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Abstract
Background & aims Gut microbiota is closely related to the occurrence and development of colorectal cancer (CRC). 
However, the differences in bacterial co-abundance groups (CAGs) between tumor tissue (TT) and normal tissue (NT), 
as well as their associations with clinical features, are needed to be clarified.

Methods Bacterial 16 S rRNA sequencing was performed by using TT samples and NT samples of 251 patients with 
colorectal cancer. Microbial diversity, taxonomic characteristics, microbial composition, and functional pathways were 
compared between TT and NT. Hierarchical clustering was used to construct CAGs.

Results Four CAGs were grouped in the hierarchical cluster analysis. CAG 2, which was mainly comprised of 
pathogenic bacteria, was significantly enriched in TT samples (2.27% in TT vs. 0.78% in NT, p < 0.0001). CAG 4, which 
was mainly comprised of non-pathogenic bacteria, was significantly enriched in NT samples (0.62% in TT vs. 0.79% 
in NT, p = 0.0004). In addition, CAG 2 was also significantly associated with tumor microsatellite instability (13.2% in 
unstable vs. 2.0% in stable, p = 0.016), and CAG 4 was positively correlated with the level of CA199 (r = 0.17, p = 0.009).

Conclusions Our research will deepen our understanding of the interactions among multiple bacteria and offer 
insights into the potential mechanism of NT to TT transition.
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Introduction
The global incidence of colorectal cancer (CRC) has 
increased rapidly and in China, it ranks second among all 
malignant tumors [1–3]. Traditional risk factors for CRC 
include family history, inflammatory bowel disease, pro-
cessed meat intake, diabetes, obesity, smoking, and alco-
hol consumption [4, 5].

Previous studies found that changes in gut microbiota 
such as Streptococcus bovis, Helicobacter pylori, Bacte-
roides fragilis, Enterococcus faecalis, Clostridium sep-
ticum, Fusobacterium spp, and Escherichia coli, were 
closely related to the occurrence of gastrointestinal 
cancer [6]. However, for several microorganisms such 

as Fusobacterium species, the association of their abun-
dance with human colon cancer was not consistent in all 
reports and lacked a clear conclusion [7, 8]. Abreu et al’s 
research indicated that the inconsistency between stud-
ies may be due to the heterogeneity of microbial or host 
response levels [9]. Therefore, Flemer et al. proposed that 
combinations or co-abundance groups (CAGs) of organ-
isms may be more operative to express the relationship 
between microbiota and disease, rather than to repre-
sent a one organism-one disease model [10]. In Flemer’s 
study, they found that it was feasible to use a combina-
tion of several bacteria (or microbiome characteristics) 
in the stool microbiota of CRC patients as a marker to 
detect the disease [10]. The utility of CAGs was further 
confirmed in investigating the association between the 
microbiota community of tongue coating and the prog-
nosis of gastric cancer [11]. Recently, a study conducted 
in Australia demonstrated that the construction of an 
oncomicrobial community subtype, similar to the CAGs 
in Flemer’s paper, using tumor tissue (TT) and normal 
tissue (NT) samples can effectively predict the prognosis 
of CRC [12]. However, the performance of CAGs in Chi-
nese CRC patients is not clear.

In this study, we conducted a cross-sectional study of 
the colon microbiome in 492 mucosal samples (245 TT 
and 247 TT) from 248 patients undergoing CRC sur-
gery. We found that the diversity of microbiota between 
TT and NT was significantly different, with each group 
exhibiting distinct taxonomic profiling and discriminant 
taxa. In addition, the intratumor microbiota of CRC 
could be categorized into four CAGs and CRC patients 
could be further divided into 6 distinct groups based on 
four CAGs. This study may provide novel insights into 
the dynamics of bacterial communities during the con-
version of NT to TT.

Materials and methods
Study participants
Samples were obtained from patients undergoing surgical 
treatment for colorectal cancer. Ultimately, a total of 251 
patients diagnosed with colorectal cancer were recruited 
at the Sixth Affiliated Hospital of Sun Yat-sen University 
from 2015 to 2021. Detailed information on these sam-
ples is provided in Table 1.

Tumor specimens were obtained using a sterile scal-
pel blade within 1  h following surgical resection, and 
the normal tissue samples were obtained at a standard-
ized distance of over three centimeters from the tumor 
margin. All samples were promptly frozen in liquid nitro-
gen and stored at -80 °C. Inclusion criteria encompassed 
patients aged 18 years or older without contraindica-
tions to colorectal cancer resection. The exclusion cri-
teria include the use of antibiotics or probiotics within 
one month, radiotherapy, chemotherapy, intestinal 

Table 1 The demographic characteristics of all the enrolled 
samples
Characteristics Patients

(248)
Gender
Female 97(39.11%)
Male 151(60.89%)
Site
Left hemicolon 84(33.87%)
Rectum 109(43.95%)
Right hemicolon 55(22.18%)
Stage
Advanced 118(47.58%)
Early 130(52.42%)
Gross
Infiltration 2(0.81%)
Mass 67(27.02%)
Ulcer 177(71.37%)
NA 2(0.81%)
Differentiation
High 38(15.32%)
Low 179(72.18%)
Median 17(6.85%)
NA 14(5.65%)
Ki67
50% or more 127(51.21%)
Less than 50% 121(48.79%)
Microsatellite
Unstable 17(6.85%)
Stable 230(92.74%)
NA 1(0.4%)
Age (years) 62.94 ± 12.29
Height (cm) 162.89 ± 7.79
Weight (kg) 60.16 ± 10.39
BMI (kg/m²) 22.63 ± 3.27
CEA (ng/ml) 87.63 ± 1020.43
CA199 (U/ml) 74.61 ± 451
CA125 (U/ml) 17.97 ± 32.06
CA153 (U/ml) 10.39 ± 5.83
AFP (ng/ml) 3.37 ± 8.9
Note: Data are shown as means ± SD
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obstruction, and concurrent other severe organic dis-
eases. The stage of CRC was classified according to the 
8th edition of the American Joint Committee on Cancer 
(AJCC) TNM staging system. The protocol of human 
sample usage and the informed consent was approved by 
the Ethical Review Board of the Sixth Affiliated Hospital 
of Sun Yat-sen University (2020ZSLYEC-101).

DNA extraction and PCR amplification
Total microbial genomic DNA was extracted from TT 
and NT samples using FastDNA Spin Kit for Soil (MP 
Biomedicals) according to the manufacturer’s instruc-
tions. The quality and concentration of DNA were 
determined by 1.0% agarose gel electrophoresis and a 
NanoDrop® ND-2000 spectrophotometer (Thermo Sci-
entific Inc., USA) and kept at -80℃ prior to further use. 
The hypervariable region V3-V4 of the bacterial 16  S 
rRNA gene was amplified with primer pairs 338 F (5’- A 
C T C C T A C G G G A G G C A G C A G-3’) and 806R(5’-GGAC-
TACHVGGGTWTCTAAT-3’) [13] by an ABI GeneAmp® 
9700 PCR thermocycler (ABI, CA, USA). The PCR reac-
tion mixture including 4 µL 5 × Fast Pfu buffer, 2 µL 2.5 
mM dNTPs, 0.8 µL each primer (5 µM), 0.4 µL Fast Pfu 
polymerase, 10 ng of template DNA, and ddH2O to a 
final volume of 20 µL. PCR amplification cycling con-
ditions were as follows: initial denaturation at 95 ℃ for 
3  min, followed by 27 cycles of denaturing at 95 ℃ for 
30 s, annealing at 55 ℃ for 30 s, and extension at 72 ℃for 
45  s, and single extension at 72 ℃ for 10  min, and end 
at 4 ℃. All samples were amplified in triplicate. The PCR 
product was extracted from 2% agarose gel and puri-
fied using the AxyPrep DNA Gel Extraction Kit (Axygen 
Biosciences, Union City, CA, USA) according to manu-
facturer’s instructions and quantified using Quantus™ 
Fluorometer (Promega, USA).

Illumina MiSeq sequencing
Purified amplicons were pooled in equimolar amounts 
and paired-end sequenced on an Illumina MiSeq PE300 
platform (Illumina, San Diego, USA) according to the 
standard protocols by Majorbio Bio-Pharm Technology 
Co. Ltd. (Shanghai, China).

Statistical analysis
The raw data were processed using QIIME2 (Version 
2021.8.0) to remove reads with insufficient repetitions 
(reads with less than 48 entries or fewer than 25 samples 
containing the reads) or readings shorter than 148  bp. 
Subsequently, the filtered reads were clustered into oper-
ational taxonomic units (OTUs) at a similarity threshold 
of 97%. To mitigate the potential impact of sequencing 
depth on subsequent alpha and beta diversity analyses, 
the sequence count in all samples was standardized to 
16,864 sequences. As sequencing depth increased, the 

observed feature curves for both sample groups reached 
a plateau, indicating sufficient sequencing coverage. 
Taxonomic classification of each OTU was performed by 
comparing the sequences against SILVA database (ver-
sion 138.1). Alpha diversity was assessed by calculating 
the ACE, Chao1, Observe, Pielou, Shannon, and Simp-
son indices. To compare the diversity differences among 
groups, Beta diversity was examined through principal 
coordinates analysis (PCoA) based on Bray-Curtis dis-
tance. Permutational multivariate analysis of variance 
using distance matrices (pMANOVA) was employed to 
assess the significance of beta diversity. Linear discrimi-
nant analysis Effect Size [14] (LEfSe) was used (http://
galaxy.biobakery.org/) to identify key microorganisms 
associated with different groups, with an LDA threshold 
of 3.5. Bray-Curtis distance-based hierarchical cluster-
ing with Ward linkage method was utilized to construct 
CAGs, where only genera exhibiting a relative abundance 
exceeding 0.1% in TT and NT were used. For continuous 
variables, Mann-Whitney U test was employed to com-
pare differences between groups, while Spearman rank 
correlation analysis was used for assessing correlations 
[15]. Prediction of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways was performed using Phylo-
genetic Investigation of Communities by Reconstruction 
of Unobserved States (PICRUSt) analysis. Statistical anal-
yses and figures were conducted using R version 4.2.3 (R 
Foundation for Statistical Computing, Vienna, Austria.). 
A statistically significant difference was considered when 
the P value < 0.05.

Results
Baseline characteristics of participants
A total of 248 patients diagnosed with colorectal cancer 
were included in this study. Consequently, 245 TT sam-
ples and 247 NT samples from these enrolled patients 
were obtained for analysis. The demographic character-
istics of all 248 enrolled patients are presented in Table 1.

Comparison of the Microbial diversity between TT and NT
In terms of alpha diversity, we employed ACE, Chao1, 
Observe, Pielou, Shannon, and Simpson indices to assess 
the species’ richness, evenness, and diversity of TT and 
NT. Based on the estimated results of the Chao1 index 
analysis (Fig.  1A; p = 0.048), we found that the alpha 
diversity of microbiota in NT was significantly higher 
than that of TT. Beta diversity was also significantly dif-
ferent between TT and NT (Fig.  1B; Permanova: Bray-
Curtis p = 0.004).

Taxonomic profiling and discriminant taxa between TT and 
NT
As illustrated in Fig.  2A and B, Proteobacteria, Actino-
bacteriota, Firmicutes, Bacteroidota and Fusobacteriota 

http://galaxy.biobakery.org/
http://galaxy.biobakery.org/
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were five predominant phyla (Fig.  2A) while Delftia, 
Actinobacteria unclassified, Pseudomonas, Bacteroidota, 
Escherichia-shigella, and Hizobiaceae unclassified were 
six dominant genera (Fig. 2B).

LEfSe analyses were employed to identify significant 
microbial biomarkers across all taxa, with an LDA score 
threshold of > 3.5. As depicted in Fig.  2C and D, at the 
genus level, Escherichia-Shigella, Fusobacterium, Strep-
tococcus, Peptostreptococcus, Parvimonas, Klebsiella, 
and Gemella were enriched in TT. While Acinetobacter, 
Achromobacter, Delftia, and Pseudomonas were enriched 
in NT. These findings suggest distinct microbiota com-
positions between TT and NT. In addition, we also 
identified the significant genera of different TMN stages 
through this LEfSe analyses (Supplementary Fig.  1A-B). 
In order to preserve the efficacy of each paired sample, 
we also performed differential abundance analysis on 
paired tumor tissues and paired normal tissues in terms 
of bacterial genus (Supplementary Table 1).

Distribution of CAGs in TT and NT
We performed hierarchical cluster analysis based on 47 
genera with relative abundances exceeding 0.1%, result-
ing in the identification of four co-abundance groups 
(CAGs). The correlation of these 47 genera with four 

CAGs is shown in Fig. 3A and the detailed co-enriched 
genera of each CAG are shown in Table 2. By conducting 
sample-level cluster analysis using the abundance profiles 
of four CAGs, we identified six distinct sample groups 
(Fig. 3B). Notably, due to the high abundance of CAG 1 
in sample group 1 and sample group 2, it was challeng-
ing to accurately discriminate TT from NT in these two 
sample groups. However, in the remaining four sample 
groups (sample group 3, sample group 4, sample group 
5, and sample group 6), clear discrimination between 
TT and NT was observed (Fig. 3C). Sample group 4 and 
sample group 6 were primarily composed of TT, while 
sample group 3 and sample group 5 were predominantly 
composed of NT (Fig. 3D).

The relative abundance of four CAGs in TT and NT 
were illustrated in Fig. 4A. We found that CAG 2 exhib-
ited significantly higher abundance in TT (median: 2.27% 
in TT vs. 0.78% in NT, p < 0.0001) while CAG 4 exhibited 
significantly higher abundance in NT (median: 0.62% in 
TT vs. 0.79% in NT, p = 0.0004). However, no significant 
differences were observed for CAG 1 and CAG 3. Inter-
estingly, after removing sample group 1 which exhibited 
a predominant enrichment in CAG 1, CAG 3 displayed 
an increased abundance in NT (median: 1.9% in TT vs. 
6.2% in NT, p = 0.0006, Fig.  4B and C) and exhibited an 

Fig. 1 The microbial Alpha diversity and Beta diversity analysis in TT (Tumor Tissue) and NT (Normal Tissue). (A) Violin plots of Alpha diversity based on 
Chao1. (B) Beta diversity was calculated using Bray-Curtis by PCoA. The test method is Permanova
*p < 0.05
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inverse correlation with CAG 2 (Fig.  4D). As shown in 
Fig.  4E, CAG 2 was highly abundant in sample group 4 
and sample group 6 which mainly consisted of TT, while 
CAG 3 and CAG 4 were highly abundant in sample group 
3 and sample group 5 which mainly consisted of NT.

Association of CAGs with clinical features
We further investigated the association of identified 
CAGs with clinical features in TT. Notably, we observed 
a significant association between CAG 2 and tumor 

microsatellite status. Specifically, a higher abundance of 
CAG 2 was found in samples with microsatellite instabil-
ity (median: 13.2% in unstable vs. 2.0% in stable, p = 0.016, 
Fig.  5A). Furthermore, we evaluated the association of 
CAGs with tumor markers and specifically observed a 
positive correlation between CAG 4 and CA199 (r = 0.17, 
p = 0.009) (Fig. 5B).

Fig. 2 Characteristics of the microbiota in TT (Tumor Tissue) and NT (Normal Tissue). Each group Barplots of the relative abundance of the main bacte-
rial taxa at (A) phylum, (B) genus level for the TT and NT. Cladogram (C) and Linear discriminant analysis effect size (LEfSe) analysis (D) showed the most 
abundant taxa from the phylum to the genus level among the TT and NT, LDA score threshold > 3.5
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Functional analysis of microbiota in each group
Finally, PICRUSt was employed to predict the KEGG 
pathways implicated in TT and NT. The KEGG path-
ways with an average relative abundance above 1% in all 
samples are shown in Fig.  6A. Notably, the membrane 
transport pathway constituted a substantial proportion, 
accounting for 13.8%. Of the 20 pathways with an average 

relative abundance above 1%, 18 of them were signifi-
cantly upregulated in NT (Fig. 6B).

Discussion
Tons of studies indicated that CRC-related microbiota 
can provide valuable insights into cancer occurrence, 
progression, and response to treatment [16]. Dispari-
ties between TT and NT primarily arise from individual 

Table 2 The detailed co-enriched genera of each CAG
CAG 1 CAG 2 CAG 3 CAG 4
Achromobacter Anaerococcus Akkermansia Acinetobacter
Bacteroides Campylobacter Alistipes Aquabacterium
Chloroplast Eikenella Bifidobacterium Bacillus
Delftia Erysipelatoclostridium Blautia Chryseobacterium
Enterococcus Fusobacterium Collinsella Lactobacillus
Escherichia-Shigella Gemella Dialister Ralstonia
Klebsiella Granulicatella Faecalibacterium Caulobacteraceae_unclassified
Proteus Leptotrichia Holdemanella Clostridiaceae_unclassified
Pseudomonas Parvimonas Parabacteroides Peptostreptococcaceae_unclassified
Actinobacteria_unclassified Peptostreptococcus Prevotella Sphingomonadaceae_unclassified
Enterobacteriaceae_unclassified Porphyromonas Subdoligranulum -
Lachnospiraceae_unclassified Streptococcus - -
Rhizobiaceae_unclassified - - -
Unknown - - -

Fig. 3 Cluster analysis. (A) Hierarchical Ward-linkage clustering based on the Spearman rank correlation coefficients of the genera with relative abun-
dances greater than 0.1% in TT (Tumor Tissue) and NT (Normal Tissue). CAGs were defined based on the clusters in the tree. (B) Hierarchical Ward-linkage 
clustering based on the relative abundances of bacterial groups in TT and NT. Sample groups were defined based on the CAGs. (C) Part of B. (D) Barplots 
of distribution of TT and NT in sample groups
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Fig. 5 Association of CAGs with clinical features. (A) Boxplots of correlation between CAG 2 and tumor stage, microsatellite status, Ki-67. (B) Spearman 
rank correlation coefficient matrix heatmap between CAGs and CEA, CA199, CA125, CA153, AFP.
 ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05

 

Fig. 4 Characteristics of the CAGs and sample groups. (A) Boxplots of relative abundances of the four CAGs. (B) Hierarchical Ward-linkage clustering 
based on the relative abundances of CAGs in TT (Tumor Tissue) and NT (Normal Tissue). (C) Boxplots of relative abundances of the four CAGs. (D) Correla-
tion coefficient matrix of CAGs based on Spearman rank correlation. (E) Barplots of distribution of CAGs in each sample group
SG: Sample Group. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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taxonomic variations on the taxonomic profiling. In this 
study, by constructing community structures known as 
co-abundant groups (CAGs), we grouped all samples and 
examined the association of clinical characteristics with 
CAGs.

Compared with NT, a higher diversity of organisms 
in TT was observed as indicated by the Chao1 index 
of alpha diversity. PCoA analysis based on Bray-Curtis 
distance also demonstrated a significant differentia-
tion between TT and NT. Similar findings were found 
in Loke’s studies (Loke et al., 2018) [17]. However, some 
studies have also reported non-significant differences in 
microbial diversity (α- and β-diversity) between TT and 
NT (Liu et al., 2021; Li M. et al., 2020) [18, 19]. These dis-
crepancies can be partially attributed to variations in geo-
graphical location and tumor heterogeneity. Regarding 
taxonomic profiling and discriminant taxa, we identified 
distinct taxa that can distinguish TT from NT. In par-
ticular, at the genus level, Escherichia-Shigella, Fusobac-
terium, Streptococcus, Peptostreptococcus, Parvimonas, 
Klebsiella, and Gemella were found to be significantly 
more abundant in TT. The enrichment of Fusobacterium 

and Streptococcus in TT has been consistently reported 
across numerous studies, highlighting their important 
role in tumor initiation and progression [20, 21]. Notably, 
Parvimonas exhibited a significant positive correlation 
with the host gene PARVB, which is highly expressed in 
CRC tissues [22]. Furthermore, Escherichia-Shigella, Pep-
tostreptococcus, and Klebsiella were found to be enriched 
specifically in CRC patients compared to healthy vol-
unteers in an investigation focusing on intestinal flora 
composition [23]. Gemella which predominantly resides 
within the oral cavity and upper gastrointestinal tract, 
was reported to be associated with oral squamous cell 
carcinoma [24]. In summary, the above findings suggest 
subtle differences in microbial diversity between TT and 
NT. Furthermore, both TT and NT exhibit unique taxo-
nomic profiles, each characterized by a dominant genus.

Recognizing that a single taxonomic group might not 
fully capture microbial differences between TT and NT, 
we applied hierarchical clustering based on Bray-Curtis 
distance to construct four co-abundance groups (CAG 
1–4). These constructed CAGs were then used for unsu-
pervised clustering of TT and NT samples, resulting in 

Fig. 6 The function prediction of the two groups. (A) Barplots of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with an average rela-
tive abundance above 1% in TT and NT. (B) Boxplots of Differential Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using 
PICRUSt for the TT and NT. The y-axis represents the counts of annotations to the pathways, using a base 10 logarithmic scale
TT: Tumor Tissue, NT: Normal Tissue, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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the classification of all samples into six major catego-
ries (sample group 1–6). CAG 2 was notably enriched 
in TT tissues, while CAG 4 was enriched in NT. Sample 
group 3 and sample group 5 contained predominantly 
NT, whereas sample group 4 and sample group 6 con-
tained predominantly TT. The CAGs level analyses 
revealed that sample group 4 and sample group 6 exhib-
ited a higher abundance of CAG 2, sample group 3 had 
an increased abundance of CAG 3, and sample group 5 
was enriched with CAG 4. Further examination revealed 
that the abundance of CAG 1 in sample group 1 was 
exceptionally high, nearly 100%, resulting in a low abun-
dance of the remaining CAGs. To address this question, 
we excluded sample group 1 and conducted the same 
analysis with the remaining samples. In the remain-
ing samples, we found that CAG 3 was significantly 
increased in NT. Additionally, CAG 3 and CAG 4 exhib-
ited a positive correlation, though not statistically sig-
nificant, and both were negatively correlated with CAG 
2. Previous studies have demonstrated the feasibility of 
classifying experimental subjects using bacterial abun-
dance or CAGs. For instance, in a study on colorectal 
cancer and adjacent normal tissues, K-means cluster-
ing was employed to divide the samples into three dis-
tinct subgroups [12]. Another similar study clustered 
the Operational Taxonomic Unit (OTU) hierarchy into 
six CAGs, subsequently categorizing the samples into 
multiple distinct subgroups, a process replicated in two 
additional cohorts [10]. In our study, CAG 1 comprises 
a substantial number of nonpathogenic or opportunis-
tic pathogens that were widely found in nature or the 
human body, including Bacteroides, Delftia, Enterococ-
cus, Klebsiella, Proteus, and Pseudomonas [25–30]. CAG 
2 includes Fusobacterium, Streptococcus, Peptostrepto-
coccus, and Parvimonas, which were reported to promote 
the occurrence and progression of CRC in various stud-
ies. Interestingly, these four genera were assigned to the 
same CAG which was considered a pathogenic bacterial 
cluster in the study by Flemer et al. [10]. Campylobacter 
in CAG 2 was reported to be associated with colorectal 
and esophageal cancer [31]. In CAG 3 and CAG 4, we 
identified more bacteria that are considered to be pro-
biotic or nonpathogenic such as Akkermansia, Alistipes, 
Bifidobacterium, Blautia, Collinsella, Faecalibacterium, 
Parabacteroides, Prevotella, Bacillus, and Lactobacillus 
[32–41]. Hence, human diseases can be attributed not 
only to a single pathogen but also to overall changes in 
the microbiota [42]. For instance, a study on breast can-
cer described the combination of estrogen in the liver, 
excretion into the gastrointestinal cavity, conjugation by 
bacterial β-glucuronidase, reabsorption as free estrogens 
through the enterohepatic circulation, and distribution 
to different organs like the breast. These metabolites, 
produced by several bacteria from the Clostridia and 

Ruminococcaceae families through estrogen metabo-
lism, may collectively have breast cancer-causing poten-
tial [43]. These findings offer insights into flora changes 
during the transformation from NT to TT in a higher 
dimension, exploring bacterial interaction from the bac-
terial clusters, and providing clues to the mechanism of 
the multi-bacterial joint promotion of CRC occurrence 
and development.

Based on the previously constructed CAGs, we fur-
ther investigated the association of CAGs in TT with 
clinical characteristics. CAG 2 was found to be associ-
ated with the microsatellite status of tumors, exhibiting 
higher abundance in TT associated with microsatellite 
instability. Previous studies conducted in Japan and the 
United States have demonstrated a significant correlation 
between F. nucleatum and microsatellite instability [44]. 
Notably, Fusobacterium was seen in our CAG 2 cohort. 
Furthermore, CAG 4 exhibited a positive correlation 
with CA199 levels. CA199 is a typical marker for gastro-
intestinal tumors and has high sensitivity for pancreatic 
cancer diagnosis, as well as aiding in rectal cancer, colon 
cancer, and primary liver cancer detection [45]. In intra-
hepatic cholangiocarcinoma cases, Bacillus anthracis and 
P. azotoformans were observed to be positively associated 
with CA199 levels [46], and Bacillus was notably seen in 
our CAG 4 cohort. In addition, as shown in Supplemen-
tary Fig.  1C, the distribution difference of TNM stage 
was observed in CAG 4.

In addition to compositional changes in bacterial taxa, 
we also observed predicted functional alterations across 
different groups. We found that the following metabolic 
pathways which include nucleotide metabolism, lipid 
metabolism, enzyme metabolism, energy metabolism, 
carbohydrate metabolism, and amino acid metabo-
lism were enriched in the NT group. Similar findings 
were reported in previous studies [47–49]. Our find-
ings suggest that microbial changes may impact multiple 
metabolic pathways including amino acid, lipid, and car-
bohydrate metabolism that could potentially underlie the 
transition from NT to TT.

Our research boasts a relatively substantial sample size, 
contributing to the generation of robust and reliable find-
ings. However, several limitations still need addressing. 
Firstly, in our cluster analysis, two sample groups could 
not be accurately classified, possibly due to the heteroge-
neity of tumor samples in terms of location and subtype. 
Previous studies have highlighted differences in micro-
bial composition between CRC originating from different 
locations or subtypes [50, 51]. Secondly, cross-sectional 
studies emphasize the need for prospective trials to 
fully elucidate the role of microbiota in CRC. Lastly, as 
we employed 16  S rRNA gene sequencing for micro-
biota analysis, we were unable to determine species-
level composition and actual genetic functions. Further 
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investigations utilizing shotgun metagenomic sequenc-
ing are warranted to unravel the mechanisms underlying 
CAGs and CRC.

In summary, our research will deepen our understand-
ing of the interactions among multiple bacteria and 
offer insights into the potential mechanism of NT to TT 
transition.
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