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Abstract
Background  More than 90% of colorectal cancer (CRC) arises from advanced adenomas (AA) and gut microbes are 
closely associated with the initiation and progression of both AA and CRC.

Objective  To analyze the characteristic microbes in AA.

Methods  Fecal samples were collected from 92 AA and 184 negative control (NC). Illumina HiSeq X sequencing 
platform was used for high-throughput sequencing of microbial populations. The sequencing results were annotated 
and compared with NCBI RefSeq database to find the microbial characteristics of AA. R-vegan package was used to 
analyze α diversity and β diversity. α diversity included box diagram, and β diversity included Principal Component 
Analysis (PCA), principal co-ordinates analysis (PCoA), and non-metric multidimensional scaling (NMDS). The AA risk 
prediction models were constructed based on six kinds of machine learning algorithms. In addition, unsupervised 
clustering methods were used to classify bacteria and viruses. Finally, the characteristics of bacteria and viruses in 
different subtypes were analyzed.

Results  The abundance of Prevotella sp900557255, Alistipes putredinis, and Megamonas funiformis were higher in AA, 
while the abundance of Lilyvirus, Felixounavirus, and Drulisvirus were also higher in AA. The Catboost based model 
for predicting the risk of AA has the highest accuracy (bacteria test set: 87.27%; virus test set: 83.33%). In addition, 4 
subtypes (B1V1, B1V2, B2V1, and B2V2) were distinguished based on the abundance of gut bacteria and enteroviruses 
(EVs). Escherichia coli D, Prevotella sp900557255, CAG-180 sp000432435, Phocaeicola plebeiuA, Teseptimavirus, Svunavirus, 
Felixounavirus, and Jiaodavirus are the characteristic bacteria and viruses of 4 subtypes. The results of Catboost model 
indicated that the accuracy of prediction improved after incorporating subtypes. The accuracy of discovery sets was 
100%, 96.34%, 100%, and 98.46% in 4 subtypes, respectively.

Conclusion  Prevotella sp900557255 and Felixounavirus have high value in early warning of AA. As promising non-
invasive biomarkers, gut microbes can become potential diagnostic targets for AA, and the accuracy of predicting AA 
can be improved by typing.
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Introduction
Colorectal adenomatous polyps or adenomas are com-
mon precancerous lesions and are the origin of most 
colorectal adenocarcinoma cases [1]. Adenomas are com-
mon in the adult population, occurring in about 20-40% 
of people over the age of 50 [2]. Advanced adenoma (AA) 
is one kind of adenomas with a diameter of 10  mm or 
greater. Adenomas less than 10 mm in diameter that con-
tain more than 25% villi or are highly atypical hyperplasia 
or adenocarcinoma can also be classified as AA. There 
is considerable evidence that patients with AA are at 
increased risk of advanced tumors, including CRC [3, 4]. 
AAs are the earliest detectable initiating event of CRC, 
and the vast majority of CRC originates from AA [5, 6]. 
At present, there are many detection methods for CRC, 
but the detection methods for AA are relatively limited. 
Given that early symptoms of AA are often inconspicu-
ous, the sole available early screening method is colonos-
copy [7]. However, colonoscopy is an invasive procedure 
with low patient compliance. Consequently, the search of 
new prediction targets is of paramount importance.

The gut microbe is an independent and complex 
microecology system. The interaction between differ-
ent gut bacteria can maintain the homeostasis of gut 
microenvironment and participate in host metabo-
lism, substance absorption, and transformation [8, 9]. 
The changes in specific bacterial abundance in the gut 
microenvironment have been used as biomarkers for 
screening gastrointestinal diseases, including inflam-
matory bowel disease (IBD), CRC, and irritable bowel 
syndrome (IBS). For example, Bifidobacterium, Porphy-
romonas, Clostridium, Trichospiridae, Prevotella, Fecal 
bacteria, Ruminococcus, and Lactobacillus constitute 
the most prominent and influential taxonomic group 
together in IBD [10–12]. Research has determined that 
an overabundance of F. nucleatum is associated with 
poor prognosis in metastatic CRC [13]; Colibactin-
producing E. coli, Enterococcus faecalis, Enterotoxin-
producing Bacteroides fragilis, Streptococcus bovis, and 
Peptostreptococcus anaerobius are positively associated 
with CRC [14, 15]. In addition, enteroviruses (EVs) are 

a large genus of positive single stranded RNA viruses, 
and their interactions can cause many important and 
widespread human diseases [16]. Viral homeostasis 
disorders may cause or promote inflammatory diseases 
(such as IBD), promote dysplasia, and eventually lead 
to cancer with severe symptoms and high mortality 
[17]. Studies have shown that viruses can infect human 
cells and mutate and are therefore directly involved 
in inflammation and tumorigenesis [18, 19]. And the 
results of Fatemeh et al. indicated that the EVs exhibits 
the potential for autonomous immune regulation [20]. 
Studies have shown that patients of CRC contained 
significantly higher proportions of Bacteroidaceae, 
Oscillospiraceae, and Peptostreptococcaceae phages. 
Considered together, both gut bacteria and EVs play 
important roles in the occurrence and development of 
CRC. Since the vast majority of CRC originates from 
AA, the study of gut microbes’ differences in AA may 
provide a new and more accurate basis for the treat-
ment and risk assessment of AA and the prevention of 
CRC.

Fecal metagenomics is a useful tool for the quanti-
fication of gut microbiomes [21]. Metagenomic sec-
ond-generation sequencing (mNGS) represents a 
comprehensive method by which almost all potential 
pathogens, including viruses, bacteria, fungi, and para-
sites, can be accurately identified in a single measure-
ment [22]. By unbiased sequencing of all nucleic acids in 
the sample using mNGS, readings can be calculated and 
classified to identify different microorganisms [23].

In this study, metagenomic sequencing was used to 
conduct gene sequencing on fecal samples of AA and 
NC and analyzed differential genes of the gut microbi-
ome between them. The differences in the abundance 
and community structure of gut microbes were described 
and compared. Furthermore, the correlation between gut 
microbes and diseases in AA was analyzed. This study 
constructed the best risk prediction models based on 
different bacteria and different viruses to identify AA. 
Moreover, gut microbes were typed by unsupervised 
clustering, and then prediction models of 4 subtypes 
were constructed, and the characteristics of bacteria and 
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viruses in different subtypes were analyzed. The subtypes 
could provide an alternative method for the treatment 
and prevention of AA.

Methods
Samples
Inclusion and exclusion criteria
A total of 92 patients with AA and 184 healthy individu-
als were recruited in our study. Healthy volunteers who 
had no lesions by colonoscopy were classified as the neg-
ative control (NC). The inclusion criteria for AA were as 
follows: ① Patients with progressive adenoma diagnosed 
by pathological examination and volunteered to partici-
pate in the study. ② Patients between 45 and 75 years old.

The exclusion criteria were as follows: ① Patients with 
CRC and other gut diseases, such as ulcerative colitis 
and Crohn’s disease. ② Patients with malignant tumors 
in other sites. ③ Patients with diarrhea and constipation. 
④ Patients with fever caused by bacterial or viruses. ⑤ 
Patients with a medicine history of oral microbial agents 
or antibiotics within the last 2 months. ⑥ Patients with 
known primary organ failure.

Patients at Huzhou Central Hospital from January 
2019 to December 2022 were studied. The clinical pro-
tocols involving the patients and the informed con-
sent form were approved by the Ethics Committee of 
Huzhou Central Hospital (no. 20191101-01) and the Chi-
nese Clinical Trial Registry (http://www.chictr.org.cn; 
ChiCTR2000034061). All subjects signed informed con-
sent under the guidelines approved by the Ethics Com-
mittee of Huzhou Central Hospital.

Collection of fecal samples and clinical information
Basic patient information, clinical indicators, and path-
ological data were obtained from the medical record 
management system of Huzhou Central Hospital and 
informed consent was also signed by patients. Fecal 
samples were collected in the morning prior to breakfast. 
Approximate 5 to 10 g fecal samples were obtained after 
defecation without the use of a gut microbiome purgative 

or lubricant. Within half an hour, the fecal samples were 
stored in an ultralow-temperature freezer. The sample 
preservation time was not beyond 1 month. The basic 
characteristics of these patients were shown in Table  1. 
There were no differences in diet and lifestyle among all 
samples.

Totally, 92 fecal samples of AA and 184 fecal samples of 
NC were selected based on the quantity of data obtained. 
Clinical information, including age, sex, BMI, lipids, and 
serological indicators, was collected from the selected 
samples.

Acquisition of microbial genomes
According to the manufacturer’s agreement, E.Z.N.A® 
fecal DNA sampler (Omega Bio tek, Norcross, GA, USA) 
was used to extract microbial DNA from fecal samples. 
The specific methods refer to our previously published 
article [24]. All amplicon sequencing was performed 
by Shanghai Biozeron Lingen Biotechnology Co. Ltd 
(Shanghai, China).

Through the quality control of the reads, the human 
genome (version: hg19) was then mapped using the BWA 
mem algorithm (parameters: - M − 32 k - t 16, http://bio-
bwa.sourceforge.net/bwa.shtml). Reads that remove host 
genome contamination and low-quality data were called 
clean reads for further analysis. The clean read classifi-
cation for each sample was determined by Kraken2 [25] 
using a customized Kraken database. DNA viruses and 
DNA bacteria databases were selected as annotation 
database. All reads were classified into seven phyloge-
netic levels (domain, phylum, class, order, family, genus, 
and species) or unclassified. Bracken (https://ccb.jhu.
edu/software/bracken/) that estimated the species abun-
dance could accurately calculate the level of abundance, 
even in the closer to the same species.

Bioinformatics analysis
The α diversity analysis was conducted to reveal the 
diversity indices, including the richness and Shannon 
diversity indices. The β diversity analysis was performed 
using the community ecology package, R-vegan package. 
Gephi was applied to visualize the relationship between 
gut microbes and clinical information through correla-
tion heatmap. PCA, PCoA and NMDS analyses were 
conducted using the Vegan R package. For the identifica-
tion of biomarkers for highly dimensional bacteria, linear 
discriminant analysis effect size (LDA Effect Size, LEfSe) 
analysis was done [26]. Student’s t test was performed to 
examine the changes and dissimilarities among classes 
followed by LDA analysis to determine the size effect 
of each distinctively abundant taxa [27]. Unsupervised 
clustering was carried out by R software (Version:4.3.1). 
ConsensusClusterPlus package was employed to perform 
consensus clustering on gut bacterial metagenomics data. 

Table 1  Characteristics of study participants
NC
(n = 184)

AA
(n = 92)

P

Gender Male 107 44 0.104
Female 77 48

Age 67.92 ± 7.26 66.58 ± 8.73 0.701
BMI 25.05 ± 10.79 23.18 ± 10.88 0.506
WBC 5.77 ± 4.91 5,41 ± 2.40 0.326
Albumin 39.10 ± 19.05 41.97 ± 13.79 0.266
TG 1.33 ± 0.80 1.46 ± 1.92 0.528
TC 4.43 ± 2.05 4.75 ± 5.97 0.322
HDL 48.68 ± 23.41 52.79 ± 25.70 0.386
LDL 88.23 ± 45.47 101.36 ± 43.65 0.450

http://www.chictr.org.cn
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
https://ccb.jhu.edu/software/bracken/
https://ccb.jhu.edu/software/bracken/
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Fig. 1 (See legend on next page.)
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This clustering divided the samples into subtypes, which 
facilitated subsequent comparative analyses among dif-
ferent subtypes. The specific parameters used included 
maxK = 9, reps = 50, pItem = 0.8, pFeature = 1, distance = 
“euclidean”, and clusterAlg = “km”. The probably approxi-
mately correct (PAC) algorithm was used to select the 
best K value to optimize the clustering model.

Multiple machine learning models in the prediction of AA
AA prediction models were built based on the differ-
ential bacteria and viruses before and after gut typing. 
After the typing of the gut via unsupervised clustering, 
the total sample was divided into 4 sections and differen-
tial bacteria and viruses were inconsistent in 4 subtypes. 
According to the classification conditions, we chose the 
differential bacteria and viruses corresponding to dif-
ferent samples size to build prediction models, among 
which 70% were used as the discovery set and 30% as the 
test set. Subsequently, the logistic regression (LR) model, 
the random forest (RF) model, the neural network (NN) 
model, the CatBoost model, the gradient boosted deci-
sion tree (GBDT) model, and the support vector machine 
(SVM) model were used to construct the model. The 
methods of model construction were the same as previ-
ously described [28, 29].

Results
Characteristics of gut bacteria in AA
Species abundance difference analysis was performed 
to compare the differences in gut bacteria at the spe-
cies level in AA. At the species level, the top 5 abundant 
gut bacteria in AA were Phocaeicola dorei, Prevotella 
sp900557255, Escherichia coliD, Bacteroides uniformis, 
and Bacteroides stercoris. The top 5 abundant gut bac-
teria in NC were Phocaeicola dorei, Escherichia coliD, 
Prevotella sp900557255, CAG-180 sp000432435, and 
Bacteroides uniformis (Fig.  1A). The samples were clus-
tered according to gut bacteria, and it was found that the 
two groups had their own clustering ranges (Fig. 1B). As 
depicted in Fig.  1C, the Simpson index and Invsimpson 
index of gut bacteria in AA and NC exhibited similarity, 
while the Shannon index revealed significant disparity 
in the alpha diversity of gut bacteria among AA and NC. 
Considering the impacts of the interaction between the 
gut microbe and the host on AA, the correlation between 
the host’s disease status and the gut microbe was ana-
lyzed (Fig. 1D). Alistipes putredinis has the highest cor-
relation with AA and NC, and it has a greater correlation 
with AA. Anaerobutyricum hallii and Anaerococus also 
have a certain correlation with AA and NC, and the 

correlation is greater with NC. Further t-tests were car-
ried out to compare and screened 20 differential gut 
bacteria, including CAG-831 sp900769885, UBA1259 
sp900770685, and UMGS1820 sp900769795 (Fig.  1E). 
Six risk prediction models were constructed based on 
screened different bacteria, including LR model, RF 
model, NN model, CatBoost model, GBDT model (Fig-
ure S2). The CatBoost model (Fig. 1F) had the best mod-
eling effect among these models (AUC: 0.956, specificity: 
95.45% sensitivity: 81.92%, accuracy: 84.62%), and it also 
had the best modeling performance in the test set (AUC: 
0.974, specificity:100%, sensitivity: 84.09%, accuracy: 
87.27%).

Characteristics of enteroviruses in AA
The result showed that the top 5 EVs in AA and NC were 
consistent, namely Lilyvirus, Lubbockvirus, Peduovi-
rus, Felixounavirus, Teseptimavirus (Fig.  2A). Similarly, 
the samples were clustered according to EVs, and it was 
also found that the two groups had their own cluster-
ing ranges (Fig. 2B). As depicted in Fig. 2C, the Shannon 
index, Simpson index and Invsimpson index all revealed 
significant disparity in the alpha diversity of EVs among 
AA and NC. According to the chord diagram, Muvirus 
was more correlated with NC and AA, and its correla-
tion with NC was greater (Fig.  2D). Moreover, Punavi-
rus, Betapapilomavirus, and Salasvirus also had a certain 
correlation with AA and NC, and the correlation with the 
NC is greater. Through t-test comparison and analysis, 20 
differential EVs, including Muvirus, Mosigvirus, and Iape-
tusvirus, were screened (Fig. 2E). Besides, 6 risk predic-
tion models were established based on characteristic EVs, 
and the CatBoost model had a good modeling effect as 
well (Figure S3). The results proved that the AUC of the 
model based on EVs was 0.962; the specificity and sen-
sitivity were 88.89% and 88.68%, respectively; the accu-
racy was 88.74% (Fig. 2F). The AUC, accuracy, sensitivity, 
and specificity of the test set is 0.917, 83.33%, 100%, and 
79.55%, respectively.

Correlation between gut microbe and clinical information
In order to analyze the interaction between gut bacte-
ria, EVs, and clinical information in AA and NC, differ-
ent gut bacteria and EVs were included for intra-group 
correlation analysis. The results of total sample analysis 
showed that Bacteroides uniformis and Megamonas funi-
formis were related to clinical information in the group 
of bacteria (Fig. 3A), Mivirus, Punavirus, Rauchvirus, and 
Felixounavirus were significantly related to clinical infor-
mation in the group of viruses (Fig.  3D). For example, 

(See figure on previous page.)
Fig. 1  Gut bacteria in AA: Descriptive analysis, diversity analysis, differential analysis, correlation analysis and modeling were used for gut bacteria be-
tween AA and NC: Histogram of the bacterial relative abundance (A), NMDS and PCA analysis (B), Box diagram (C), Chord chart (D), T-test (E), and CatBoost 
model (F)
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Fig. 2  EVs in AA: Descriptive analysis, diversity analysis, differential analysis, correlation analysis and modeling were used for EVs between AA and NC: 
Histogram of the viral relative abundance (A), NMDS and PCA analysis (B), Box diagram (C), Chord chart (D), T-test (E), and CatBoost model (F)
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there was a significant negative correlation between Mivi-
rus and Hemameba (r=-0.46, p < 0.05), and a significant 
positive correlation between Mivirus and BMI (r = 0.23, 
p < 0.05). According to the results among gut bacteria, 
Megamonas funiformis had a high correlation with clini-
cal information in NC (Fig. 3B), while it only had a high 
correlation with BMI in AA (Fig.  3C, r=-0.28, p < 0.05). 
Moreover, there was a negative correlation between 
Megamonas funiformis and BMI in AA (Fig.  3C) while 
it was negatively correlated with BMI in NC (Fig.  3B, 
r = 0.23, p < 0.05). Among EVs, Muvirus, Peduovirus, and 
Felixounavirus had a higher correlation with clinical 
information in NC (Fig. 3E), while their correlation was 

weaker in AA (Fig. 3F). Moreover, Peduovirus was poorly 
correlated with age in NC (Fig.  3E, r = 0.07, p < 0.05), 
while it was positively correlated with age in AA (Fig. 3F, 
r = 0.28, p < 0.05).

Further analysis of the relationship between bacteria 
and viruses showed that Lubbockvirus and Felixounavi-
rus were closely related to a variety of bacteria (Fig. 3G). 
Among them, the positive correlation between Lub-
bockvirus and Bacteroides uniformis (r = 0.57, p < 0.05) 
and the positive correlation between Felixounavirus and 
Prevotella sp900557255 (r = 0.77, p < 0.05) were the most 
prominent. For the relationship between EVs and gut 
bacteria, Escherichia coli D was negatively correlated 

Fig. 3  Correlation among gut bacteria, EVs, and clinical information: Correlation heat maps were used to show the relationship between gut microbes 
and clinical information in different groups, including NC + AA group, NC group and AA group: Heatmaps of gut bacteria (A-C), Heatmaps of EVs (D-F), 
and Heatmaps of gut bacteria and viruses (G-I).
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Fig. 4 (See legend on next page.)
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with all EVs except Peduovirus (r = 0.56, p < 0.05) in NC 
(Fig. 3H), while in AA, there was also a significant posi-
tive correlation with Svunavirus (r = 0.30, p < 0.05) and 
Peduovirus (Fig.  3I, r = 0.53, p < 0.05). Among NC, the 
correlation between Lubbockvirus and bacteria was 
higher, while the correlation between Peduovirus and 
bacteria was weaker (Fig.  3H). On the contrary, in AA, 
Peduovirus had a higher correlation with bacteria, while 
Lubbockvirus had a weaker correlation with bacteria 
(Fig. 3I).

Typing and analysis of gut microbe
Gut bacteria and EVs were classified by unsupervised 
clustering (Fig.  4A), and the results revealed that gut 
bacteria were clustered into 8 categories and EVs were 
clustered into 2 categories (Tables  2 and 3). According 
to the proportion of AA and NC, the ratio greater than 
0.5 was divided into susceptible types (B1, V1), and the 
ratio less than 0.5 was divided into nonsusceptible types 
(B2, V2). Finally, it was classified into 4 subtypes, namely 
B1V1, B1V2, B2V1, and B2V2. The proportion of AA in 
the B1V1 subtype was 0.45, in B1V2 subtype was 0.28, in 
B2V1 subtype was 1.63, and the proportion in B2V2 sub-
type was 0.48 (Table  4). Afterwards, relative abundance 
maps were performed on the top 20 gut bacteria and the 
top 30 EVs in 4 subtypes. The abundance of Escherichia 
coliD, Prevotella sp900557255, CAG − 180 sp000432435, 
and Phocaeicola plebeiuA were higher in 4 subtypes 
distinctly (Fig.  4B). However, in pairwise comparisons 
between groups, there were no significant differences 
(Fig. 4C). Escherichia coliD was higher in B1V1 subtype, 
Prevotella sp900557255 was higher in B1V2 subtype, 
CAG − 180 sp000432435 was higher in B2V1 subtype, 
and Phocaeicola plebeiuA was higher in B2V2 subtype 
(Fig.  4D). Similarly, the abundance of Teseptimavirus, 
Lubbockvirus, Peduovirus, and Lilyvirus were higher in 4 
subtypes distinctly (Fig.  4E). As depicted in Fig.  4F, the 
Simpson index, Shannon index, and Invsimpson index 
revealed significant disparities in the alpha diversity of 
EVs across the 4 subtypes and virus subtypes. However, 
bacteria subtypes did not show significant differences. 
Teseptimavirus was higher in B1V1 subtype, Felixouna-
virus was higher in B2V1 subtype, and Svunavirus was 
higher in B2V2 subtype (Fig. 4G). The differences in the 
abundance of the 4 bacteria and 4 viruses may be the 
basis for unsupervised clustering.

Differential analysis and modeling of four subtypes of gut 
microbe
Totally, 22 different bacteria in the B1V1 subtype, 20 dif-
ferent bacteria in the B1V2 subtype, 12 different bacte-
ria in the B2V1 subtype, and 14 different bacteria in the 
B2V2 subtype were selected. The results indicated that 
Firmicutes, Bacilli, and Lactobacillales were significantly 
reduced in AA, while Oscillospiraceae, Rikenellaceae, and 
Alistipes were significantly increased in AA. This pro-
vided potential biological markers for risk prediction of 
AA (Fig.  5A). The samples were clustered according to 
the gut microbes, and the 4 subtypes were found to have 
their own clustering ranges (Fig.  5B). The β-diversity of 
gut bacteria of NC and AA in B1V1, B1V2, B2V1, and 
B2V2 were also analyzed by NMDS and PCOA (Fig. 5C). 
PCOA analysis found that among the 4 subtypes, B2V2 
showed the most significant difference in clustering effect 
between AA and NC.

CatBoost models were used to establish risk prediction 
models based on characteristic bacteria in B1V1, B1V2, 
B2V1, and B2V2 4 subtypes (Fig.  6B). The results were 
shown in Table  5, which indicated that the model after 
typing had higher accuracy and better performance than 
those before classification so that it had a better predic-
tion effect.

Discussion
CRC follows a stereotyped progression from normal to 
atypical to carcinoma, and AAs are the earliest detect-
able initiating event of CRC [30]. The causal relationship 
between gut microbes and various diseases has become a 
hot topic in recent years, and various diseases are related 
to gut microbe imbalance. The colonoscopy results of 
the patients showed NCs were more than AAs, so we 
recruited volunteers according to 2:1. A total of 184 NCs 
and 92 AAs were recruited in our study. Metagenom-
ics sequencing technology was used to sequence fecal 
samples. The analysis revealed that gut bacteria and EVs 
existed differences in AA. Prediction models with gut 
microbes were established to distinguish AA, and the 
accuracy reached 83.33%. Besides, a new typing method 
was established based on bacteria and viruses to divide 
gut microbes into 4 subtypes. In the end, we found that 
prediction models after typing had higher accuracy.

One of the earliest studies to detect the microbiota 
associated with AA compared the gut microbiota of 
patients with and without adenomas. Rectal mucosal 

(See figure on previous page.)
Fig. 4  Typing and analysis of gut microbes: Differential gut bacteria and viruses were used for gut typing, and finally 4 subtypes were obtained via un-
supervised clustering. The proportions of gut bacteria and viruses were analyzed, and gut microbes with the most significant differences in proportions 
were screened among 4 subtypes: Unsupervised clustering (A), Stacked bar graph of the top 20 abundant gut bacteria in the 4 subtypes, 2 viral subtypes 
and 2 bacterial subtypes (B), Box diagram of the top 20 abundant gut bacteria in the 4 subtypes, 2 viral subtypes and 2 bacterial subtypes (C), 4 bacteria 
with most significant differences in proportion among 4 subtypes (D), Stacked bar graph of the top 20 abundant gut viruses in the 4 subtypes, 2 viral 
subtypes and 2 bacterial subtypes (E), Box diagram of the top 20 abundant EVs in the 4 subtypes, 2 viral subtypes and 2 bacterial subtypes (F), and 4 
viruses with most significant differences in proportion among 4 subtypes (G)
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biopsy showed the enrichment of Proteobacteria in 
adenoma samples through 16  S rRNA sequencing, with 
a relative increase in Faecalibacterium and Dorea bac-
teria, and a relative decrease in Bacteroides and Copro-
coccus [31]. In our study, we found that NC had higher 
richness and diversity of gut bacteria compared with AA, 
and Prevotella sp900557255, Alistipes putredinis, and 
Megamonas funiformis were relatively abundant in AA. 
Recent studies made by Zhong et al. demonstrated that, 
compared with healthy individuals, patients with adeno-
mas had higher abundance of Bacteroides, Prevotella-2, 
and Agathobacter in their feces, while the abundance of 
Haemophilus, Escherichia Shigella, Fusobacterium, and 
Streptococcus is lower [32], which is broadly in line with 
our findings. As a key factor in balancing health and dis-
ease, Prevotella is abundant in various body parts [33], 
and its members are related to the occurrence and devel-
opment of various diseases [33, 34]. Therefore, Prevotella 
sp900557255 may be an important target for predicting 
AA.

Since the techniques used to isolate and characterize 
bacterial communities are relatively developed and stan-
dardized at present, most microbiome research focuses 
more on the bacterial component of the human micro-
biome [35, 36]. The difficulties in virus isolation, nucleic 
acid extraction, sequencing, and pipelines analysis cause 
that the research on the EVs is still in its infancy [37]. 
In this study, it was found that Lily virus, Drulisvirus, 

Table 2  Unsupervised clustering results of gut bacteria
Category NC AA SUM AA/NC
1 13 16 29 1.23
2 9 7 16 0.78
3 116 43 159 0.37
4 8 2 10 0.25
5 34 21 55 0.62
6 1 1 2 1.00
7 2 2 4 1.00
8 1 0 1 0.00
SUM 184 92 276

Table 3  Unsupervised clustering results of EVs.
Category NC AA SUM AA/NC
1 76 53 129 0.70
2 108 39 147 0.36
SUM 184 92 276

Table 4  Distribution of NC and AA in four subtypes
Subtype NC AA SUM AA/NC
B1V1 60 27 87 0.45
B1V2 64 18 82 0.28
B2V1 16 26 42 1.63
B2V2 44 21 65 0.48
SUM 184 92 276

Fig. 5  Differential analysis of four subtypes: Based on gut typing, the dif-
ferential bacteria and viruses between AA and NC were screened: LDA 
analysis of 4 subtypes (A). Differences in diversity among the 4 subtypes 
and the diversity of the 4 subtypes between AA and NC were analyzed: 
NMDS and PCOA analysis in the 4 subtypes (B), NMDS and PCOA analysis 
of 4 subtypes between AA and NC (C)
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Fig. 6  Modeling based on specific gut bacteria after typing: CatBoost models based on differential gut bacteria were built: Before typing (A), After typing 
(B)
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Felixounavirus were highly enriched in AA, and Felixou-
navirus was an important variable in AA among these. 
Felixounavirus has strict lytic activity, and it has been 
shown that the phages of the Felixounavirus genus infect 
several different subtypes of Salmonella serosubtypes, 
which demonstrated their promising potential for bio-
logical control of Salmonella [38]. Felixounavirus can be 
a potential tool for the prediction of AA.

The effective classification and identification of micro-
organisms is important for many applications in microbi-
ology [39]. It is well known that the profile and structure 
of the gut microbe varies among the inhabitants of a 
given region with ethnic differences [40]. Even if the same 
healthy people have different susceptibility to disease, 
classification discussion based on disease status alone is 
not accurate. Clustering is the most common application 
of unsupervised learning [41]. Unsupervised cluster anal-
ysis, a form of machine learning, is a common approach 
to identifying the subtypes of disease, and unsupervised 
analysis can type data according to natural patterns 
within and between variables [42]. Unsupervised cluster-
ing in most studies is mainly based on gut bacteria, with a 
handful based on enterovirus classification. In this study, 
we collected both gut bacteria and EVs, and then divided 
them into 4 subtypes by unsupervised clustering. To our 
satisfaction, it was found that the accuracy of the model 
after typing was exactly higher than that before typing, 
which meant that our subtypes were meaningful.

The risk prediction model plays an important role in 
the prediction, diagnosis, and classification of disease 
severity. Amin Adibi developed and validated ACCEPT 
model and the results proved that ACCEPT is better 
than using an individual’s history of acute exacerbations 
to predict future risk of exacerbations, especially for the 
accuracy of severity [43]. We previously had constructed 
prediction models of low-differentiated CRC based on 
gut bacteria and prediction models of CRC lymph node 
metastasis based on gut bacteria in the study of CRC, 
and finally determined that gut microbes can be used as 
a biomarker to predict low-differentiated CRC, and can 
also provide a new evaluation method for CRC lymph 
node metastasis [29, 44]. Risk prediction models were 
established based on characteristic bacteria and EVs in 
this study, which showed that CatBoost model has a good 
modeling effect (bacteria: discovery set: 84.62%; test set: 
87.27%; virus: discovery set: 88.74%; test set: 83.33%). 

CatBoost models were used again to establish risk pre-
diction models based on characteristic bacteria in 4 sub-
types. The results showed that the model after typing had 
higher accuracy (100%, 96.34%, 100%, 98.46%, respec-
tively) and better performance.

However, this study still has certain limitations. Firstly, 
based on bioinformatics analysis methods, this study 
revealed the differences in gut microbe between NC and 
AA, and established an early warning model for AA. 
Due to the complex interactions between individual gut 
microbe and their hosts, these analysis methods can-
not determine whether there is a concomitant or causal 
relationship between gut microbe and AA. Therefore, 
in-depth mechanism research is expected to elucidate 
the relationship more accurately between them based 
on these data. More efforts will be devoted to explore 
the mechanisms of the discussion of gut microbes and 
AA cell mechanism by animal experiment. Secondly, 
the insufficient sample size of this study also limits the 
applicability of the research results. In the future, multi-
center research is required to further verify whether this 
microbe can serve as promoting factors for the devel-
opment of AA and to further discover the connection 
between these microbe and AA development. Long-term 
replication experiments with larger sample sizes and cov-
erage will be conducted to validate the applicability of 
the 4 gut subtypes identified in this study. Finally, as an 
important environmental factor for AA occurrence, the 
gut microbe is related to various factors such as diet and 
economic status. However, due to the difficulties in devel-
oping evaluation indicators and collecting clinical data, 
as well as the limitations of research duration, these fac-
tors were not included in the model construction of this 
study. Therefore, more samples in future research will be 
included to further explore the relationship between gut 
microbe, EVs, and AA through metabolomics analysis 
methods, thus further improving the predictive perfor-
mance of the model.

Conclusion
The composition of gut microbe varies depending on 
disease status. In this study, the characteristics of gut 
microbes in AA were analyzed. The characteristic gut 
microbe of AA was identified. Prevotella sp900557255, 
Megamonas funiformis, and Alistipes putredinis are the 
common bacteria in the intestines of AA, while Drulis-
virus, Lilyvirus, and Felixounavirus are the common EVs. 
Gut microbes were divided into 4 subtypes by unsuper-
vised clustering. The characteristics of gut microbes in 
different subtypes were analyzed, and risk prediction 
models were established for AA-based characteristic bac-
teria in each subtype. The prediction results were more 
accurate after typing. Our study types AA and constructs 

Table 5  Discovery set results of modeling based on specific gut 
bacteria after typing
Subtype AUC Accuracy Sensitivity Specificity
B1V1 1 100% 100% 100%
B1V2 1 96.34% 95.52% 100%
B2V1 1 100% 100% 100%
B2V2 1 98.46% 97.78% 100%
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risk prediction models for AA, and provides new targets 
and a new method for predicting AA.
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