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Abstract 

Background At lower concentrations copper (Cu), zinc (Zn) and nickel (Ni) are trace metals essential for some bacte-
rial enzymes. At higher concentrations they might alter and inhibit microbial functioning in a bioreactor treating 
wastewater. We investigated the effect of incremental concentrations of Cu, Zn and Ni on the bacterial community 
structure and their metabolic functions by shotgun metagenomics. Metal concentrations reported in previous studies 
to inhibit bacterial metabolism were investigated.

Results At 31.5 μM Cu, 112.4 μM Ni and 122.3 μM Zn, the most abundant bacteria were Achromobacter and Agro-
bacterium. When the metal concentration increased 2 or fivefold their abundance decreased and members of Delf-
tia, Stenotrophomonas and Sphingomonas dominated. Although the heterotrophic metabolic functions based 
on the gene profile was not affected when the metal concentration increased, changes in the sulfur biogeochemical 
cycle were detected. Despite the large variations in the bacterial community structure when concentrations of Cu, Zn 
and Ni increased in the bioreactor, functional changes in carbon metabolism were small.

Conclusions Community richness and diversity replacement indexes decreased significantly with increased metal 
concentration. Delftia antagonized Pseudomonas and members of Xanthomonadaceae. The relative abundance 
of most bacterial genes remained unchanged despite a five-fold increase in the metal concentration, but that of 
some EPS genes required for exopolysaccharide synthesis, and those related to the reduction of nitrite to nitrous 
oxide decreased which may alter the bioreactor functioning.
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Background
Metal contamination of water resources comes mostly 
from municipal, industrial, agricultural and mining 
wastewater [18, 24, 33]. In water, metals can be found 
as free ions or complexed with organic ligands [24]. 
Although their toxicity has been well described, some 
metals, such as iron (Fe), copper (Cu), manganese, cobalt, 
nickel (Ni), selenium and zinc (Zn) are essential nutrients 
for several organisms. Because of their intrinsic chemical 
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orbitals, Fe and Cu may participate in redox reactions as 
those catalyzed by oxidoreductases or Fenton catalyzers 
[10, 33].

Copper is found naturally in the environment 
(< 200,000  mg  Kg−1 in soil, < 69  mg  L−1 in water and 
0.79 ×  10–6  mg  L−1 in air), but higher concentrations 
might be reached due to anthropogenic contamina-
tion [3]. Copper contamination is generally the result of 
mining or recycling, but some fungicides and herbicides 
also contain Cu salts. Because of its redox potential, 
Cu can inhibit several enzymes and produce oxidative 
stress in bacteria [18]. Nickel also occurs naturally in 
the environment (< 165  mg  Kg−1 in soil, < 18.2  mg  L−1 
in water, < 0.18 ×  10–6  mg  L−1 in air) and contamination 
might occur through mining, refining of oil or through 
coal-fired power plants. Humans are exposed to Ni by 
tobacco and e-cigarettes, food and water or by contact 
with materials or soil containing Ni [4]. Only some pro-
teins are known to use or contain Ni, with urease, the 
most important one, using Ni as cofactor [40]. Nickel 
may affect the bacterial membrane, inhibit or deacti-
vate enzymes and produce oxidative stress [18]. Zinc is 
found at 71 mg  Kg−1 in the upper continental crust and 
is the most important transition metal in humans after 
iron [13]. Zinc-finger motifs are involved in gene expres-
sion. This and other functions make Zn ions essential 
for eukaryotic growth and cell division [14]. Zinc is also 
found in proteins involved in redox activity, e.g. alcohol 
dehydrogenase and some isoenzymes of superoxide dis-
mutase [12]. At higher concentrations, i.e., higher than 
those needed for metabolism, which is usually > mM level 
depending on the organism, Zn may negatively affect 
bacterial growth and biomass production [18].

Although the effect of metals on bioreactor micro-
biota has been described [1, 7, 23], most of the current 
knowledge comes from studies with axenic cultures. In 
bacteria, some enzymes contain or use Cu, Zn or Ni as 
cofactors making them essential for bacterial metabo-
lism. Despite that, these three metals may be toxic, 
mutagenic or even lethal for bacteria when their concen-
tration become too high in the environment, i.e. higher 
than those needed for a normal metabolic functioning 
[21, 24]. As mentioned before, at higher concentrations 
Cu and Ni may produce oxidative stress in bacteria while 
Zn reduces bacterial growth.

As a response, bacteria may produce biofilms or che-
lates, or use other mechanisms to mitigate the negative 
effects of metals [24]. An increase in energy metabolism 
by bacteria has been suggested as a response to metal 
stress in river sediments, which significantly reduced 
their richness [41]. Similarly, in wastewater bioreactors, 
metals induced bacteria to produce metalloproteins 
(like cytochrome or heme-carriers), siderophores [23], 

or mutations leading to antibiotic and metal resistance 
[21]. As metals may alter the microbiota community 
structure in wastewater treatment plants, they might 
reduce organic matter biodegradation [7, 23]. Studying 
the impact of these metals on the bacterial community 
structure may help to understand their effect at a micro-
ecosystem level and in the treatment of wastewater.

In this study, two bioreactors were used with activated 
sludge and fed continuously with synthetic wastewater as 
described in Esquivel-Rios et al. [17]. One bioreactor was 
supplied with increased concentrations of Cu, Ni and Zn 
and the bacterial community was determined each time 
the amount of metals applied increased. An unamended 
bioreactor kept under the same operational conditions 
served as control. The aim of this study was to investigate 
how the increased application of Cu, Ni and Zn affected 
the bacterial community and its metabolic function capa-
bilities as determined through shotgun metagenomics. 
It was hypothesized that the bacterial functionality (as 
measured by abundance of genes encoding for them) 
would follow any observed changes in bacterial commu-
nity structure.

Methods
Bioreactors
Two stirred tank bioreactors were operated for 166 days. 
Details of the wastewater used to inoculate the biore-
actors and how they were maintained can be found in 
Esquivel et  al. [17]. The 6-L bioreactors were inocu-
lated with 1 L of wastewater sludge (from Mexico city), 
fed for nine weeks prior to experiment with synthetic 
water (see Annex I), i.e., > 30 working volumes were 
used to acclimate the inoculum. Experimental condi-
tions are described in Supplementary File Annex I, and 
these conditions were used also during experiment. 
One of the bioreactors was amended with metals, i.e. 
the synthetic water applied to the bioreactor contained 
the metal divalent ions at 31.5 μM Cu, 112.4 μM Ni and 
122.3 μM Zn (considered the HM-1 phase). After 25 days 
of this first treatment, the metal concentration was dou-
bled in the synthetic water to 62.8 μM Cu, 224.9 μM Ni 
and 244.6  μM Zn (considered the HM-2 phase). After 
an additional 45  days, the water applied was increased 
five-fold to 157.4 μM Cu, 562.2 μM Ni and 611.5 μM Zn 
(considered the HM-5 phase). The metal concentrations 
in the bioreactor were derived from the inorganic salts 
added. Their bioavailability is likely to be lower due to the 
high organic matter content in bioreactors. Despite that, 
those concentrations were previously found to respiro-
metrically inhibit the activity of an inoculum under the 
same operating conditions [17]. Samples were taken 
just before the metal concentration was increased two 
fold and five-fold and at the end of the experiment, i.e. 
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after 166  days. As such, three samples were taken from 
the metal amended bioreactor. The unamended bioreac-
tor, which served as control, was applied with the same 
synthetic water without metals and sampled at the begin-
ning (considered the CON-b sample) and the end of the 
experiment (considered the CON-e sample).

DNA extraction and sequencing
Metagenomic DNA was extracted by mechanical homog-
enization and purified by enzymatic/alkaline treatment. 
Water samples were centrifuged and the pellets obtained 
were treated with 1.2  mL lysis buffer I (80 μL lysozyme 
in 10 mM Tris–HCl pH 8). After 1 h incubation at 37 ºC, 
1 mL buffer II (0.1 M NaCl, 0.5 M Tris–HCl, 12% SDS, 
pH 8.0) and 0.5 g sterile sand was added to the samples. 
Samples were vortexed for 10 min and placed on dry ice 
(-70 ºC) for 20 min. Microtubes were heat-shocked at 70 
ºC for 20  min and centrifuged. The supernatants were 
transferred to new tubes and added with 115 μL 0.5  M 
EDTA pH 8.0 and 5 M potassium acetate pH 5 in a 1:9 
volume ratio. After refrigeration at 4 ºC for 10 min, sam-
ples were centrifuged at 13,000 rpm at 4 ºC for 10 min. 
The supernatant was transferred to new tubes contain-
ing 400 μL chloroform-isoamyl alcohol-phenol solution 
(24:1:25). Samples were vortexed and centrifuged again 
as described above. The aqueous phase was transferred to 
new tubes and the organic phase was extracted. All aque-
ous extracts from the same sample were pooled together. 
The DNA was precipitated with 13% PEG (1:1 volume 
ratio), vortexed and incubated at -20 ºC overnight. Sam-
ples were centrifuged and pellets were washed with 500 

μL chilled 70% ethanol. After centrifugation, pellets were 
air-dried before been resuspended with 50 μL sterile 
water.

The integrity of the DNA was confirmed by agarose elec-
trophoresis and quantified on a NanoDrop™ 3300 (Thermo 
Scientific, Carlsbad, CA). The DNA was sequenced by 
Macrogen Inc. (Seoul, Korea) using a HiSeq2000 Illu-
mina® 2 × 100 paired-end platform. The raw sequence 
datasets were deposited in the NCBI under BioProject ID 
PRJNA1009125, BioSample ID SAMN37147121 and SRA 
numbers: SRR26071885, SRR26071886, SRR26071887, 

SRR26071888, SRR26071889. The number of reads 
were > 20 million sequences/sample (Supplementary Table 
I).

Bioinformatic analysis
After trimming and adapter-elimination with trimmo-
matic and paired with Flash [8], contigs were assembled 
with SPADES [5], and annotated using Kraken2 [37] and 
the Genbank nr bacteria database. Relative abundances 
were calculated as a percentage of the total sum of final 
sequence counts.

Diversity replacement of the bacterial genera was cal-
culated according to Legendre [20]:

where: b are the unique genera of sample 1 (genera found 
only in one sample and not in others), c are the unique 
genera of sample 2, and N is the total number of genera 
of both samples. Replacement for all samples were calcu-
lated using CON-b as the reference for comparison.

DiTing was used to determine metabolic functions 
with "meta" presets [39] and heatmaps were generated 
with MATLAB 2017a. Dissimilatory nitrate reduction 
was calculated as given in eqs. 2 to 4 to include the spe-
cific nitrate influx pump and the possible participation of 
isoenzymes in different steps of nitrate reduction as given 
by UniProt, the KEGG database and [26].

Assimilatory nitrate reduction was defined as a three-
step process:

1. Uptake

2. Reduction of nitrate to nitrite

3. Reduction of nitrite to ammonia

Statistical analysis
Hill numbers were calculated as described by [11]. Mean 
values and confidence intervals were calculated after 
1,000 bootstrap re-sampling. Value distribution was used 
to generate violin plots. Venn diagrams were drawn using 
the bioinformatics and evolutionary genomics page [35]. 

(1)Repl = 2 •
min(b, c)

N

(2)K02575+
K15576+ K15577+ K26138+ K15578+ K26139

3
+

K15576+ K15577+ K15578+ K15579

4

(3)
[

K00367+ K00370+ K00371+ K00374

4
+ K10534 +

K00372+ K00360+ K02575

2

]

(4)[K17877+ K00360+ K00366]
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Circos plots were drawn using the circosChart func-
tion from MATLAB Central File Exchange [25] with 
some modification for representation, but not for data 
computation.

Circos plots allow easy interpretation of shared organ-
isms classified at a certain taxonomic level, but the higher 
the level, the less the "unique" taxon becomes. Most phyla 
were detected in all samples, but at lower taxonomic lev-
els, the percentage of shared taxa decreased. For instance, 
in the circos plot for genus, unique genera were barely 
detectable due to the large number of genera, whereas 
at higher taxonomic level less unique bacterial groups 
(e.g. class or phyla) were found. Circos plots may mask 
the lack of sensitivity of a method determining richness, 
in this case richness of microorganisms, but it can be 
applied with genes or other characteristics plotted within 
circos. Despite that, circos plots allow to get a good idea 
of how many items (genera in our case) are shared among 
samples. Contrario sensu, it is easy to observe groups in 
a network and clustering analysis, as well as, those genera 
that differ from the rest.

Partial correlation was calculated with Eq. 5 and the p 
value was obtained from the F value Eq. 6 described by 
[19]:

with:  rab.c the partial correlation between factor a and b 
subtracting the contribution of c,  rab the Pearson correla-
tion r between factors a and b, and so on.

with: 2 arises from v = n-m-1 with m = the number of var-
iables beside "a" (two) and n the sample data number (five 
in this study).

Multidimensional multivariate statistics were done 
with MATLAB 2017a. Chi-square distances were used 
for Q-mode analysis as they are a better representa-
tion than Euclidean distances when multiple zeros were 
found [19]. Procrustes analyses were done using chi-
square distances. The goodness-of-fit criterion was the 
sum of squared errors. Both possible transformations 
(control—> treated and treated—> control) were calcu-
lated and plotted. Although the components matrices 
for transformation differed, goodness-of-fit gave the 
same results. Clustering analyses were performed using 
the k-means method. Prior to determine the best num-
ber of clusters, an estimation of optimum clustering 
was done using the silhouette value as a criterion with k 
ranging from 2 to 20. Centered relative abundances were 

(5)rab.c =
rab − racrbc

√

1− r2ac •

√

1− r2bc

(6)F = 2 •
r2ab.c

1− r2ab.c

used for principal component analysis (PCA). Contribu-
tion of variance by eigenvalues was given as a percent-
age of the total variance. Network analysis was done and 
graphed using Gephi 0.10.1 [6]. Sample node size was 
ranked according to the betweenness centrality metric. 
Color in the figure was assigned according to community 
detection (modularity) using relative abundance in each 
sample as a weight factor. The “Force Atlas” algorithm 
was used for presentation and network visualization. 
Bray–Curtis dissimilarities were used for non-classical 
multidimensional scaling (NMDS) as this statistic allow 
to quantify compositional dissimilarity among samples. 
Stress normalized by the sum of squares of the inter-
point distances was used as a goodness-of-fit criterion 
in NMDS to two dimensions (components). The relative 
abundance of genes were considered for the metabolic 
function they encode, and it was reported as counts per 
million (cpm) [39].

The metal concentration factor was used as descriptor 
transformed into dummy columns for R-mode analy-
sis. Euclidean distances were calculated for redundancy 
analysis. The contribution to variance is presented as 
a percentage of the total variance (canonical (Yhat) 
plus non-canonical axes (Yres)) for each RDA-axis as 
described in [19].

Results
The bacterial diversity and community structure
Most of the organisms found in both bioreactors 
belonged to the bacterial domain (Table  1). In all sam-
ples, the relative abundance of bacteria was > 98%. Rich-
ness of genera (q = 0) significantly decreased with metal 
concentration (p < 0.05, Supplementary Fig.  1, Table  2). 
The evenness increased (q = 1) and the diversity of the 
dominant species decreased (q = 2) with increasing metal 
concentration.

Significant differences in biodiversity were found 
among the samples (PERMANOVA, p < 0.01; Pro-
crustes, p = 0.001; Supplementary Fig.  2A, dissimilar-
ity = 0.998, PCA Supplementary Fig. 2B). Samples from 
the unamended bioreactor (CON-b and CON-e) were 

Table 1 Organism abundance according to Domain

Relative Abundance (%) according to Domain

Sample Archaea Bacteria Eukaryota Virus

CON-b 0.064 99.839 0.091 0.006

CON-e 0.084 99.737 0.168 0.011

HM-1 0.057 99.843 0.081 0.019

HM-2 0.011 99.827 0.162 0

HM-5 0.020 98.997 0.983 0
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clustered together in one group and the HM-2 and 
HM-5 samples in a second group, whereas the HM-1 
sample differed from those two groups (Fig.  1; Fig.  1B 
stress: 5.535 ×  10–7). The network analysis confirmed 
this separation (Fig.  1A and C). The bacterial commu-
nity in the HM-1 sample was separated clearly from 
the HM-2 and HM-5 samples group, and the CON-b 
and CON-e samples group. Although most genera were 
concentrated in the shared area, the relative abundance 
of others was clearly different. For instance, Agrobac-
terium and Achromobacter were grouped in the HM-1 

sample, and Delftia, Stenotrophomonas and Sphingo-
bacterium in the HM-2 and HM-5 samples. To have a 
better idea of the differences among the samples, gen-
era were clustered (k-means, groups = 3, silhouette 
value = 0.9970), which confirmed the above mentioned 
groups. Agrobacterium and Achromobacter were clus-
tered while Delftia while Stenotrophomonas and Sphin-
gobacterium were separated from the other genera 
(Fig. 1C and D). The HM-1 sample had a different gradi-
ent than all other samples (Fig. 1D, redundancy analysis 
RDA,  R2 = 0.9843).

Table 2 Hill numbers of control (CON) and metal amended (HM) bioreactor samples

a  Diversity index is expressed by its mean (confidence interval)

Samples from the control bioreactor were taken at the beginning (b) and at the end (e) of the experiment. The samples of the metal amended bioreactor represent 
the three levels of metal concentration applied to the bioreactor: HM-1: 31.5 μM Cu, 112.4 μM Ni and 122.3 μM Zn; HM-2: 62.8 μM Cu, 224.9 μM Ni and 244.6 μM Zn; 
HM-5: 157.4 μM Cu, 562.2 μM Ni and 611.5 μM Zn

Diversity  indexa

Sample q = 0 q = 1 q = 2

CON-b 3112 [3119–3126] 127.64 [111.66–143.62] 36.00 [30.74–41.27]

CON-e 2198 [2193–2202] 111.24 [97.97–124.51] 30.07 [25.93–34.21]

HM-1 1366 [1362–1370] 52.22 [46.77–57.68] 11.57 [10.24–12.90]

HM-2 885 [881–888] 29.97 [27.82–32.13] 10.41 [9.64–11.18]

HM-5 642 [639–645] 16.24 [15.18–17.29] 6.70 [6.31–7.08]

Fig. 1 A Network analysis, B Non-classical multidimensional scaling of the Bray–Curtis dissimilarities, C Cluster analysis, and D Redundancy analysis 
with the bacterial genera (black closed circles), samples (red squares) and heavy metal concentration factor (blue open circles) showing the input 
factor axes (blue arrows). Labels correspond to unamended bioreactor samples at the beginning (CON-b) and at the end of the experiment 
(CON-e), and in the metal amended bioreactor when the metal concentration was 31.5 μM Cu, 112.4 μM Ni and 122.3 μM Zn (HM-1), at a twofold 
(HM-2) and a fivefold (HM-5) increase in these metal concentrations
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Most bacterial phyla (28 of 36) were shared among all 
samples, but eight of them were not found in the metal 
amended bioreactor, i.e. Apicomplexa, Armatimona-
detes, Dictyoglomi, Ignavibacterae, Microsporidia, Nitro-
spirae, Synergistetes, and Thaumarchaeota (Fig.  2A and 
B). Their relative abundance in the unamended bioreac-
tor was < 0.01%. Among those, the relative abundance 
of Pseudomonadota (formerly Proteobacteria) and 
Bacteroidota increased when the metal concentration 
increased, while Actinomycetota (formerly Actinobacte-
ria) decreased to less than 1% (Supplementary Table 1). 
The most abundant classes in the control bioreactor, 
were Gammaproteobacteria, Alphaproteobacteria and 
Betaproteobacteria. In the metal amended bioreactor, the 
relative abundance of most bacterial classes was similar, 
except for that of the Betaproteobacteria, Flavobacteria 
and Sphingobacteriia that increased, while no members 
of Actinomycetia were detected (Supplementary Table 1).

The relative abundance of some genera, e.g. Leuco-
bacter, Microbacterium, Devosia and Acinetobacter, 
decreased to < 0.1% when metals were applied (Suppl. 
Table 1). The most abundant genera in the metal amended 
bioreactor were Delftia, Sphingobacterium, Stenotropho-
monas and Sphingomonas, while in the control bioreactor 
Stenotrophomonas, Sphingobacterium, Microbacterium 
and Acinetobacter dominated (Supplementary Table  1). 
In the HM-1 phase, Achromobacter and Agrobacterium 
were the most abundant bacterial genera, but their rela-
tive abundance dropped when the metal concentration 
increased two and five-fold (HM-2 and HM-5 samples). 

Contrastingly, the relative abundance of others increased, 
e.g. Delftia, Sphingobacterium, Stenotrophomonas and 
Sphingomonas (Suppl. Table 1).

Most of the genera were shared among the different 
samples (Fig.  2A). In the unamended bioreactor, 274 
unique genera of a total of 1066 genera were found at the 
onset the experiment (Fig. 2A). The diversity replacement 
index decreased from 0.51 in CON-b to 0.159 in CON-
e. The diversity replacement index decreased even more 
when the metal concentration increased, i.e. 0.086 in 
HM-1, 0.059 in HM-2 and 0.045 in HM-3.

Only five bacterial genera with an abundance > 0.5% 
were correlated significantly with the metal concen-
tration (Fig.  3A). Members of Delftia were the most 
abundant with a positive significant correlation with 
the metal concentrations (r = 0.986, p = 0.002) (Fig. 3A 
insert). The other significant correlations between 
the metals and the bacterial groups were negative, i.e. 
an unknown bacterial genus (r = -0.904, p = 0.035), 
other Xanthomonadaceae (r = -0.904, p = 0.035), Pseu-
domonas (r = -0.923, p = 0.026) and Xanthomonas 
(r = -0.9629, p = 0.0085) (Fig. 3B). Their partial correla-
tions  (r12.3), however, were lower when the contribution 
of the metal concentration was subtracted, except for 
the correlation between Xanthomonas and an unknown 
bacteria (r = 0.9854, p = 0.0146), and Delftia with 
unknown Xanthomonadaceae (r = -0.9812, p = 0.0188).

Cluster analysis of genera gave three clusters 
(Fig. 1C). The first cluster included most of the bacte-
rial genera, the second group included Agrobacterium 

Fig. 2 A Venn diagram with the bacterial genera found in samples. B Circos plot of the amount of bacteria shared among samples at different 
taxonomic levels. The legends to the samples taken from the unamended and metal amended bioreactor can be found in Fig. 1
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and Achromobacter, and the third Delftia, Sphingobac-
terium and Stenotrophomonas (Fig.  1C). The cluster-
ing did not include input factors (Q mode), so it is not 
possible to relate them to an explanatory factor, such 
as sample or metal concentration (R mode). Network 
analysis gave similar results (Fig.  1A), but as samples 
were included in the analysis, the “group 2” Achromo-
bacter and Agrobacterium were associated with the 
HM-1 sample, and Delftia, Sphingobacterium and Sten-
otrophomonas (3rd group in the clustering analysis) to 
the communities in the HM-2 and HM-5 samples (Sup-
plementary Table  1). It seems, on the one hand, that 
clustering and network analysis (Fig.  1A and C) gave 
more information on population dynamics than circos 
plots. On the other hand, those analysis taken together 
with NMDS (Fig. 1B) and RDA (Fig. 1D) showed a dif-
ference in the bacterial community of the HM-1 sample 
with the HM-2 and HM-5 community.

The RDA in R-mode (explanatory variables included) 
allowed to understand the gradient and tendencies of 
the objects (samples) and explanatory variables (metal 
concentration factor), but information about the gen-
era was barely noticeable. The most evident genera were 
Achromobacter, Agrobacterium and Delftia located in the 

superior quadrants (Fig. 1D). These genera represent the 
main differences among the HM-1, and HM2 and HM-5 
communities. Although the relative abundance of Sphin-
gobacterium and Stenotrophomonas also increased with 
metal concentration, the linear correlation was not signif-
icant. Indeed, Delftia was the only genus with a positive 
correlation between its relative abundance and the metal 
concentration (Fig. 3A).

Metabolic functionality analysis
The most abundant heterotrophic carbon pathways were 
those of anaplerotic genes (pyruvate to oxaloacetate), and 
fermentation to succinate (Fig.  4A). The relative abun-
dance of autotrophic pathways, such as Calvin-Benson-
Basshan (CBB) cycle and 3-hydroxypropionate bicycle, 
was low. The CBB cycle was found in the unamended 
bioreactor and in the HM-1 sample, while the 3-hydroxy-
propionate bicycle in all samples except in the HM-1 
sample. A significant difference was found in the relative 
abundance of the 3-hydroxypropionate bicycle metabolic 
function between the control (6.353 counts per mil-
lion (cpm)) and metal amended bioreactor (0.316  cpm, 
p = 0.005). When using the metal concentration factor as 
the grouping factor, only the fermentation pathway from 

Fig. 3 A Changes in the relative abundance of bacterial genera (%) with a significant variation (ANOVA p < 0.05) with the metal concentrations 
and B Auto-correlation matrix of the bacterial genera (%) with a significant variation (ANOVA p < 0.05) with the metal concentrations, i.e. the left 
panel shows the raw auto-correlation matrix as a heatmap, while the right panel a partial auto-correlation after subtracting the correlation of each 
genera with the metal concentration
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lactate to acetate was significantly different among the 
samples (p = 0.049).

The most abundant genes involved in the N-cycle were 
those of assimilatory and dissimilatory nitrate reduction 
(Fig. 4B). They were not significatively different between 
the unamended and metal amended bioreactor. Only 
those related to denitrification were significatively differ-
ent, i.e. reduction of nitrite to nitric oxide (nirK or nirS, 
p = 0.049) and from nitric oxide to nitrous oxide (norBC, 
p = 0.046). The nifKDH, hao, hzs and hdh genes were not 
detected in the samples.

The DMSP demethylation via dmdBCD were the most 
abundant genes involved in the S-cycle, followed by thio-
sulfate oxidation (SOX, doxAD and tsdA, Fig. 4C). Signifi-
cant differences in sulfide oxidation to sulfur (p = 0.047), 
DMPS cleavage rendering DMS (p < 0.001) and DMS oxi-
dation to DMSO (p < 0.001) were found between the una-
mended and metal amended bioreactor. When using the 
application rate of the metals (1, 2 or fivefold increase) 
as a grouping factor for the ANOVA, demethylation of 
MMPA to methanetiol (MeSH) was the only metabolic 
function that decreased significatively from 386.4 to 46.9 
(Fig. 4C, p = 0.007).

Carbohydrate metabolism (based on the KEGG clas-
sification) was the function with the largest relative 

abundance, followed by amino acid metabolism (Fig. 5A). 
Considering the protein families, metabolism and 
genetic information processing were the most abundant 
metabolic functions with a relative abundance ranging 
from 3.8 ×  104 to 4.61 ×  104  cpm and from 4.12 ×  104 to 
4.9 ×  104  cpm. Dissimilatory arsenic reduction was the 
most abundant genes in the HM-1 and HM-2 samples, but 
only the relative abundance of pathways related to bacte-
rial chemotaxis (p = 0.020) and Cytochrome bc1 complex 
also known as complex III of respiratory chain (p = 0.026), 
significatively decreased in the metal amended bioreactor 
compared to the unamended bioreactor (Fig. 4D).

The distribution of functions changed between the 
unamended and metal amended bioreactor (procrustes 
dissimilarity = 0.889, Fig.  5B). The coordinate analy-
sis (NMDS stress = 9.514 ×  10–7) showed three different 
groups, i.e. samples of the unamended bioreactor were 
grouped, the HM-1 and HM-2 samples, and the HM-5 
sample. Although the NMDS analysis of structural diver-
sity (Fig.  2C, stress = 9.524 ×  10–7) separated the HM-1 
sample from the other samples, the HM-5 sample dif-
fered from the rest of the samples, i.e. the latter was 
found in the second quadrant in the NMDS plot, control-
bioreactor samples in the third quadrant, and the HM-1 
and HM-3, in the first quadrant (Fig. 5C).

Fig. 4 A Carbon bio-geocycle pathways, B Nitrogen bio-geocycle pathways, C Sulfur bio-geocycle pathways and D Miscellaneous as obtained 
with Diting. A black arrow indicate a significative difference with increased metal concentration, and a white arrow a significative difference 
with the presence or absence of the metals. The legends to the samples taken from the unamended and metal amended bioreactor can be found 
in Fig. 1
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The cysE, exoA, gumDI, pgaC, icaA, wcaEFL and wecA 
genes (involved in external polymeric substance (EPS) 
production) were found in both bioreactors (Fig.  5D). 
The genes of the exo operon (exoMOUW) were not 
detected when the metal concentration increased, 
whereas the relative abundance of wecA gene increased 
significantly.

Discussion
Bacterial community diversity and structure
In this study, the presence of the metals reduced the 
microbial diversity in the bioreactor as has been reported 
before [24]. In this study, the richness and diversity 
replacement decreased as the metal concentration 
increased, but not for Hill numbers at q = 1 and q = 2. 
In other words, dominant genera were replaced by oth-
ers when the metal concentration increased. As such, the 
presence of the genera or species defined the dominance 
or evenness.

Achromobacter and Agrobacterium were the most 
dominant genera in the HM-1 sample, while Delftia, 
Stenotrophomonas and Sphingobacterium in the HM-2 

and HM-5 samples. This might be explained by the 
increased metal concentration, or the differential impair-
ment of metabolic functions by the metals. Members of 
these genera have strategies to resist metals [7, 23, 27]. 
Bacteria of the genera [22], Delftia [2], Stenotrophomonas 
[28] and Agrobacterium [38] have been found to adhere 
to surfaces via external polymeric substances [15]. This 
might lead to the formation of sediment microparticles 
that might immobilize metals reducing their bioavailabil-
ity and toxicity [34]. This phenomenon has been observed 
for other genera, such as Pseudomonas, Accumulibac-
ter, Competibacter, Mesorhizobium, Xanthomonas and 
Pseudoxanthomonas [15, 22, 23, 34, 36]. Some of these 
genera, such as Pseudomonas (relative abundance 0.3%), 
Mesorhizobium (0.06%), Xanthomonas (0.3%) and Pseu-
doxanthomonas (0.2%) were found in the metal amended 
bioreactor, but their relative abundance was low. The 
relative abundances of Pseudomonas, Xanthomonas and 
an unknown Xanthomonadaceae were correlated and 
the partial correlation between them decreased  (r2) when 
the metal concentration was deleted from the correlation 
coefficients, suggesting that the apparent correlations 
between the genera was due mainly to the metals.

Fig. 5 A Heatmap with the relative abundance of functions (%) as determined with the KEGG level 2 classification, B Procrustes analysis 
of the functional profile  (R2 = 0.8886), C Non-classical multidimensional scaling of the chi-square distance of the samples, and D Abundance 
of genes encoding for synthesis of extracellular polymeric substances (* p < 0.05). The legends to the samples taken from the unamended and metal 
amended bioreactor can be found in Fig. 1
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Metabolic functionality
It was hypothesized that changes in bacterial richness 
and diversity would also result in changes in the meta-
bolic functions in the bioreactor samples, but that was 
mostly not the case. The relative abundance of most 
metabolic functions did not change despite the increase 
in metal concentration, i.e. the bacterial metabolic func-
tionality was more stable than the bacterial community 
structure despite the variations in metal concentration.

Heterotrophic metabolism was the main function, 
and carbohydrate and amino acid metabolism the most 
abundant. This may suggest that despite the increases 
in metal concentration, organic material decomposition 
was not affected. This agrees with our previous report 
using putative/predictive functions from 16S metagen-
omics [1]. The reduction of nitrite to nitric oxide (nirK, 
nirS) and from nitrite to nitrous oxide (nifK/nirS, norBC) 
and DMSP demethylation, however, all decreased signifi-
cantly with increased metal concentrations. In all these 
metabolic functions, oxido-reduction biochemical reac-
tions are involved. The narB, nasA, nifK, nirS, nasA, and 
norB genes involved in the N cycle encode for proteins 
binding iron, while narB and nifK may bind molybde-
num ions, whereas norB is from the cytochrome family. 
The decrease in their relative abundance might reflect 
the lethality of these metals to bacteria that possess those 
genes. The DMSP demethylation occurs thanks to pro-
teins encoded by the dmd gene [16]. Proteins encoded 
by the dmdD gene bind magnesium ions (Uniprot) and 
products of dmdBCD are still being investigated. Dey 
[16] reported that dmdBCD products are involved in car-
bon and sulfur fixation by plankton and that a decrease in 
their protein expression might result in a higher produc-
tion of dimethylsulfide (DMS), an air contaminant in acid 
rain.

The relative abundance of the metabolic functions 
showed only small changes. This would suggest that 
most of the functions are either required for the micro-
bial community, e.g. autotrophy, or they were present 
and became detectable as the substrate became avail-
able, such as heterotrophy, in both bioreactors. In other 
words, the forces driving the occurrence of specific meta-
bolic functions may include randomness, necessity and/
or substrate availability. Apart from the different metal 
concentrations, conditions were similar in both bioreac-
tors. It can thus be assumed that, despite biodiversity, 
the range of metabolic functions were similar as evi-
denced by our results. Contrario sensu, different condi-
tions might be driving forces for changes in metabolic 
functions. For instance, in this study, the metals in the 
HM bioreactor might lead an increase in metal resist-
ance mechanisms. Among them, the transformation and 
transport of metals, and EPS production are the most 

well-described mechanisms. The formers, transformation 
(redox) and transport mechanisms have been described 
in Lysinibacillus, Agrobacterium and some genera of 
the Xanthomonadaceae, such as Stenotrophomonas and 
Xanthomonas [28–30, 32, 38]. The relative abundance 
of Agrobacterium and Achromobacter decreased in the 
HM-2 and HM-5 samples, suggesting that the minimum 
inhibitory concentration of the metals was between that 
found in the HM-1 and HM-2 samples, which might 
also affect the metabolic functions within the bacterial 
community.

One of the main metabolic-related mechanisms is 
the production of EPS from carbohydrates and pro-
teins. The main pathways for EPS production com-
prise curdlan, xanthan, colanic and alginate synthesis, 
which involve crd, gum, wca and alg operons [34]. Suc-
cinoglycan (exo operon), the vibrio-like polysaccharide 
(cysE and vps operons), the enterobacterial antigen 
(wec operon) and Poly-N-acetyl-glucosamine (ica and 
pga operons) are other, but less frequent genes encod-
ing for EPS. The crd, gum, wca and alg operons have 
been detected in Agrobacterium, Xanthomonas, Enter-
obacteriaceae and Pseudomonas [34]. The crd operon 
has been reported in Agrobacterium [34], but it does 
not appear yet in the RefSeq gene database or KEGG. 
In this study, the relative abundance of the wecA gene 
increased with increased metal concentration. This 
gene has been reported in members of the Entero-
bacteriaceae family, such as Escherichia, Yersinia and 
Klebsiella [9]. The relative abundance of these genera 
was low in the bioreactor (≤ 0.04%) and no correlation 
was found between them (or the Enterobacteriaceae 
family) and the wecA gene. As such, further research 
into the prevalence of the wecA gene in other bacterial 
groups might be needed as the EPS production genes 
may also help other genera to adhere to surfaces and 
survive.

Although EPS production by Delftia has not yet been 
reported, its ability to autoaggregate and coaggregate in 
biofilms with other bacteria has been reported [2], which 
might explain its ability to colonize surfaces [15]. This 
coaggregation seems to be sugar-specific with Citrobac-
ter and Enterobacter, but not with Pseudomonas, whose 
interaction appears to be protein–protein mediated [2]. 
In this study, Pseudomonas seemed to antagonize Delftia 
within the biofilm. It has been reported that a strain of 
Delftia was able to inhibit Pseudomonas growth, motil-
ity and biofilm production [31]. In this study, Delftia was 
also antagonistic against Xanthomonas and an unknown 
Xanthomonadaceae. This antagonism prevailed even 
after eliminating the metals from the correlation analysis, 
suggesting that it was independent of the presence of the 
metals.
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Also, Achromobacter, Delftia, Pseudomonas and Steno-
trophomonas have been found to produce biofilms and 
adhere to them [15]. A strain of Achromobacter has been 
reported to denitrify and be able to immobilize 10  mg 
 L−1 (89 μM approximately) cadmium ions (Cd) in waste-
water [22]. Although this immobilization of Cd has been 
hypothesized to occur via precipitation with carbon-
ate, its precipitation is larger with a composite sediment 
containing EPS. Achromobacter and Stenotrophomonas 
strains carrying copLAB genes that have been isolated 
from an agricultural field are able to resist 0.8  mM Cu. 
This ability of Achromobacter together with Agrobac-
terium to produce EPS [34] might explain their higher 
abundance in the HM-2 sample. As mentioned above, the 
EPS may be a scaffold for Delftia to grow better when the 
metal concentration increased. This might have helped 
Delftia to adhere to the biofilm and inhibit the growth 
and adhesion of other bacteria, as has been described 
previously [9, 31]. This might explain why the relative 
abundance of Delftia was highest in the HM-5 sample 
by antagonizing Pseudomonas and other Xanthomona-
daceae, and also why the abundance of Achromobacter 
decreased. These observations agreed with a previ-
ous study of [1] based on 16S metagenomics, where an 
increase in the relative abundance of Stenotrophomonas 
and Sphingomonas at high metal concentrations (HM-2 
and HM-5) and the increase of Agrobacterium at low 
metal concentrations (HM-1) were reported. Although 
16S metagenomics gave a good insight in the behavior of 
the bacterial community, shotgun metagenomics allow a 
deeper knowledge in microbiota diversity and gene/func-
tion prevalence, such as the EPS production genes.

Conclusion
Low concentrations of copper, zinc and nickel (31.5  μM 
copper, 112.4 μM nickel, 122.3 μM zinc) altered the bac-
terial community structure in a bioreactor seeded with 
wastewater that changed even more with higher concen-
trations of these metals. Achromobacter and Agrobacte-
rium were enriched at low concentration of the metals, 
while Delftia, Stenotrophomonas and Sphingomonas at 
higher concentrations. Delftia was antagonistic towards 
Pseudomonas and other Xanthomonadaceae. Assimilatory 
reduction of nitrate, and assimilation of methylmercapto-
propionate to dimethylsulfide was negatively affected by 
the metal concentration, which may impair the removal of 
nitrate and some organo-sulfur compounds in metal con-
taminated water. Functional metagenomics produced by 
shotgun sequencing help to improve our understanding on 
what mechanisms and population dynamics (e.g., antago-
nisms) occur in the microbial community.
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