencing



Page 3 of 11Awad et al. BMC Microbiology          (2024) 24:306 

co-incubation during in vitro studies followed by RNA 
sequencing were implemented to resolve the mycotoxin-
bacteria interaction. Hence, a better understanding of the 
pathogen response to DON at the transcriptome level 
may also lead to the identification of novel detoxifica-
tion mechanisms, which can be applied to overcome or 
reduce DON contamination.

Materials and methods
Campylobacter jejuni strains and growth curve analysis
Different C. jejuni (reference strains NCTC 12744 
(Campylobacter jejuni subsp. jejuni, isolated from con-
taminated milk, Public Health England, UK) and ATCC 
700819 (Campylobacter jejuni subsp. jejuni (Jones et al.) 
Veron and Chatelain ATCC 700819, isolated from human 
faeces, LGC Standards ATCC, UK), and field isolates 
(1303, isolated from broiler chicken flock, pooled faecal 
samples), and 969 (isolated from environmental sample, 
swab from anteroom). Both strains were identified as C. 
jejuni by PCR and PCR-RFLP at our clinic [37, 38], and 
were cultivated at 41.5 °C for 48 h under microaerophilic 
conditions (Genbox microaer, BioMerieux, Vienna, Aus-
tria) on Campylobacter Selective Agar (Campylosel agar, 
BioMerieux), which was used to determine bacterial 
counts in the samples.

In the first set of experiments (3 technical replicates 
in 3 biological replicates), the interaction of different C. 
jejuni strains with DON and DOM-1 was investigated 
in vitro by measuring the optical density at a wavelength 
of 690 nm using a microplate photometer (Micronaut-S 
Microdilution system, Merlin Diagnostika GmbH, Klein-
straße 14, Barnheim-Hersel, Germany) and determining 
the bacterial count at 48 h. Different strains of C. jejuni 
at 105 CFU/mL were grown in 100 µl of Mueller-Hinton-
Broth (Merck KGaA, Darmstadt, Germany), 95  µl of 
bacterial suspension were inoculated into 96-well plates 
(Sarstedt AG&Co KG, Sarstedtstr.1, Nümbrecht, Ger-
many). DON or DOM-1 was dissolved in PBS (10  mg/
mL, stock solutions). In the 96-well plates, 5µl of PBS 
was added to the bacterial suspension as a control sam-
ple. The 96-well plates were then inoculated with either 
DON (5µl) or DOM-1 (5µl) (a total volume of 100 µl in 
one well) and incubated under microaerophilic condi-
tions over 48  h. The DON concentration used in the in 
vitro model is relevant to the field situation and is also of 
practical relevance as the current guidance for the toler-
ated value of DON in poultry diets is set at 5 mg/kg feed 
[39]. In the second series of experiments, to confirm the 
results, the bacterial growth curve was measured with 
different DON concentrations 5 and 20 ppm (low and 
high levels) to find out whether there is a difference in 
the bacterial response when exposed to high DON con-
centrations. For this, we used only two strains (a refer-
ence strain and a field isolate as a representative) for 

characterizing the bacterial activity based on CFU counts 
over the period of time (24 h, 30 h, 36 h, 42 h, 48 h).

For RNA sequencing, we proceeded only with the ref-
erence strain C. jejuni NCTC 12744, which we used in 
the in vivo experiments. The optical density was deter-
mined at 30 h and 48 h and the experiment was repeated 
three times for each bacterial strain (3 biological repli-
cates). For each biological replicate, we had three techni-
cal replicates for each treatment and time point. Bacteria 
were harvested at 30 h and 48 h, 3 wells per plate (3 × 100 
µL) and pooled together. The bacterial cells were then 
centrifuged at 16,000 x g for 2 min for immediate RNA 
extraction as described below for RNA-sequencing anal-
ysis. For each time point, four pooled biological repli-
cates (12 samples) were used as control for C. jejuni, and 
due to the workload and the availability of the mycotoxin 
metabolite (DOM-1), three pooled biological replicates 
(9 samples) each for C. jejuni + DON (5 µg/mL) and for C. 
jejuni + DOM-1 (5 µg/mL), respectively.

In parallel to the determination of the optical density, 
CFU counts (at 24 h and 48 h) were performed from each 
well as described by Ruhnau et al. [36]. For bacterial enu-
meration, serial 10-fold dilutions were made from each 
sample and 100 µL from each dilution were direct-plated 
in duplicate onto Campylosel agar (BioMérieux, Vienna, 
Austria). The plates were incubated under microaerobic 
conditions at 41.5ºC for 48 h and typical Campylobacter 
colonies were enumerated by plate colony counter (Ther-
moFisher Scientific, USA) as colony-forming units. CFU 
counts were determined by calculating the mean value of 
both plates.

RNA extraction and bacterial RNA sequencing
Total RNA extractions were conducted with the RNAs-
nap method with slight modifications [40]. In short, the 
cell pellet was resuspended in 300 µL RNAsnap solution 
by shaking at 5000  rpm (2 × 20  s). Cells were lysed by 
incubating at 95 °C for 3 min, vortexed for 30 s, and incu-
bation for 4 min at 95  °C. After pelleting the cell debris 
at 16,000 x g for 5  min, the supernatant was carefully 
transferred to a new tube for RNA cleanup. Cleanup was 
achieved with the Monarch RNA Cleanup kit (New Eng-
land Biolabs, Frankfurt am Main, Germany) according to 
the manufacturer’s instructions. Total RNA concentra-
tion was determined using a NanoDrop 2000 spectro-
photometer (ThermoFisher Scientific, USA). Afterwards, 
the RNA samples were qualified for sequencing, and 
shipped to the sequencing platform provider (LGC Stan-
dards GmbH, Wesel, Germany). The provider further 
treated the RNA samples with DNase and performed 
rRNA depletion using the MICROBExpress™ bacterial 
mRNA enrichment kit (ThermoFisher Scientific, USA). 
The RNA-Seq libraries were pooled and sequenced on 
Illumina NextSeq 500/550 V2 with 75  bp single reads. 
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In total, approximately 100  million reads were obtained 
across all 20 samples, with an average of 5.4  million of 
reads per sample (genome size of C. jejuni is 1.6 Mbp). 
The resulting reads were demultiplexed (Illumina bcl-
2fastq 2.17.1.14 software), trimmed, and further filtered 
for rRNA sequences using RiboPicker 0.4.3. Align-
ment of RNA-Seq reads was performed with Bowtie 2, 
and against the annotated genome of C. jejuni 81–176 
(NC_008787.1) showing 98.41% homology with our C. 
jejuni strain NCTC 12744 (microbial nucleotide BLAST, 
database prok_complete_genomes, NCBI). HTSeq was 
used for counting of TopHat-aligned reads, and gene 
expression levels were normalized as reads per kilobase 
of transcript per million mapped reads (RPKM).

Statistical analysis
For bacterial cell counts, the data are presented as means 
with standard error of mean (SEM). To evaluate the 
normality Kolmogorov-Smirnov´s test was utilized. A 
multivariate general linear model, ANOVA, Duncan´s 
multiple range test and LSD were applied to analyze dif-
ferences between groups. Differences were considered 
significant at a level of P ≤ 0.05. Data were analyzed by 
IBM SPSS Statistics 24 software for Windows (Chicago, 
IL, USA). For RNA-seq analysis, RPKM were used for 
fold change calculation between control and treatments 
(DON or DOM-1) at each time point (30–48  h). The 

mixed effects model approach was applied on the indi-
vidual RPKM (reads per kilobase of transcript per million 
mapped reads) with treatment and time as two factors 
(Two-way ANOVA), followed by Sidak’s multiple com-
parison test with P value. The principal component anal-
ysis (PCA) and heatmaps were conducted with the online 
tool ClustVis (https://biit.cs.ut.ee/clustvis/) and using 
the normalized gene expression levels (RPKM). The PCA 
was implemented to measure the strength of association 
between Campylobacter genes at both time points (30 h 
and 48 h). In addition, two-way ANOVA was done on the 
pooled normalized counts for flagellar genes (treatment 
and time factors), followed by Dunnett’s multiple com-
parison test.

Results
Bacterial growth analysis
In the first set of experiments, to investigate a possible 
interference of DON with different C. jejuni strains, the 
in vitro co-incubation of C. jejuni NCTC 12744, C. jejuni 
ATCC 700,918, C. jejuni 1303, and C. jejuni 969 with 
DON or DOM-1 was investigated applying the Micro-
naut-Microdilution system. The results showed that that 
the presence of DON resulted in higher growth rates in 
all strains compared to the results when C. jejuni was 
grown alone (Fig.  1a, b). However, these findings were 
only significant for the reference strains NCTC 12744 

Fig. 1 Strain-specific differences (a) (Reference strains C. jejuni NCTC 12744 and C. jejuni ATCC 700819; (b) Field isolates (C. jejuni 969 and C. jejuni 1303) 
in Campylobacter proliferation in the presence of DON. Results are presented as mean values and standard error of mean (SEM) (n = 9). Asterisks mark 
differences with P ≤ 0.05 (*), or P ≤ 0.01 (**)

 

https://biit.cs.ut.ee/clustvis/


Page 5 of 11Awad et al. BMC Microbiology          (2024) 24:306 

and ATCC 700,819 at 48 h and not for C. jejuni 969 and 
C. jejuni 1303 (Fig. 1b). For confirming the results, a bac-
terial growth curves were established to characterize the 
bacterial activity based on CFU counts over this period 
(Fig. 2a, b). This effect was statistically consistent and had 
good predictability, indicating a growth stimulation effect 
of the bacteria in the presence of DON (1.4 × 1010 CFU, 
Fig.  1a). On the contrary, co-incubation with DOM-1 
resulted in a significant decrease in CFU counts for all C. 
jejuni strains investigated (2.3 × 108 CFU, Fig. 3b).

Effect of DON on the transcriptome of C. Jejuni NCTC 12744 
over time
Bacterial genes that were affected by DON at both time 
points, 30  h and 48  h, are presented in Fig.  4. A fold 
change of at least 1.5 was seen for those genes when DON 
was present compared to C. jejuni alone, either upregu-
lating or downregulating their expressions. Interestingly, 
most of the genes showing lower expression were related 
to ribosomal RNAs, with 19 out of 32 downregulated 
genes mapping to the ribosome pathway (i.e. subunit 
rpl, 50  S ribosomal protein, and subunit rps, 30  S ribo-
somal protein, Fig. 5). Regarding the upregulated genes, 
the effects were more pronounced after 48 h of exposure 
to DON than after 30 h. This is for instance the case for 
the bacterial gene Acfc, accessory colonization factor, 

involved in infectivity, and exhibiting a significant 3.42-
fold increase at 48  h. Furthermore, the expression of 6 
genes (flgD, flgH, flgI, flgB, flgG, flgE), encoding bacterial 
motility proteins was increased in the C. jejuni samples 
treated with DON at 30 h (Fig. 6). However, after 48 h, 
the mRNA levels of those genes were either unchanged 
or reduced, showing a different profiling depending on 
the duration of DON exposure.

Effect of DOM-1 on the transcriptome of C. Jejuni over time
Like the approach with DON, the genes showing either 
a 1.5 fold increase or decrease at both time points were 
selected. Only 20 bacterial genes met these criteria at 
30 h and 48 h. Interestingly, most of the genes showing 
lower expression were related to ribosomal RNAs, with 
19 out of 32 downregulated genes mapping to the ribo-
some pathway (i.e. cje03010 in KEGG pathway analysis 
corresponding to subunit rpl, 50  S ribosomal proteins, 
and subunit rps, 30  S ribosomal proteins; Fig.  5 pres-
ents the expression of some of those ribosomal proteins). 
Furthermore, the expression of 6 genes, encoding bacte-
rial motility proteins, was also decreased in the C. jejuni 
samples treated with DOM-1. These genes (flgD, flgH, 
flgI, flgB, flgG, flgE; not polycistronic mRNAs) are related 
to flagellar assembly in bacteria (i.e. cje02035 in KEGG 
pathway analysis corresponding to bacterial motility 

Fig. 2 Growth kinetics of (a) Reference strain (C. jejuni NCTC 12744); (b) Field isolate (C. jejuni 1303) in the presence of DON and DOM-1. Results are pre-
sented as mean values and standard error of mean (SEM). Asterisks mark differences with P ≤ 0.1 (#), or P ≤ 0.05 (*), or P ≤ 0.01 (**)
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proteins), and their expressions are presented in Fig.  6. 
Since these genes belong to the same pathway, their 
normalized counts were pooled to increase the number 
of data points. A significant effect of DON treatment 
on flagellar genes (p = 0.0031) and, in contrast, a sig-
nificant decrease in expression with DOM-1 as revealed 
by the multiple comparisons test (p = 0.084 at 30  h, and 
p = 0.0021 at 48 h).

Relationships among treatments were examined by 
Principal component analysis (PCA). The PCA showed 
no clear clustering of Campylobacter genes between con-
trol and DOM-1 treatment, especially at 48  h (Fig.  7). 
PCA plots also demonstrate that Campylobacter genes 
were more separated with DON treatment at both time 
points (Fig. 7). In addition, the fold changes of the genes 
sorted by time points of control, DON, and DOM-1 
treatment of each biological replicate are shown in the 
heatmaps (Fig. 7). The gene similarity among all samples 
showed clear differences between treatments at both 
time points, indicating strong shifts in Campylobacter 
genes as a result of DON treatment.

Discussion
Chickens serve as a major source of human infections 
with C. jejuni, and therefore, infected birds remain a 
substantial problem for poultry production [41]. Like-
wise, contamination of food and feed with mycotoxins 
is a global problem and the presence of mycotoxins in 
poultry feeds is a significant economical factor. DON is 
the most common trichothecene mycotoxin detected in 
feedstuffs worldwide [14].

The effect of DON on prokaryote remains unclear, 
although the mechanisms and physiological disruption 
of this toxin in eukaryotes have been well character-
ized [42, 43]. It was reported that DON can alter the gut 
microbiota in humans and animals [44, 45]. Recently, we 
demonstrated that the co-exposure of broiler chickens 
to DON and C. jejuni increased the intestinal C. jejuni 
load, indicating that DON may represent a favorable 
prerequisite for Campylobacter multiplication [22]. Fur-
thermore, the DON impact on Campylobacter growth 
can also be explained by the fact that this bacterium can 
rely on DON as a sole source of carbon [46]. This raises 
questions about the synergism between food contami-
nants and Campylobacter with regard to food-borne gas-
troenteritis. This, in turn, has led to a greater interest in 
understanding bacterial responses toward DON. Johnson 

Fig. 3 Strain-specific differences (a) Reference strains (C. jejuni NCTC 12744 and C. jejuni ATCC 700819; (b) Field isolates (C. jejuni 969 and C. jejuni 1303) 
in Campylobacter proliferation in the presence of DOM-1. Results are presented as mean values and standard error of mean (SEM) (n = 9). Asterisks mark 
differences with P ≤ 0.05 (*)
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et al. [47] reported that prokaryotic RNA-Seq analysis is 
challenging because most available RNA-Seq packages 
assume the input data reflect eukaryotic gene structures, 
which in many aspects differ from those of prokaryotes. 
Hence, RNA-Seq technology has been extensively used 
in studies of pathogenic bacteria to identify and quantify 

changes in gene expression among different samples from 
bacteria exposed to various conditions.

To resolve the nature of the influence of DON on the 
infection profile of C. jejuni, the direct interactions 
between C. jejuni and DON or a less-toxic DON-metab-
olite were investigated. Overall, the actual study demon-
strated that the presence of DON resulted in significantly 

Fig. 5 Expression of C. jejuni NCTC 12744 ribosomal genes compared with the expression of the same genes of C. jejuni in the presence of DON at the 
two sampling points (30 h and 48 h) determined by RNA-seq. The functional analysis was done with KEGG pathway. The pathway enrichment analysis 
showed that many down-regulated genes mapped to the cje03010 ribosome pathway (i.e. cje03010 in KEGG pathway analysis corresponding to subunit 
rpl, 50S ribosomal proteins, and subunit rps, 30S ribosomal proteins)

 

Fig. 4 Summary of the expression of genes of C. jejuni NCTC 12744 affected by DON and DOM-1 at both time points, 30 h and 48 h. The Y-axis represents 
the functional genes, and the X-axis represents the fold change with genes at least 1.5-fold decreased or increased compared to C. jejuni alone. (a) The 
blue color of bar represents the fold-change of up- or down-regulated genes for DON treatment at 30 h, and the grey color of bar represent the fold-
change of up-or down-regulated genes for DON treatment at 48 h. P-values from the treatment effect (i.e. DON) following 2-way ANOVA (with treatment 
and time factors) were plotted as grey dots, and their values are seen through the extra X-axis on top of the bar chart. (b) Differences in gene transcription 
profiles between DON and DOM-1 on the genes affected by DON at 48 h. The blue color of bar represents the fold-change of up- or down-regulated 
genes for DON treatment, and the green color of bar represent the fold-change of the same genes for DOM-1 treatment. (c) The bright green color of bar 
represents the fold-change of up- or down-regulated genes for DOM-1 treatment at 30 h, and the grey color of bar represent the fold-change of up-or 
down-regulated genes for DOM-1 treatment at 48 h. P-values from the treatment effect (i.e. DOM-1) following 2-way ANOVA (with treatment and time 
factors) were plotted as grey dots, and their values are seen through the extra X-axis on top of the bar chart

 



Page 8 of 11Awad et al. BMC Microbiology          (2024) 24:306 

higher growth rates of C. jejuni from 30  h incubation 
onwards, confirming the in-vivo data using the same con-
centration, indicating growth-stimulating effects of the 
bacteria. However, none of the field strains showed stron-
ger growth in the presence of DON. One explanation for 
this might be that the presence of DON could alter the 
activity of the reference strains and thus has an impact 
on growth. Thus, we employed RNA-seq technology to 
explore the changes in bacterial mechanisms in response 
to DON. Co-incubation of C. jejuni with DON increased 
the expression of Flagella gene family, frr (ribosome-recy-
cling factor), PBP2 futA-like (Fe3+ periplasmic binding 
family), biosynthesis of amino acid and PotA (ATP-bind-
ing subunit), which are required for motility, biofilm 
formation, host cell interactions, and host colonization. 
The C. jejuni multiplication can be also explained by the 
fact that the bacterium evades DON toxicity by upregu-
lating several ABC-dependent membrane transporters 
and efflux pumps that remove many undesirable toxins/ 
chemicals (including DON) from the environment [48]. 
In line with that, we also found that DON increased the 
expression of efflux transporters (e.g. ATP-binding sub-
unit). Together, co-incubation of C. jejuni with DON led 

to the development of a variety of mechanisms to com-
pete environmental challenges.

It has been reported that mycotoxin deactivators can 
convert DON into the non-toxic metabolite DOM-1 
through enzymatic biotransformation, thereby reduc-
ing DON burden in chickens [49]. The mechanisms of 
action of DOM-1 are activation of metabolic enzyme 
activity and feed digestibility, activation of the liver 
function as well as strengthening of the immune system 
[50]. Recently, we found that feeding of DOM-1 reduced 
intestinal C. jejuni load by 1.5-3.0 log10 (CFU/g) [36]. 
Furthermore, we hypothesized that DOM-1 might cre-
ate a different intestinal environment to which C. jejuni 
could adapt [35, 51]. Therefore, based on these findings, 
the current study was conducted to explain how DOM-1 
might directly affect a prokaryote such as Campylobacter 
in chickens. In the current experiments, we found that 
the presence of DOM-1 leads to a significant decrease in 
C. jejuni CFU counts of all strains. These results confirm 
our previous in vivo data, as we found that the dietary 
inclusion of DOM-1 reduced the intestinal load of C. 
jejuni at 7- and 14-days post infection [36]. The results 
showed that, in contrast to DON, DOM-1 downregu-
lated bacterial motility genes (Flagella gene family) and 

Fig. 6 Expression of C. jejuni NCTC 12744 flagella genes compared with the expression of the same genes of C. jejuni in the presence of DON or DOM-1 at 
the two sampling points (30 h and 48 h) determined by RNA-seq. Data are presented as the mean values and SD. The functional analysis was done with 
KEGG pathway (i.e. cje02035 in KEGG pathway analysis corresponding to bacterial motility proteins)
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upregulated ribosomal proteins, implying reduced prolif-
eration activity of this bacteria. The results showed that 
DOM-1 could threaten the survival of Campylobacter, 
indicating a specific response to the influx of DON and 
DOM-1 into bacterial cells through changes in the bacte-
ria’s metabolic pathways. However, the bacteria could be 
mitigating the effects of a metabolite targeting its ribo-
somal genes, allowing it to continue with protein synthe-
sis. Overall, through a combination of our recent in vivo 
trial with the current results, we demonstrated that that 
mycotoxin-bacteria interactions can alter the virulence of 
Campylobacter in its hosts. The results may provide new 
insights into targets that can be used for future studies 
of molecular mechanisms underlying the Campylobacter 
response to DON and DOM-1. However, the specific 
functions of the identified genes in Campylobacter meta-
bolic pathways should be confirmed by further molecular 
biological investigations.

Conclusion
The results of the present studies confirmed that DON 
interfered with the ribosomal proteins and upregulated 
the flagellar proteins. On contrast, it demonstrated that 
deepoxy-DON (DOM-1) did not activate these signaling 
pathways. These results expand the current knowledge 
of the toxicity of DON and beneficial effects of deepoxy-
DON (DOM-1) and contribute to the evaluation of the 
efficacy of the microbial biotransformation strategies in 
the fight against mycotoxins. Finally, the study also dem-
onstrated that DOM-1 has a substantial impact on the C. 
jejuni propagation and by this also on the colonization.

Abbreviations
DON  Deoxynivalenol
DOM-1  Deepoxy-deoxynivalenol
C.  Campylobacter
Frr  Ribosome-recycling factor
PBP2  futA-like Fe3 + periplasmic binding family
PotA  ATP-binding subunit

Fig. 7 The principal component analysis (PCA) and heatmaps were generated with the online tool ClustVis (https://biit.cs.ut.ee/clustvis/), and using the 
normalized gene expression levels (reads per kilobase of transcript per million mapped reads, RPKM). PCA were analysed for all samples at 30 h (a), and at 
48 h (b). Green (control), dark orange (DOM-1), and purple (DON), with each dot indicating a biological replicate. Heatmaps were analysed for all samples 
at 30 h (c), and at 48 h (d)
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