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Introduction
Fluoroquinolones are a group of broad-spectrum anti-
microbials that have been used for treatment of a wide 
range of infections in both humans and animals. In 
humans there are multiple approved indications for the 
use of fluoroquinolones, among them bone and joint 
infections, gastrointestinal infections, urinary tract infec-
tions (UTI) and respiratory tract infections [1]. However, 
the human use of this group of antimicrobials is very low 
in Norway compared to other countries, and primarily 
restricted to patients with complicated urinary tract or 
intra-abdominal infections [2–4]. Fluoroquinolones have 
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Abstract
Background The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler 
production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals 
rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring 
programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of 
broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and 
human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers 
and patients) and broiler isolates (meat and caecum).

Results The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were 
mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance 
(PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little 
between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from 
broiler and humans, but overall, the SNP distance was high.

Conclusion Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC 
in humans in Norway.
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since 2019 been classified by the World Health Organiza-
tion as critically important for human treatment [5], and 
have been restricted for use in animals by the EU Antimi-
crobial Advise ad hoc Expert Group (AMEG) since 2020 
[6]. From 1993 to 2021 the proportion of sales of fluo-
roquinolones for food-producing terrestrial animals in 
Norway varied between 0.1% and 0.3%, while in humans 
the quinolone usage has decreased by more than 60% 
since 2012 [7]. This restrictive use of fluoroquinolones is 
reflected through low occurrence of quinolone-resistant 
Escherichia coli (QREC) in the national surveillance data 
on antimicrobial resistance, i.e. in the monitoring pro-
gramme for antimicrobial resistance in bacteria from 
feed, food and animals (NORM-VET) and in the surveil-
lance programme for antimicrobial resistance in human 
pathogens (NORM).

Quinolone resistance among E. coli from broilers inves-
tigated in NORM-VET has historically been very low, 
though with an increase from 3.4% in 2014 to 12.6% in 
2020 [8–11]. These data are based on a non-selective 
method, where one indicator/random E. coli isolate is 
selected from one pooled caecal sample from ten broilers 
per flock, and then further susceptibility tested and inter-
preted using epidemiological cut-off values (ECOFFs) as 
defined by the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) [12]. In E. coli isolates 
from human blood and UTIs in Norway in 2014, the 
occurrence of fluoroquinolone resistance based on clini-
cal breakpoints was 12.6% and 8.7% of all isolates tested, 
respectively [8]. Since then, quinolone resistance seems 
to have been relatively stable between 10% and 13% in E. 
coli from blood and between 7.5% and 9% in E. coli from 
urine samples [13].

Fluoroquinolones act by inhibiting DNA synthesis of 
two essential type II topoisomerases, DNA gyrase and 
topoisomerase IV [14–16]. The mechanisms of quino-
lone resistance are either chromosomal point mutations 
in genes causing a reduced affinity to protein targets, 
reduced accumulation of drugs either by a decrease in 
uptake or an increase in efflux of the agent, or plasmid-
mediated quinolone resistance (PMQR) genes encoding 
target protection [14]. Chromosomal point mutations are 
located within a small quinolone resistance-determining 
region (QRDR) of the genes gyrA, gyrB, parC and parE. 
The level of resistance increases with the number of 
mutations in these genes [14]. For E. coli, the most amino 
acid substitutions are at the Ser83 (S83) and Asp87 (D87) 
in GyrA and at Ser80 (S80) and Glu84 (E84) in ParC. The 
product of plasmid-located qnr genes, on the other hand, 
is a pentapeptide repeat family molecule that blocks the 
action of ciprofloxacin on DNA gyrase and topoisom-
erase IV [17, 18]. Several plasmid-located gene variants 
have been described; qnrA, qnrB, qnrC, qnrD, qnrE, qnrS, 

qnrVC, as well as aac(6’)-lb-cr, oqxAB and qepA [16, 
19–21].

Some E. coli might cause extraintestinal disease such 
as UTIs, sepsis and respiratory tract infections and 
have been identified as extraintestinal pathogenic E. coli 
(ExPEC) [22]. A common method for characterizing E. 
coli is multi-locus sequence typing (MLST), molecular 
typing based on seven housekeeping genes, which is used 
for identifying and tracking specific sequence types (STs) 
that are associated with antimicrobial resistance and/or 
pathogenicity [22, 23].

Some E. coli STs have frequently been identified as 
human ExPEC including ST10, ST69, ST73, ST95, ST117, 
and ST131 [24, 25]. Moreover, some successful ExPEC 
STs, disseminated worldwide, have been detected as 
antimicrobial resistant lineages both from humans and 
from food/animal sources, like ST10, ST69, ST95, ST117, 
ST131, and ST405 [24, 26–29]. In a review from Manges 
[24], poultry and poultry meat was hypothesized as a 
reservoir for human ExPEC. This was further supported 
by a Swedish study [30, 31], which showed that identi-
cal or closely related AmpC or extended-spectrum beta-
lactamase (ESBL)-producing E. coli assigned to ST10, 
ST38, ST69 and ST131 were found both on Swedish and 
imported chicken meat. The Swedish study indicates 
both that the introduction of the AmpC-/ESBL resistant 
E. coli strains in broiler was due to broiler import and 
that faecal contamination to meat occurring at slaugh-
ter represents a source for further spread to humans. 
Also, a recent Italian study described various human 
pandemic and emerging ExPEC STs such as ST10, ST23, 
ST69, ST95, ST117 and ST131 from poultry [28]. In that 
study, the quinolone resistance mechanisms detected in 
approximately 45–50% of the quinolone-resistant isolates 
were mainly due to chromosomal point mutations in 
gyrA, parC and/or parE, though qnrS1 and qnrB19 were 
also detected. Moreover, a study on fluoroquinolone-
resistant avian pathogenic E. coli (APEC) from Korea 
identified chromosomal point mutations in gyrA, parC 
and parE as the main reason behind the quinolone resis-
tance mechanism, while qnrS1 was the only PMQR gene 
detected in only a few isolates [29]. Some of these isolates 
were assigned to major lineages of ExPEC such as ST95 
(n = 3) and ST69 (n = 2). One or more mutations in gyrA, 
parC or parE were identified in these isolates, in addi-
tion, two of the ST95 isolates carried the qnrS1 gene.

The aim of the present study was to explore whether 
QREC from broilers in Norway may contribute to the 
occurrence of QREC in humans. We collected, whole 
genome sequenced and compared isolates that were 
phenotypically resistant to quinolones. They were from 
both humans and broilers, 100 isolates from each. Broiler 
QREC isolates were selected in a manner that ensured 
representativeness among QREC in broilers in Norway. 
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The human QREC isolates were from UTI or bacterae-
mia isolates, as well as isolated from stool samples from 
healthy carriers. We performed whole genome sequenc-
ing followed by MLST analysis, detection of genes asso-
ciated with quinolone resistance and other antimicrobial 
resistance genes as well as phylogenetic analysis.

Results
Isolate overview
In total, 200 QREC genomes were sequenced and assem-
bled. Ten of the human isolates were excluded, seven 
because they were phenotypically susceptible to cipro-
floxacin and/or nalidixic acid, two due to low quality of 
sequences/reads, and one that turned out to be Kleb-
siella variicola (Mash Screen). The reads as well as the 
annotated assemblies were deposited in the European 
Nucleotide Archive (ENA) repository under study acces-
sion numbers PRJEB36302 and PRJEB33048 and at the 
Sequence Read Archive (SRA) under BioProject acces-
sion number PRJNA1117742 (Additional file 1). On aver-
age, the assemblies contained 111 contigs (min: 39, max: 
491), and had an average N50 size of 173,710  bp (min: 
57,055, max: 361,993). Details regarding the quality of 

the genome data are available in the MultiQC and Quast 
reports provided in Additional file 2 and 3, respectively.

All 190 isolates included in the analysis were either 
resistant to ciprofloxacin (R > 0.06 mg/L) and/or nalidixic 
acid (R > 8 mg/L) according to ECOFFs and inclusion cri-
teria set for the study. The overall MIC distributions and 
the antimicrobial resistance profiles for both the broiler 
and human isolates are shown in Additional file 1. In 
total, 68 of the 90 human isolates (75.6%) were consid-
ered multidrug resistant (MDR) (i.e. resistant to three or 
more antimicrobial classes), of which 42 were isolated 
from bacteraemia and twelve from UTI cases. Among 
the 100 broiler isolates 23 (23%) were considered MDR, 
of which eleven were isolated from meat and twelve from 
caecum.

Quinolone resistance genes
Point mutations
Table 1 gives an overview of the detected chromosomal 
point mutations causing quinolone resistance in all the 
190 QREC isolates. A detailed description of the muta-
tions in each isolate is shown in Additional file 1.

Overall, amino acid substitutions were more diverse in 
the human than in the broiler QREC isolates (16 different 

Table 1 Overview of the chromosomal point mutations causing quinolone resistance by amino acid substitution in the Escherichia 
coli isolates (n = 190) from broilers and from humans

# of
isolates

# of mutations GyrA GyrB ParC ParE

Broiler 65 1 S83L
3 1 D87N
1 1 T492C
22 2 S83L D475E
8 2 S83L, D87N
1 3 S83L L488M, A512T

Human 9 0
42 1 S83L
2 1 D87G
1 1 S83A
5 2 S83L, D87N
2 2 S83L S458A
2 2 S83L A426V
2 2 S83L D475E
1 2 S83L S58I
1 2 S83L E84G
9 3 S83L, D87N S80I
1 3 S83L, D87G S58I
1 3 S83L, D87N S80R
1 3 S83L, D87N S58I
1 3 S83W V467L E84K
4 4 S83L, D87N S58I L416F
3 4 S83L, D87N S58I, S80I
1 4 S83L, D87N S80I S458A
1 5 S83L, D87N S58I, S80I L416F
1 5 S83L, D87N S58I, S80I E460K
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substitutions in all four genes and six different substitu-
tions altogether in two genes, respectively). In broiler 
QREC isolates compared to human isolates, point muta-
tions in one gene were more common (gyrA (n = 76) or 
parE (n = 1)) followed by two genes (gyrA + parE (n = 23)). 
The human isolates were more diverse when it came 
to point mutations: no mutations (n = 9), point muta-
tions in gyrA only (n = 52), point mutations in two genes 
(gyrA + parC (n = 17) or gyrA + parE (n = 4)), or point 
mutations in three genes (n = 8). Interestingly, none of the 
broiler isolates had substitutions in gyrB nor parC. For 
both broiler and human isolates, the amino acid substitu-
tion S83L in GyrA were most frequent (n = 96 and n = 77, 
respectively). Thereafter, the most frequent amino acid 
substitutions D475E in ParE (n = 22) and D87N in GyrA 
(n = 11) among the broiler isolates, and D87N in GyrA 
(n = 26), S80I in ParC (n = 15) and S58I in ParC (n = 15) 
among the human isolates.

Acquired genes
In total, five plasmid-located quinolone resistance genes 
were detected; five in broiler and 13 in human QREC 
isolates (Table 2). Two of the genes (qnrB19 and qnrS1) 
were found in both human and poultry isolates, while the 
remaining three genes (aac(6’)-Ib-cr, qnrB1 and qnrB5) 
were found in human isolates, only. An overview of the 

total acquired genes detected in the QREC isolates are 
shown in Additional file 1.

Of the five broiler isolates with acquired quinolone 
resistance genes, four carried the qnrS1 gene together 
with the amino acid substitution S83L in GyrA, while the 
last one carried the qnrB19 gene together with the same 
amino acid substitution S83L in GyrA. The qnrS1 gene 
was also detected in five (35.7%) of the 13 human iso-
lates, but only one had the amino acid substitution S83L 
in GyrA, and none had the same sequence type (ST) as 
the qnrS1 carrying broiler isolates. Four (28.6%) of the 
human isolates carried the qnrB19 gene, of which one 
had three amino acid substitutions at S83L and D87N 
in GyrA and S80I in ParC, and none had the same ST as 
that of the qnrB19 carrying broiler isolates.

For acquired genes that were exclusively found in 
human isolates, the aac(6’)-lb-cr gene was detected in 
three (21.4%) isolates. One isolate had the additional 
amino acid substitution S83L in GyrA and another one 
had two amino acid substitutions (S83L in GyrA and S58I 
in ParC), and one isolate contained qnrB1 but no addi-
tional amino acid substitutions. The last isolate contained 
the qnrB5 gene together with three amino acid substitu-
tions at S83L and D87N in GyrA and S80I in ParC.

Table 2 Quinolone resistance mechanisms and sequence types among broiler (n = 5) and human (n = 13) isolates carrying acquired 
quinolone resistance genes
Specimen Sample ID CIP* MIC 

mg/L
NAL* MIC 
mg/L

GyrA ParC No. of mutations Acquired gene Se-
quence 
type 
(ST)

BROILER meat 2014-01-5749 2 256 S83L 1 qnrS1 ST453
caecum 2014-01-6924 1 64 S83L 1 qnrS1 ST453
caecum 2014-01-7234 1 64 S83L 1 qnrS1 ST453
caecum 2014-01-7375 2 128 S83L 1 qnrS1 ST453
caecum 2014-01-5792 0.25 64 S83L 1 qnrB19 ST349

HUMAN blood Q03-42 4 256 S83L S58I 2 aac(6’)-Ib-cr ST131
blood Q03-33 1 128 S83L 1 aac(6’)-Ib-cr ST136
blood Q02-32 4 64 0 aac(6’)-Ib-cr, 

qnrB1
ST12

blood Q02-58 0.50 8 0 qnrB19 ST778
stool E8-09 0.25 8 0 qnrB19 ST10
stool E7-51 0.12 4 0 qnrB19 ST3877
UTI* Q01-81 16 256 S83L, 

D87N
S80I 3 qnrB19 ST162

UTI* Q04-11 8 256 S83L, 
D87N

S80I 3 qnrB5 ST162

blood Q02-39 1 16 0 qnrS1 ST10
blood Q02-30 0.25 4 0 qnrS1 ST14
blood Q01-38 0.50 8 0 qnrS1 ST4434
stool E4-64 0.25 32 0 qnrS1 ST10
stool E7-61 4 256 S83L 1 qnrS1 ST117

*CIP – ciprofloxacin; NAL – nalidixic acid; UTI – urinary tract infection
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Multi-locus sequence types (MLST) and phylogenetic 
analysis
In total, the QREC isolates were assigned into 62 unique 
E. coli MLSTs, as illustrated in Fig. 1. The human QREC 
isolates were assigned into 38 STs, where 62 isolates 
grouped into ten different STs and 28 were singletons. 
Broiler QREC isolates where assigned to 32 STs, 81 iso-
lates grouped into 13 different STs and 19 were single-
tons. The most prevalent E. coli STs were ST131 (n = 26, 
22 human, 4 broiler), ST355 (n = 22, all broiler), ST10 
(n = 16, 4 human, 12 broiler), ST69 (n = 13, all human), 
ST162 (n = 12, 4 human, 8 poultry), and ST453 (n = 9, 1 
human, 8 poultry). In total, 30 different STs were exclu-
sively found in human isolates, 24 were found in broiler 
isolates, only, while eight STs were identified in both spe-
cies (STs 453, 155, 1642, 162, 57, 10, 117 and 131).

A maximum likelihood tree based on core gene SNPs 
was made (Fig.  2) to further illustrate the relationship 
between isolates. The pangenome analysis of the 190 
genomes detected 19 853 unique genes. Of these, 3156 
were defined as core genes, i.e. present in at least 95% of 
the genomes. As expected, isolates with the same ST pre-
dominantly clustered closely together, with the notable 
exception of ST10. The STs that contained isolates from 
both species did not display any within-cluster clade sep-
aration between isolates stemming from the two species.

Core genome phylogeny on selected sequence types
Core genome cluster analyses was performed for the 
STs that contained either five isolates or more, or iso-
lates from both poultry and humans; they were ST10, 
ST117, ST131, ST155, ST162 and ST453 (Fig. 3). Within 
this detailed analysis, human and broiler isolates pro-
duced distinctly separate clades with the same resistance 

mechanisms present for all STs, except for ST162. The 
average genome coverage, SNP range and SNP distance 
are described for each of the core genome alignments in 
Table 3.

Within ST162, one of the human QREC isolates clus-
tered with two broiler isolates. This subcluster had an 
SNP-range of 16–33, a mean SNP distance of 24.7 and a 
median SNP distance of 25.

Discussion
In this study, we explored to what extent the QREC pop-
ulation from broilers in Norway could have contributed 
to QREC in humans. To this end, a dataset comprising 
QREC isolates from broiler meat and caecum, and from 
healthy humans and from patients with bacteraemia or 
UTIs was sequenced and compared. In a large-scale phy-
logenetic comparison based on gene alignment, it was 
clear that there was no substantial intermingling between 
broiler and human isolates. However, some STs did con-
tain isolates that could seem similar, and they were fur-
ther explored with a phylogenetic tree based on whole 
genome alignments, applying a threshold of around 20 
SNPs, which is a commonly used threshold for source 
attribution [32]. As is clear from several of the subtrees 
created, only two contained subgroups of isolates that 
came close to the criterion; that is ST162 and ST453. 
When exploring relatedness of isolate sequences there 
should not only be a low number of SNP differences, 
but the isolates in question should also be found inside 
a monophyletic group [32]. This is clearly not the case 
for ST453. On the other hand, ST162 does have one such 
group, where one of the human ST162 QREC isolates 
clustered closely together with two of the broiler iso-
lates (one from caecum and one from meat, with 25 SNP 

Fig. 1 eBURST analysis. Minimum Spanning Tree of all MLSTs using PHYLOViZ v 2.0 showing the clonal relationship of broiler (n = 100) and human (n = 90) 
quinolone-resistant Escherichia coli isolates. Size of the circle corresponds to the number of isolates. The colour of the circle borders corresponds to group 
founder (light green) and common node (light blue)
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Fig. 2 Maximum likelihood SNP tree of 100 broiler and 90 human quinolone-resistant Escherichia coli isolates. Branch supports (ultrafast bootstrap ap-
proximation) are denoted with black or white nodes. The coloured tips and shapes on the tree denote species of origin and material. The tip labels denote 
the sequence types from the MLST scheme hosted by EnteroBase. The colouring on the outer rings denotes the presence/absence of mutations leading 
to amino acid (AA) substitutions in chromosomal genes and the presence/absence of plasmid-mediated genes leading to quinolone resistance. The grey 
shades denote groups of STs that contains isolates from both hosts, and which contains five or more isolates in total, ST10, ST117, ST131, ST155, ST162, 
and ST453. The tree was generated with IQTree from SNPs in core genes from Roary aligned with MAFFT. The evolutionary model used was GTRFASCR9 - 
GTRGAMMA. The tree is midpoint rooted for better visualization
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differences to the closest broiler isolate). A limitation 
that is often left out when comparing sequences, though 
is how much of the genomes are actually included [33]. 
For the STs comprising both human and broiler isolates, 

the average genome coverage ranged from 75.2 to 89.3%. 
The ST containing a potential monophyletic group with 
low SNP distance had the highest genome coverage. 
This means that more than 10% of the genome was not 

Table 3 Phylogenetic analysis per sequence type including quinolone-resistant Escherichia coli isolates from both broiler and humans
Sequence type (ST) Number of isolates per species 

(broiler / human)
Average genome 
coverage*

SNP range Median SNP distance Mean 
SNP 
dis-
tance

ST10 12 / 4 75.8% 9–1498 512.5 440.0
ST117 3 / 2 85.4% 37–630 526 505.7
ST131 4 / 22 80.8% 4–534 231 265.9
ST155 4 / 1 83.6% 21–588 520 387.9
ST162 8 / 4 89.3% 5–605 538 324.1
ST453 8 / 1 83.6% 3–359 38 99.8
*Average genome coverage is the shared genome found in all isolates included as reported by ParSNP

Fig. 3 Maximum likelihood core gene midpoint rooted SNP trees for clades ST10, ST117, ST131, ST155, ST162 and ST453. These six clades comprise 
quinolone-resistant Escherichia coli isolates from both humans and broiler. Core genome SNPs were identified with ParSNP, and recombinant sites were 
removed with Gubbins. ST - sequence type. Genotypes explaining the quinolone resistance mechanism are represented in the heat map
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similar enough to be included in the comparison. E. coli 
ST162, which had the highest average genome coverage 
of 89.3%, included four human and nine broiler QREC 
isolates. Our finding is supported by a British study 
where fluoroquinolone-resistant E. coli from cattle were 
compared with those causing bacteriuria in humans liv-
ing in the same geographical area [34]. They identified 
possible farm-to-human sharing of ST744 and ST162 but 
concluded that they had limited impact on community 
bacteriuria.

However, a clear limitation to our study is that we have 
no data on level of exposure among humans to broilers 
or chicken meat. In addition, we did not perform fur-
ther analyses on these strains collected from 2012 to 
2016 regarding PMQR genes, plasmid characterization 
and more detailed phylogeny, since chromosomal point 
mutations appeared to be the major mechanism behind 
quinolone resistance in E. coli from both human and 
broiler.

The results in the present study did not point to broilers 
as a major source for QREC in humans. Both differences 
and similarities in STs between humans and broiler were 
however, detected. There was a higher diversity of STs in 
human QREC isolates as compared to those from broiler. 
Also, within some STs, such as ST355, ST453, ST131, 
and ST393, quinolone resistance mechanisms seemed 
to be more uniform than for other STs. QREC isolates 
assigned to ST355 and ST453 all, but one human ST453 
isolate, derived from broiler. ST131 and ST393 QREC 
isolates derived solely from human isolates, except four 
broiler meat QREC isolates that were assigned in ST131. 
Similar findings of E. coli ST355 were also documented 
by Röderova et al. [35], who reported ST355 to be one of 
the major clones prevalent in Czech retail turkeys carry-
ing qnrS1 and qnrS1 together with qnrB19. In contrast to 
our study, Ramadan et al. [36], found that E. coli isolates 
from chicken in Egypt were more diverse regarding STs 
compared to E. coli isolates from humans and beef. Our 
findings are not surprising since the broiler production 
in Norway is dependent on import of breeding animals 
originating from a common ancestor [37].

Some of the STs identified in this study, ST10, ST69, 
ST117 and ST131, belong to successful clones dissemi-
nated worldwide and have been detected in antimicro-
bial resistant lineages of ExPEC from humans and from 
food/animal sources [22, 24, 26–29, 38]. Human E. coli 
isolates including a sublineage of ST131, namely ST131-
H30, are known to be multidrug resistant (MDR) [22, 25, 
38]. This is somewhat consistent with our study where 
15 of the human ST131 QREC isolates were considered 
MDR, of which two of the four ST131-H30 found were 
MDR. Five ST131 QREC isolates were found in healthy 
carriers where three were identified as sublineage ST131-
H30 (data not shown). Manges [24] suggested that E. coli 

ST131 from broiler may be a possible reservoir for human 
ExPEC, however, in our study this does not seem to be 
the case as they are phylogenetically distant and the resis-
tance patterns are different. In contrast to our study, a 
comparable Algerian study demonstrated clonal relation-
ship between ciprofloxacin-resistant E. coli ST131 strains 
in samples from human and broiler [39]. Liu et al. [40] 
investigated broiler meat samples and clinical cultures for 
one year and their findings suggested that a ST131-H22 
sublineage has been established in food of animal origin. 
This corresponds well to our study where the four broiler 
isolates belonged to ST131-H22 while most of our ST131 
human isolates belonged to ST131-H41 (n = 17 of 22 
ST131 from human) (data not shown). Interestingly, the 
ST131-H41 sublineage has been described in E. coli iso-
lated from UTIs and related to extended-cephalosporin 
resistance [41, 42].

When considering the main mechanisms behind qui-
nolone resistance in both broiler and human QREC iso-
lates, the most frequently seen were mutations in the 
QRDR of the chromosomally located gyrA and parC 
genes, though PMQR was also identified. Our results 
are in concordance with the findings in Börjesson et al. 
[43] who investigated imported breeding animals to the 
Swedish broiler production chain and identified that the 
main mechanism for QREC was due to a single mutation 
in gyrA. Others have reported that chromosomal point 
mutations are the main mechanisms of QREC in the 
broiler production chain [28, 44–46]. Studies on other 
animals such as cats, dogs, pigs and cattle support that 
chromosomal point mutations in QRDR is the most com-
monly identified key mechanism [47–50]. However, in 
some of these studies PMQR genes were also identified, 
most frequently a qnr gene variant [47, 48, 50].

Only a few studies have characterized PMQR genes 
from E. coli from broilers in Europe. In our study, PMQR 
genes were detected in QREC from 5% of the broiler sam-
ples, qnrS1 (n = 4, all ST453) and qnrB19 (n = 1, all ST349), 
and always together with the point mutation GyrA S83L. 
Similar findings in broilers have been described in an 
Italian study of E. coli isolated from poultry flocks with 
colibacillosis [51]. In contrast to our study on broilers, a 
Czech study on turkeys detected PMQR genes, mainly 
qnrB and qnrS, in as much as 58% of the E. coli [52]. A 
recent study from Nigeria detected, similar to our study, 
no clonal relationship between commensal PMQR car-
rying E. coli isolates from poultry, poultry workers, and 
poultry farms and market environments [53].

Conclusion
Based on data from this study, QREC from broiler makes 
a limited contribution to the incidence of QREC in 
humans in Norway. There was some relatedness between 
QREC isolated from humans and broilers, but little was 
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shared across the two groups. Still, some overlap was seen 
of QREC isolates with the same STs isolated from broiler 
and humans, but overall, the SNP distance was too high 
to suggest substantial transfer. Some of the broiler QREC 
isolates with the same STs as human isolates, belonged to 
phylogroups that were closely related to human ExPEC, 
namely B2 and D, but they were not closely related. Only 
one human QREC isolate, E. coli ST162 carrying GyrA 
S83L substitution, clustered closely to two broiler QREC 
isolates. Further, the major quinolone resistance mecha-
nisms were chromosomal point mutations in gyrA and 
parC. Overall, only a few PMQR genes were detected in 
the included isolates. These results demonstrate that the 
human and broiler QREC isolates are not highly related, 
and that the high occurrence of quinolone resistance is 
not horizontally transferable. In four of the five broiler 
QREC isolates carrying PMQR genes, the qnrS1 gene was 
detected in E. coli ST453. More studies are needed using 
newer technology like long read sequencing to look at the 
location of these qnr-genes and possible plasmid epide-
miology to see if the same plasmids can be found in both 
human and broiler isolates.

Materials and methods
Bacterial isolates
Broiler isolates
A selective method for screening for quinolone-resistant 
E. coli (QREC) was implemented on broiler samples in 
NORM-VET in 2014, resulting in QREC isolates avail-
able from 89.5% of caecal flock samples and 70.7% of 
chicken meat samples. This collection of isolates con-
sisted of 188 caecal and 140 meat isolates [8] and was 
susceptibility tested under the auspices of the NORM-
VET programme. The isolates were classified as QREC 
with MICs for nalidixic acid and/or ciprofloxacin above 
ECOFF (EUCAST accessed 04.05.2022, i.e. ciprofloxacin 
MIC > 0.06 mg/L and/or nalidixic acid MIC > 8 mg/L).

The phylogroup of all 328 isolates was found using 
the method by Clermont et al. [54] and as described in 
Mo et al. [55]. Based on phylogroups, MIC values for 
ciprofloxacin and nalidixic acid, and resistance profile 
beyond quinolones, the isolates were divided into 86 dif-
ferent groups. Isolates were selected from this list based 
on their proportional distribution in the dataset, and to 
have at least one isolate per group. Overall, 47 of the 86 
groups had only one isolate, all of which were included. 
The remaining 53 isolates were randomly chosen from 
the remaining groups proportionally to the frequency 
of isolates per group. A total of 100 QREC isolates from 
chicken meat (n = 47) and broiler caecal flock samples 
(n = 53) were included for further analyses in the present 
study. The broiler isolates metadata is described in Addi-
tional file 1.

Human isolates
A total of 100 human QREC isolates were included. The 
collection consisted of isolates from UTI and bacterae-
mia cases (n = 77) in 2012–2014 and retrieved through 
NORM. Further, 23 isolates were included from a study 
performed at the Norwegian Institute for Public Health 
(NIPH) from 2014 to 2016 where healthy carriers were 
screened for the occurrence of QREC [56].

The human isolates were originally susceptibility tested 
by the disk diffusion method. For full comparability to the 
broiler isolates, human isolates were retested using the 
broth microdilution method applied in NORM-VET, and 
with the Sensititre™ TREK EUVSEC plate (Trek Diagnos-
tic System Ltd., United Kingdom). The EUVSEC panel 
contains the following 14 antimicrobial agents: ampi-
cillin, azithromycin, cefotaxime, ceftazidime, chloram-
phenicol, ciprofloxacin, colistin, gentamicin, meropenem, 
nalidixic acid, sulfamethoxazole, tetracycline, tigecy-
cline, and trimethoprim. The fully susceptible E. coli 
ATCC 25,922 was included as quality control. ECOFFs 
(EUCAST accessed 04.05.2022) were used to categorize 
the isolates as susceptible or resistant. The human iso-
lates metadata is described in Additional file 1.

Whole genome sequencing
Bacteria were inoculated in Luria Bertani (LB) broth 
(Merck, Darmstadt, Germany) and incubated at 37  °C 
for 19–21 h in a shaker at 180 rpm. Genomic DNA was 
extracted through either automatic DNA extraction with 
QIASymphony DSP DNA Mini Kit or by manual extrac-
tion with DNeasy Blood and Tissue kit (both QIAGEN, 
Hilden, Germany), and according to the producer’s pro-
tocols. The DNA concentration and quality were mea-
sured using a Qubit™ 4 Fluorometer with Qubit™ dsDNA 
BR (Broad-Range) Assay kit (Thermo Fisher Scientific) 
and NanoDrop™ One Spectrophotometer (Thermo Fisher 
Scientific).

Library preparation and sequencing of the isolates 
were done at the Norwegian Sequencing Centre [57] 
using Illumina™ Nextera XT library prep (Illumina, Inc., 
San Diego, California, USA) on an Illumina™ HiSeq 2500 
(Illumina) with Rapid Run spiked with PhiX generating 
250 bp paired-end reads with four reads per isolate.

Assembly and characterization
Analyses were performed using the Bifrost pipeline 
(https://doi.org/10.5281/zenodo.4043861). Specifically, 
quality control was done using FastQC v0.11.9 [58] 
(http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), and MultiQC v1.9 [59] to collate the FastQC 
data. Contamination screening was performed using 
Mash Screen v2.1 [60]. Genome assembly was per-
formed using Trimmomatic v0.39 [61], followed by 
SPAdes assembly v3.14.0 [62] with parameters coverage 

https://doi.org/10.5281/zenodo.4043861
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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cutoff set to “auto”, “--careful” settings and excluding 
contigs shorter than 500 nucleotides. The SPAdes assem-
blies were further run through Pilon v1.23 [63] for fin-
ishing, before genome annotation with Prokka v1.14.5 
[64]. QUAST v5.0.2 [65] was used for evaluating the 
assemblies.

Multi-locus sequence typing (MLST) and detection of 
antimicrobial resistance genes were done using ARIBA 
[66]. The scheme hosted by Enterobase was used for 
MLST [23], while the MEGARes [67] and ResFinder 
(accessed 28 March 2019) [68, 69] databases were used 
for the detection of ARGs (covering both chromosomal 
point mutations and acquired, respectively).

Phylogenetic analysis
An eBURST analysis [70, 71] of the MLST results was 
performed to do a preliminary investigation of the clonal 
relationship of the QREC isolates using PHYLOViZ 
v 2.0 [72]. Further, the genomes were used as input for 
pangenome analyses using the core gene track in the 
phylogeny pipeline ALPPACA v0.4.1 [73]. In short, the 
core genes were identified in the assemblies by running 
Prokka v1.14.5 [64]. Panaroo v1.2.2 [74] was run in sen-
sitive mode to build a graphical representation of the 
pangenome that were used to error correct the anno-
tated genomes. SeqKit [75] was used to remove dupli-
cated genomes and SNPs were filtered with SNP-sites 
v2.5.1 [76]. A maximum likelihood (ML) tree was gener-
ated using IQtree v1.6.12 [77, 78], and snp-dists v0.6.3 
(https://github.com/tseemann/snp-dists) was used to 
calculate SNP distances.

Genomes belonging to ST groups with more than five 
isolates from both human and broilers were analysed 
separately using the core genome track of the ALPPACA 
v0.4.1 pipeline. In short, the core genome was identified 
using ParSNP v1.5.3 [79] and duplicated genomes were 
removed using SeqKit [75]. Gubbins v2.4.1 [80] was used 
to identify recombinant areas that were further masked 
with maskrc-svg v0.5 (https://github.com/kwongj/
maskrc-svg) before filtering with SNP-sites v2.5.1 [76] 
and generating the ML trees in IQtree v1.6.12 [77, 78].

Data management
The results from the antimicrobial resistance genes and 
MLST analysis was collated in R v4.0.5 to produce a sum-
mary report. Figures and tables were generated using 
R v4.0.5 [81], the ggtree package v2.4.2 [82–84] and 
ggtreeExtra v1.0.4 [85].
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