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Abstract
Background Carbapenemase-producing Klebsiella pneumoniae (CRKP) presents a significant challenge to 
antimicrobial therapy, especially when compounded by resistance to colistin. The objective of this study was to 
explore molecular epidemiological insights into strains of clinical K. pneumoniae that produce carbapenemases 
and exhibit resistance to colistin. Eighty clinical isolates of CRKP were obtained from Milad Hospital in Tehran, Iran. 
Antimicrobial susceptibility and colistin broth disk elution were determined. PCR assays were conducted to examine 
the prevalence of resistance-associated genes, including blaKPC, blaIMP, blaVIM, blaOXA−48, blaNDM and mcr-1 to -10. 
Molecular typing (PFGE) was used to assess their spread.

Results Colistin resistance was observed in 27 isolates (33.7%) using the Broth Disk Elution method. Among positive 
isolates for carbapenemase genes, the most frequent gene was blaOXA−48, identified in 36 strains (45%). The mcr-1 
gene was detected in 3.7% of the obtained isolates, with none of the other of the other mcr genes detected in the 
studied isolates.

Conclusion To stop the spread of resistant K. pneumoniae and prevent the evolution of mcr genes, it is imperative 
to enhance surveillance, adhere rigorously to infection prevention protocols, and implement antibiotic stewardship 
practices.
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Background
Klebsiella pneumoniae is a Gram-negative bacterium 
(GNB) and a significant pathogen in nosocomial infec-
tions, particularly in intensive care units (ICUs). It is 
responsible for severe infections such as urinary tract 
infections (UTIs), pneumonia, bacteremia, neonatal 
meningitis, and pyogenic liver abscesses. Over recent 
years, the emergence of multidrug-resistant (MDR) and 
extensively drug-resistant (XDR) K. pneumoniae, along 
with the absence of new antibiotics capable of combating 
them, has become a serious global issue [1].

Over the past several years, carbapenem antibiotics 
have served as effective last-line treatments for infections 
caused by MDR Enterobacterales. However, the recent 
emergence of carbapenemase-producing Enterobactera-
les, particularly K. pneumoniae, has been associated with 
higher mortality rates (up to 40–50%), particularly in 
bloodstream infections (BSIs) and ICU admissions. This 
has led to the consideration of colistin as one of the last 
and most effective options for treating carbapenem-resis-
tant K. pneumoniae (CRKP) infections. Nevertheless, the 
observed increase in resistance to this antibiotic indicates 
a worrisome trend that undermines the efficacy of this 
once highly efficient treatment option [2].

In 2015, the discovery of the mobilized colistin resis-
tance (mcr) gene marked a significant development, as it 
was found to confer unique colistin resistance (CLR) in 
Enterobacterales isolated. Subsequent studies have iden-
tified Enterobacterales carrying mcr genes worldwide, 
spanning across livestock, food, and humans populations, 
suggesting the potential for horizontal transmission of 
colistin resistance. This has raised concerns about the 
emergence of pandrug resistance in Enterobacterales. 
Therefore, it remains crucial to continuously and pre-
cisely monitor the emergence and spread of mcr genes 
among bacteria. Variants ranging from mcr-1 to mcr-10 
have been documented to date [3]. The mcr gene medi-
ates resistance to colistin by encoding an enzyme that 
adds phosphoryl ethanolamine to the lipid A present in 
the cell membrane of gram-negative bacteria, resulting in 
an altered lipid A with much lower affinity for colistin [4].

A systematic review and meta-analysis on the preva-
lence of colistin resistance among K. pneumoniae isolates 
in Iran revealed that the pooled prevalence of CLR in 
clinical isolates was 6.9% [5]. However, the rate of CRKP 
was reported to be over 73% in various studies [6, 7]. The 
development of reliable and cost-effective techniques 
for detecting colistin resistance is essential. Simner and 
colleagues introduced the Colistin Broth Disk Elution 
method, which utilizes colistin disks as a source of these 
antibiotics [8].

Additionally, it is imperative to develop and execute 
appropriate studies to bolster antimicrobial resis-
tance programs and furnish additional data to inform 

evidence-based policy decisions [9]. In this regard, 
molecular characterization and genotyping of isolated 
strains of K. pneumoniae from hospital patients, along 
with determining the resistance mechanisms in these 
isolates, would be a helpful survey. This effort becomes 
even more valuable if complemented by an effective tool 
for monitoring and controlling the spread of epidemic-
associated clones between different hospital environ-
ments and investigating the primary sources of bacterial 
contamination. Among the array of molecular methods 
available, pulsed-field gel electrophoresis (PFGE) is cur-
rently recognized as a suitable approach for typing K. 
pneumoniae isolates and tracing their spread [10].

The objective of this study was to investigate the molec-
ular mechanisms underlyingof colistin and carbapenem 
resistance in a collection of XDR CRKP isolated obtained 
from clinical specimens in Tehran, Iran. Additionally, the 
study aimed to describe the clonal relationships among 
these isolates.

Materials and methods
Bacterial isolates
Between August 2020 and February 2021, Milad Hospi-
tal in Tehran isolated a total of 80 non-duplicate strains 
of CRKP from clinical samples of both inpatients and 
outpatients. These strains exhibited resistance to either 
meropenem or imipenem during initial screening. Milad 
Hospital is a tertiary care facility with 1,000 beds, affili-
ated with the Social Assurance Organization. All iso-
lates were obtained from clinical samples, including 
urine, blood, sputum, and tracheal aspirate. The bacterial 
isolates were reidentified as K. pneumoniae using bio-
chemical methods including oxidase, sugar fermentation, 
IMViC, Kliger’s iron agar, nitrate reduction, and motility 
tests [11].

Assessment of antimicrobial susceptibility using the disk 
diffusion method
The susceptibility of CRKP isolates to 11 antibiotics spec-
ified by CLSI M100-Ed31, including ceftriaxone (30 µg), 
tobramycin (10 µg), piperacillin-tazobactam (10 µg), ami-
kacin (30  µg), levofloxacin (5  µg), ceftazidime (30  µg), 
ciprofloxacin (5  µg), gentamicin (10  µg), meropenem 
(10 µg), imipenem (10 µg), and cefepime (30 µg) (MAST 
DISCS™ ID, UK), was determined using the standard 
disk diffusion method [12]. The results were interpreted 
according to the recommended criteria, with standard 
strains Escherichia coli ATCC 25,922 and Pseudomonas 
aeruginosa ATCC 27,853, were used as quality control 
strains for susceptibility testing. In accordance with the 
guidelines of the Centers for Disease Control and Pre-
vention in the United States and the European Centre for 
Disease Prevention and Control, All isolates were identi-
fied as XDR These K. pneumoniae isolates demonstrated 
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resistance to at least one agent in all antimicrobial cate-
gories, with the exception of two or fewer, indicating sus-
ceptibility to only one or two categories [13].

Determination of Minimum Inhibitory Concentration (MIC) 
against Colistin
MIC against colistin was determined using colistin 
(10  µg) discs (Neo-Sensitabs™, Rosco, Denmark) in the 
assay. The colistin broth disk elution method described in 
CLSI guidelines was used for the antimicrobial suscepti-
bility test [12].

Detection of mcr-1 to mcr-10 genes by PCR
Genomic DNA was extracted using the Genomic DNA 
Purification Kit (QIAGEN® Kit, QIAGEN, Germantown, 
MD, USA) following the manufacturer’s instructions. The 
presence of isolates carrying mcr genes was determined 
through PCR amplification and subsequently confirmed 
by sequencing. DNA samples from E. coli SHP45 and E. 
coli KP37, known to carry the mcr-1 and mcr-2 genes, 
respectively, were utilized as positive controls in the 

assay. Additionally, genomic DNA from colistin-suscep-
tible E. coli ATCC 25,922 served as the negative control. 
These strains were sourced from the Iranian Reference 
Health Laboratory. The primers for mcr genes are listed 
in Table 1 [14–18].

Detection of carbapenemase-encoding genes
Multiplex PCR was employed to detect blaNDM, blaIMP, 
blaVIM, blaKPC, and blaOXA-48. The positive and nega-
tive controls for PCR experiments were K. pneumoniae 
ATCC strain BAA-1705 and K. pneumoniae ATCC BAA-
1706, respectively. PCR experiments used the specific oli-
gonucleotide primers listed in Table 1 [19].

Genotyping with PFGE
All isolates were typed using a PFGE technique follow-
ing the PulseNet Standardized Laboratory Protocol [13]. 
The genomic DNA from Salmonella enterica serotype 
Braenderup H9812 digested with XbaI (Thermo Fisher 
Scientific, USA) served as a molecular size marker. DNA 
banding patterns were analyzed using BioNumerics 

Table 1 The list of primers, annealing temperatures, and expected amplicon sizes for molecular detection of mcr genes and 
carbapenemases-producing K. pneumoniae isolates
Gene Sequence TM (°C) Amplicon size (bp) References
mcr-1-F 5- A G T C C G T T T G T T C T T G T G G C-3 55 320  [14]
mcr-1-R 5- A G A T C C T T G G T C T C G G C T T G-3
mcr-2-F 5- C A A G T G T G T T G G T C G C A G T T-3 58 715  [14]
mcr-2-R 5- T C T A G C C C G A C A A G C A T A C C-3
mcr-3-F 5- T T G G C A C T G T A T T T T G C A T T T-3 50 542  [15]
mcr-3-R 5- T T A A C G A A A T T G G C T G G A A C A-3
mcr-4-F 5-  G A T C C G A A G C T G T G T T C T G-3 59 426  [16]
mcr-4-R 5-  G C C A G C A T T G G T A C G C T A G T-3
mcr-5-F 5-  G G T T G G C C G A G A A G A T A A C A-3 59 522  [16]
mcr-5-R 5-  A T G T T G C C A G A A G G T C C A A C-3
mcr-6-F 5-  A G C T A T G T C A A T C C C G T G A T − 3 55 252  [17]
mcr-6-R 5-  A T T G G C T A G G T T G T C A A T C − 3
mcr-7-F 5-  G T C A G T T A C G C C A T G C T C A A-3 59 791  [16]
mcr-7-R 5-  T T C T T G T C G C A G A A C T G T G G-3
mcr-8-F 5-  A A A C T G A A C C C G G T A C A A C G-3 59 943  [16]
mcr-8-R 5-  G C C A T A G C A C C T C A A C A C C T-3
mcr-9-F 5-  G C G G T T G T A A A G G C G T A T G T-3 59 635  [16]
mcr-9-R 5-  C A A A T C G C G G T C A G G A T T A T-3
mcr-10-F 5-  G C A A T A A C C C G A C G C T G A A C-3 53 133  [18]
mcr-10-R 5-  G T A A C G C G C C T T G C A T C A T C-3
blaKPC-F 5- C G T C T A G T T C T G C T G T C T T G-3 55 798  [19]
blaKPC- R 5- C T T G T C A T C C T T G T T A G G C G-3
blaVIM-F 5-  G A T G G T G T T T G G T C G C A T A-3 57 390  [19]
blaVIM-R 5-  C G A A T G C G C A G C A C C A G-3
blaIMP-F 5- GGAATAGAGTGGCTTAAYTC-3 57 232  [19]
blaIMP-R 5- TCGGTTTAAYAAAACAACCACC-3
blaNDM-F 5- G G T T T G G C G A T C T G G T T T T C-3 52 621  [19]
blaNDM-R 5-  C G G A A T G G C T C A T C A C G A T C-3
blaOXA−48-F 5- G C G T G G T T A A G G A T G A A C A C-3 55 438  [19]
blaOXA−48-R 5-  C A T C A A G T T C A A C C C A A C C G-3
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software, version 6.6 (Applied-Maths, Sint-Martens-
Latem, Belgium). The analysis employed the Dice correla-
tion coefficient and the UPGMA (unweighted pair group 
method using an arithmetic mean algorithm) method 
with a band tolerance and optimization set at 1.5%.By 
comparing the PFGE results and applying the criteria of 
Tenover et al. based on the number of observed band dif-
ferences, a cutoff value of 80% similarity overall was set 
for related isolates [20].

Results
Sample Collection
Out of the 80 CRKP isolates collected from various wards 
of Milad Hospital in Tehran, Iran, the majority of isolates 
were from urine (54, 67.5%), followed by blood samples 
(14, 17.5%), and both sputum and tracheal aspirate each 
accounted for 6 isolates (7.5%). The prevalence of CRKP 
in different hospital wards is depicted in Fig. 1. The ICU 
ward had the highest rate, with 25 isolates (31.2%), while 
surgery and emergency wards each had three isolates 
(3%), showing the lowest rates, respectively. Additionally, 
61.2% (n = 49) of the isolates were from female patients, 
while 38.8% (n = 31) were from male patients. The mean 
age of patients with these isolates was 49.61 ± 3 (between 
1 and 93 years). Among the 80 patients, the majority, 71, 
were inpatients, with only 9 being outpatients.

Antimicrobial susceptibility pattern of K. pneumonia
K. pneumoniae isolates exhibited a high resistance rate to 
ceftriaxone, ciprofloxacin (98.7%). The lowest resistance 
rates of all these isolates were observed with amikacin 
(47.5%). Resistance to other antibiotics was observed 
above 90%, as shown in Fig.  2. Among the 80 isolates, 
33.7% (n = 27) were identified as CLR by colistin disk elu-
tion method.

Detection of mcr genes
In this experiment, we used multiplex PCR screening to 
determine the prevalence of the mcr-1 to mcr-10 genes 
among the clinical K. pneumoniae isolates (Fig.  3). The 
mcr-1 gene was detected in 3.7% (3 out of 80) of the 
obtained isolates. None of the studied isolates were found 
to carry the mcr-2 to mcr-10 genes. Table 2 indicates that 
there were no significant correlations between the CLR 
isolates and the presence mcr-1 genes.

Molecular analysis of carbapenemase genes
The isolates were examined by multiplex PCR for bla-
OXA-48, blaVIM, blaKPC, blaIMP, and blaNDM, and confirmed 
by sequencing (Fig.  4). The frequency of carbapen-
emase genes is displayed in Table 3. The gene encoding 
the OXA-48 enzyme was the most prevalent among the 
studied isolates and was identified in 36 strains (45%). It 
was followed by blaVIM, blaIMP, blaKPC, and blaNDM, in 14 

(17.5%), 12 (15%), 10 (12.5%), and 4 (5%) strains, respec-
tively. Additionally, co-existence of blaOXA-48 and blaKPC, 
and blaOXA-48, blaKPC, and blaVIM genes were observed in 
3 strains (3%) and 1 strain (1.2%), respectively. Further-
more, the results indicated no significant correlations 
between the CLR isolates and the detected carbapen-
emase genes.

Population of K. pneumoniae strains
A clonal analysis was performed on the 80 CRKP strains 
isolated from Milad hospitals. The PFGE dendrogram 
revealed four clusters based on an 80% similarity level, 
designated Clusters A to D, with the highest number of 
isolates belonging to Cluster A and the lowest number to 
Cluster C. (Fig. 1). A total of 40, 26, 4, and 10 CRKP iso-
lates were identified in Clusters A, B, C, and D, respec-
tively. Isolates from Clusters B, and D were obtained from 
different wards, while Cluster A isolates were primarily 
from the ICU (isolates no. 20, 32, 44, 5, 55, 67, 8, 61, 56, 
68 ,57, 59, 17, 29, 41, 79 ,64, 63, 14, 76, 13, 16, 54, 66, and 
52). Additionally, Cluster C consisted of clinical isolates 
from the internal ward under study. Furthermore, look-
ing at pulsotypes, it was evident that each pulsotype had 
a similar antibiotic sensitivity pattern and carbapenemase 
genes. The most frequently detected carbapenemase gene 
was blaOXA-48. PFGE profiles demonstrated that the mcr-
1-harboring K. pneumoniae was found in pulsotype P10 
of Cluster A in the ICU and CCU wards. All of these 
isolates exhibited identical PFGE patterns and a 100% 
resistance profile to all antibiotics in our study except for 
tobramycin and gentamicin, and harbored the blaOXA-48 
and blaKPC genes.

Discussion
In recent decades, the escalating prevalence of antibiotic-
resistant GNB, particularly Klebsiella spp., has emerged 
as a significant global health threat, particularly within 
ICUs. CRKP stands out as the most frequently impli-
cated microorganism causing nosocomial infections. The 
global increase in multidrug-resistant K. pneumoniae 
strains has led to increase the use of colistin to treat these 
infections, resulting in the emergence of colistin resis-
tance worldwide [21, 22]. An important consideration 
in the management of nosocomial infections caused by 
K. pneumoniae are periodic surveillance to identify the 
resistant strains, optimizing available infection control 
policies, and treatment options in different areas of hos-
pitals [23].

The objective of this study was to investigate the 
molecular mechanisms underlying colistin and carbape-
nem resistance among a collection ofXDR CRKP isolated 
from clinical specimens in Tehran, Iran. Additionally, the 
study aimed to describe the clonal relationships among 
these isolates. The utilization of molecular methods, 
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Fig. 1 The clustering results of the 80 carbapenem-resistant K. pneumoniae (CRKP) isolates, determined by PFGE patterns following digestion with the 
XbaI enzyme, were correlated with the presence of mcr, Carbapenemase genes and antibiotic resistance profiles. The information of strain is listed to the 
right of the patterns. The four PFGE cluster (A), (B), (C), and (D) are represented by rectangles. Full-length gels are presented in Supplementary Figs. 1, 2, 
3, 4 and 5
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Fig. 3 The electrophoresis analysis using (2%) agarose gel for the detection of mcr − 1 genes, and the M: DNA ladder 100 bp; lanes (1) is a negative control, 
lanes (2) is a positive control, lanes (3): a K. pneumoniae clinical isolate

 

Fig. 2 Antimicrobial resistance pattern of 80 K. pneumoniae. TM: Tobramycin, CRO: Ceftriaxone, TZP: Piperacillin/tazobactam, AK: Amikacin, LVX: Levo-
floxacin, CAZ: Ceftazidime, CIP: Ciprofloxacin, GM: Gentamicin, MEM: Meropenem, IPM: Imipenem, FEP: Cefepime, CS: Colistin
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particularly PFGE, has proven invaluable in comprehend-
ing the epidemiological aspects of such infections and 
identifying their sources. In our study, PFGE served as 
the molecular typing method, revealing a high genomic 
relatedness among CRKP isolates. Epidemiological inves-
tigations such as PFGE are essential for identifying bac-
terial isolate outbreaks and transmission among patients, 
as well as within hospital wards. Additionally, PFGE 
plays a crucial role in obtaining important information 
on resistance transmission through the dissemination of 
clonal complexes worldwide [24].

The reported colistin-resistant rate in Iran is approxi-
mately 11.6% [25]. However, data from neighboring 
countries indicate that colistin resistance ranges from 0 
to 31.7 [26]. These discrepancies between reports could 
stem from variations in the methods used to study resis-
tance, the availability of colistin in healthcare settings, 
inadequate infection control programs, and increased 
utilization of colistin in clinical settings. Consistent with 
expectations for colistin-resistant isolates in our study, 
the majority also exhibited resistance to other clinically 
relevant antimicrobial agents. [27, 28]( Fig. 1).

Isolates carrying mcr-1 genes exhibited resistance 
to colistin by the colistin broth disk elution method 

(MIC ≤ 4 mg/L), and remarkably, all of these isolates dis-
played identical PFGE patterns, indicating their origin 
from a single clone. Remarkably, findings from the cur-
rent study indicate that mcr-1- negative K. pneumoniae 
isolates displayed substantial colistin resistance. This 
observation aligns with previous studies which have 
shown that K. pneumoniae strains with chromosomal 
mutations in the mgrB gene also exhibit elevated levels 
of colistin resistance [29, 30]. Critical alterations in mgrB, 
such as disruptions in the promoter or coding sequence, 
are believed to result in the silencing of the gene or the 
generation of truncated forms of mgrB. Consequently, 
the inactivation of mgrB by any of these occurrences 
leads to the activation of the PhoP/PhoQ system, which 
subsequently activates the PmrA response regulator. This 
activation of PmrA is responsible for modifying the lipo-
polysaccharide, which is the target of polymyxins [31]. 

Table 2 The frequency of the mcr-1 gene among phenotypically 
colistin-resistant isolates (N = 27)
Gene Number Percentage P value
mcr-1 3/27 9% > 0.05

Table 3 Prevalence of carbapenemase genes among isolates 
(N = 80)
Gene Number Percentage
blaOXA− 48 36 45%
blaVIM
blaIMP

16
12

17.5%
15%

blaKPC
blaNDM

10
4

12.5%
5%

blaVIM+blaKPC 3 3%
blaOXA− 48+blaKPC 3 3%
blaVIM+blaOXA− 48+blaKPC 1 1.2%

Fig. 4 PCR results for carbapenemase-encoding genes; M: DNA ladder 100 bp, lanes (1) is a negative control, lanes (2) is a positive for blaKPC (798 bp), 
lanes (3): positive for blaVIM (390 bp), lanes (4): positive for blaOXA−48 (438 bp), lane (5): positive for blaIMP, lane (6): positive for blaNDM, lane (7): positive for 
blaIMP and blaNDM
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Previous investigations have indicated that the preva-
lence of mcr-1 in Enterobacterales ranges between 0.1 
and 1% [32, 33]. In Iran, the widespread utilization of 
colistin in clinical practice, primarily due to the dissemi-
nation of carbapenemase-producing Enterobacterales, 
has led to the selection of multidrug-resistant bacteria in 
hospital settings [34]. Although these findings suggest a 
low prevalence of the mcr-1 gene among CRKP isolates, 
regular surveillance efforts are crucial to continually 
assess the epidemiology of mcr-1 among CRKP strains.

In this study, out of a total of 54 urine samples col-
lected from hospitalized patients, 38 (70.4%) were from 
female patients and 16 (29.6%) were from male patients. 
Therefore, the results of the present research, like many 
previous studies, show that women are more susceptible 
to urinary tract infections with K. pneumoniae than men 
[35].

In our study, PFGE analysis revealed the presence of 
four clusters of related strains and 29 pulsotype strains. 
These findings indicate low diversity, suggesting a clonal 
population structure characterized by continuous 
exchange of K. pneumoniae strains among patients within 
the same and different hospital wards. This pattern aligns 
with previous epidemiological studies conducted in Iran, 
which revealed frequent transmission of K. pneumoniae 
strains among patients within medical centers. Addition-
ally, our results are consistent with other epidemiological 
studies demonstrating a polyclonal population structure 
of K. pneumonia [36]. Within our study, we observed 
multiple clones simultaneously circulating and persisting, 
contributing to the endemic presence of K. pneumoniae 
within our hospital, despite the implementation of infec-
tion control measures such as hand hygiene, coloniza-
tion surveillance among high-risk patients, and contact 
precautions.

In this study, based on the results of PFGE analysis, 
all CRKP isolates within the largest cluster (Cluster A) 
carring the blaOXA−48 gene. The OXA-48 gene, a class 
D carbapenemase, is situated within a composite trans-
poson known as Tn1999. This gene is bordered by the 
carbapenemase gene and facilitates the mobilization of 
an intervening DNA segment. Studies have shown that 
blaOXA−48-carrying plasmids enable both clonal and hori-
zontal transfer, thereby facilitating transmission between 
patients and healthcar workers. The presence of Clus-
ter A suggests continuous exchange of K. pneumoniae 
strains not only within single hospital wards but also 
between different hospital wards. This emphasizes the 
role of widespread dissemination within a hospital set-
ting [37].

In Cluster A, one isolate (K58) from the internal ward 
exhibited a band pattern resembling those from the ICU, 
suggesting a potential transfer of agents between the ICU 
and internal ward. Remarkably, our study is reported 

the Co-existence of mcr-1, blaOXA-48 and blaKPC genes 
in Cluster A. A matter of concern as such plasmids pos-
sess a significant risk of inter- and intra- wards dissemi-
nation in the hospital. Therefore, strict epidemiological 
surveillance, infection control measures, and antibiotic 
stewardship are required to curb this menace of colistin 
resistance from dissemination.

Cluster B, comprising three urine isolates (K25, 27and 
42) from internal ward, along with one urine isolate 
(K39), one sputum isolate (K37), and one trachea aspirit 
isolates (K43) from emergency ward displayed a simi-
lar resistance and carbapenemase gene pattern (blaIMP). 
These findings strongly indicate the likelihood of inter-
hospital transfer among patients within the internal and 
emergency wards.

Notably, isolates within Cluster C demonstrated an 
identical antimicrobial susceptibility profile and har-
bored the carbapenemase gene. Cluster C isolates shared 
an identical antimicrobial susceptibility profile and car-
ried the blaNDM gene. This implies that these isolates 
were probably introduced to the ward through patients, 
clients, or medical staff. The genetic persistence within 
this cluster likely facilitated bacterial survival, coloniza-
tion, and spread.

Three isolates in Cluster D were from Pediatric wards. 
Two isolates were associated with outpatient cases exhib-
ited similar resistance patterns, carried carbapenemase 
genes (blaKPC), and shared identical genetic patterns. An 
important observation within this cluster was that iso-
lates from both outpatient and inpatient wards showed 
comparable band patterns.This suggests the widespread 
transmission of strains across various hospital wards, 
potentially facilitated by outpatients and employees 
working outside the hospital. Therefore, if insufficient 
attention is given to controlling these strains, there is a 
risk of encountering a high rate of potential epidemics in 
the future. This serves as a serious warning for physicians 
and the infection control team.

Given the importance of investigating the molecular 
epidemiology of K. pneumoniae, numerous studies have 
been conducted worldwide. For instance, studies con-
ducted in India on the carbapenemase-positive K. pneu-
moniae isolates [38] and in Iran on ESBL K. pneumoniae 
isolates revealed five and four clusters, respectively [39].

In contrast, an Iranian study on carbapenemase-posi-
tive K. pneumoniae isolates collected from various wards 
of a reference hospital. Their PFGE analysis revealed 11 
clusters [20]. However, compared to our recent study, a 
significant disparity in genomic patterns observed may 
be attributed to the wide distribution of samples and the 
diverse origins of the strains.

In another study conducted in Iran, an analysis of 165 
K. pneumoniae strains isolated from diverse samples 
revealed 17 clusters through PFGE analysis, with an 80% 
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similarity rate [36]. In this study, the genetic diversity 
among isolates was high; one reason for this could be the 
diversity of sample sources and because our samples were 
from diverse sources.

Conclusion
Our findings indicate that molecular methods, such as 
PCR, offer a rapid and sensitive approach for detecting 
genes associated with antibiotic resistance, including mcr 
and carbapenemase genes. Additionally, using methods 
such as PFGE to analyze the clonality of resistant patho-
gens and investigate outbreaks of healthcare-associated 
infections can aid in identifying possible routes of dis-
semination and persistence of resistance among hospital-
ized patients.

Surveillance of carbapenem and colistin resistance 
prevalence in Iran is imperative. Furthermore, new thera-
peutic strategies, including the re-evaluation and utiliza-
tion of older drugs, should be assessed and implemented 
in the country.
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