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Background
The genus Mycobacterium consists of more than 200 
species that are divided into three main groups [1], 
including Mycobacterium tuberculosis complex (MTBC), 
Mycobacterium leprae, and non-tuberculous mycobac-
teria (NTM). M. tuberculosis (MTB) is still a significant 
concern worldwide despite the many advances in diag-
nostic techniques and treatment. According to the World 
Health Organization (WHO), approximately 9.9  mil-
lion people become sick with TB globally, equivalent to 
127 cases per 100,000 population in 2020 [2]. On the 
other hand, NTM infections have also grown signifi-
cantly worldwide and have become essential pathogens 
[3]. These ubiquitous organisms can cause infections in 
various body sites such as pulmonary disease, skin and 
soft tissue infections, lymphadenitis, bone infection, 
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Abstract
The Non-tuberculous mycobacterial (NTM) isolates should be distinguished from tuberculosis and identified at 
the species level for choosing an appropriate treatment plan. In this study, two molecular methods were used 
to differentiate NTM species, including a new designed High Resolution Melting (HRM) and Multilocus Sequence 
Analysis (MLSA). Seventy-five mycobacterial isolates were evaluated by sequencing four genes ( MLSA) and a HRM 
assay specifically targeting atpE was designed to rapidly and accurately identify and differentiate mycobacterium 
species. Out of 70 NTM isolates, 66 (94.3%), 65 (92.9%), 65 (92.9%) and 64 (91.4%) isolates were identified to the 
species level by PCR of atpE, tuf, rpoB and dnaK genes. We could identify 100% of the isolates to the species level 
(14 different species) by MLSA. By using HRM assay, all NTM isolates were identified and classified into eight groups, 
in addition, Mycobacterium tuberculosis and Nocardia were also detected simultaneously. The MLSA technique was 
able to differentiate all 14 species of NTM isolates. According to the results, the HRM assay is a rapid and beneficial 
method for identifying NTM, M. tuberculosis (MTB), and Nocardia isolates without sequencing.
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disseminated disease, and otitis media [4–6]. As MTBC 
can also invade multiple organs of the body [7], there-
fore, differentiating MTBC from NTM is very impor-
tant because the treatment and medication regimen and 
their drug sensitivity are different, even within the closely 
related species of NTM [8–10]. According to the Ameri-
can Thoracic Society (ATS) guideline, the NTM isolates 
obtained from clinical specimens should be identified at 
the species level for patients treatment management [11].

Identifying NTM isolates at the species level using 
traditional methods based on culture and biochemical 
tests is cumbersome, time-consuming, and usually leads 
to ambiguous results [12]. It seems unavoidable to use 
molecular tests such as PCR with gene sequencing for a 
more specific and reliable diagnosis of Mycobacteria [13]. 
Recent studies show that performing PCR-sequencing 
with a single target causes non-differentiation of closely 
related species [14–16].

Therefore, using several housekeeping genes and Mul-
tilocus Sequence Analysis (MLSA) method based on con-
catenated sequences to diagnose Mycobacterium species 
is one of the ways to overcome discrimination limitations 
[17–19]. The high-resolution curve melting (HRM) assay 
is a method for identifying Mycobacterial species. The 
assay follows Real-Time PCR in a single tube and is based 
on analyzing fluorescence curves produced by labeled 
dye binding to double-stranded DNA during strand dis-
sociation events in the melting phase. This method is 
used to identify single nucleotide polymorphisms (SNPs), 
genotyping, nucleic acid methylation, and species iden-
tification [20–22]. In this study, we evaluated Real-Time 
PCR-HRM assay for identification and differentiation of 
different mycobacterial species, MLSA (concatenate the 
four genes) was used as the gold standard for molecular 
diagnosis of Mycobacterial species.

Materials and methods
In total eighty isolates including seventy-five mycobac-
terial isolates (M. kansasii, M. fortuitum, M. simiae, 
M. avium, M. abscessus, M. porcinum, M. paraintra-
cellular, M. intracellular, M. yongonense, M.gordonae, 
M.paragordonae, M.pulveris, M. conceptionense, M. len-
tiflavum, M. tuberculosis complex ) and five clinical iso-
lates of N. nova were selected from the archive of samples 

collected from patients referred to the selected TB Ref-
erence Centres of Tehran and Ahvaz, Iran, in a 2 year 
period from April 2021 to April 2023. The preliminary 
proposal of the study was approved by the Institutional 
Ethics and Review Board (IR.AJUMS.REC.1399.033) of 
the Ahvaz Jundishapur University of Medical Sciences, 
Iran. All isolates were cultured on the Löwenstein-
Jensen (LJ) medium [23]. The DNA of the colonies was 
extracted by a High Pure PCR Template Preparation Kit 
(Roche-Germany), according to the manufacturer’s rec-
ommendations. The extracted DNA was stored at -20 °C 
until PCR amplification. The reference strains of N. nova 
CCUG 70,657, M. tuberculosis H37Rv, M. fortuitum 
ATCC 49404T, M. abscessus ATCC 23,003, M. avium 
ATCC 25,291, and M. kansasii ATCC 12478T were used 
as control strains in all stages of the study.

Multiple sequence alignment
All 80 isolates were evaluated by PCR targeting four dif-
ferent genes of rpoB [24], tuf [25], dnaK [26], and atpE 
[27] was performed to identify all isolates to species level 
using the primers listed in Table  1. The final volume of 
DNA amplification reaction for individual genes tar-
gets was 25 µl and consisted of 10X PCR buffer, 1.5 mM 
MgCl2, 10 mM dNTPs, 0.5 µM of each primer, 1.5 U of 
Super Taq™ DNA polymerase (Roche, Germany), and 2 µl 
of template DNA. The PCR program was performed as 
below: initial denaturation at 95 °C for 5 min, followed by 
32 cycles of denaturation at 95  °C for 45 s, annealing of 
specific primers at an appropriate temperature (Table 1) 
for 45 s, extension at 72 °C for 1 min, and final extension 
at 72 °C for 5 min. The PCR products were separated by 
electrophoresis on a 2% agarose gel.

The amplified fragments of rpoB, tuf, dnaK, and atpE 
genes were sequenced and analyzed in GenBank (http://
www.ncbi.nlm.nih.gov/BLAST/) to initial association 
with reference strains. The sequences related to each gene 
entered into the jPhydit program separately and aligned 
with standard NTM strain sequences. The aligned nucle-
otide sequences of rpoB, tuf, dnaK, and atpE genes were 
concatenated and analyzed by this software and MEGA 
(Molecular Evolutionary Genetics Analysis) software ver-
sion 6.0 [28, 29].

Table 1 Primers used for PCR
gene Primers Product size Anealing temp
rpoB F:5’- G G C A A G G T C A C C C C G A A G G G-3′

R:5’- A G C G G C T G C T G G G T G A T C A T C-3′
723 bp 59ºC

tuf T1 5’- C A C G C C G A C T A C A T C A A G A A-3’
T2 5’- G A A C T G C G G A C G G T A G T T G T-3’

652 bp 48 ºC

dnaK dnaKF1: 5’- C T G A C C A A G G A C A A G A T G G C-3′
dnaKR1: 5’- T C G A T C A G C T T G G T C A T C A C-3′

451 bp 56ºC

atpE FatpE 5′-CGGYGCCGGTATCGGYGA-3′
RatpE 5′-CGAAGACGAACARSGCCAT-3′

182 bp 58 ºC

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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Optimization of real-time PCR and high-resolution curve 
melting
Real-Time PCR was carried out using atpE primers [27] 
listed in Table 1. The PCR reaction was performed using 
Type-it HRM PCR Kit (QIAGEN, Germany). Each PCR 
reaction was prepared in a total volume of 25  µl that 
included: a 2X master mix (12.5 µl), each primer (0.7 µl), 
RNase-free water (9.1  µl), and template DNA (2  µl). 
Real-time PCR and HRM were performed using a Rotor-
Gene 6000 (QIAGEN, Germany). The PCR for generat-
ing amplicons for HRM analysis was performed using 
the following conditions: an activation step at 94  °C for 
5 min, 40 cycles of denaturation at 95 °C for 10 s, anneal-
ing at 55 °C for 30 s, and extension at 72 °C for 10 s. The 
HRM analysis follows as temperature increases from 
80 °C to 95 °C at a rate of 0.1 °C per step increments every 
2 s, with persistent fluorescence detection. The post-PCR 
HRM curve analysis was carried out using Rotor-Gene 
6000 Series Software 1.7.

Results
PCR results revealed that all mycobacterium isolates 
were positive for rpoB, tuf, dnaK, and atpE targets. The 
sequences of all four genes were entered into the jPhy-
dit program separately after being aligned with standard 
strain sequences. For MLSA analysis, all four aligned 
nucleotide sequences of genes were concatenated and 
entered into the jPhydit software after aligning with stan-
dard strain sequences. The results obtained from PCR 

of genes rpoB, tuf, dnaK, and atpE and as well as MLSA 
results are listed in Table 2.

The HRM assay in this study was designed by a frag-
ment of 182 bp of the atpE gene to identify 80 clinical iso-
lates. Each isolate showed a specific melting temperature 
and plot pattern. Mycobacterium isolates are differenti-
ated by more than ± 0.2 relative fluorescence unit (RFU) 
cut-offs, while isolates with less than ± 0.2 RFU were clas-
sified into one group. According to these criteria, isolates 
were classified into 10 groups. M. abscessus and M. para-
gordonae with 87.3  °C were placed together in group (I) 
M. lentiflavum with 87.5  °C was placed in group (II) M. 
kansasii, M. fortuitum, M. avium with 88.0 ± 0.1 °C were 
placed group (III) M.pulveris with 88.2  °C was placed 
in group (IV) M. gordonae, M. yongonense, M. intracel-
lulare, and M. paraintracellulare with 88.4 ± 0.1  °C were 
placed together in group (V) M. conceptionense with 
88.6 °C was placed in group (VI) M. simiae with 88.8 °C 
was placed in group (VII) M. porcinum with 89.0 °C was 
placed in group (VIII) M. tuberculosis with 87.8  °C was 
placed in group (IX) N. nova with 90.0 °C was placed in 
group X (Fig. 1).

Discussion
Identifying and differentiating of NTM species from 
MTBC members is crucial because most NTM iso-
lates are inherently resistant to anti-TB drugs and even 
though, the duration of treatment for NTM is also differ-
ent. Differentiation between these two groups are diffi-
cult by traditional methods, therefore, in areas where TB 

Table 2 identification of clinical isolates
isolates Identification by

rpoB dnaK tuf atpE MLSA

D M D M D M D M D M
M. kansasii 5 0 5 0 5 0 5 0 5 0
M. fortuitum 5 0 5 0 5 0 5 0 5 0
M. simiae 5 0 5 0 5 0 5 0 5 0
M. avium 5 0 5 0 5 0 5 0 5 0
M. abscessus 5 0 5 0 5 0 5 0 5 0
M. porcinum 5 0 5 0 5 0 5 0 5 0
M. paraintracellulare 5 0 4 1 5 0 2 3 5 0
M. yongonense 5 0 3 2 2 3 5 0 5 0
M. intracellulare 3 2 5 0 5 0 5 0 5 0
M. paragordonae 5 0 4 1 5 0 5 0 5 0
M. gordonae 4 1 4 1 3 2 5 0 5 0
M. lentiflavum 5 0 5 0 5 0 5 0 5 0
M. conceptionense 5 0 5 0 5 0 4 1 5 0
M.pulveris 3 2 4 1 5 0 5 0 5 0
M. tuberculosis 5 0 5 0 5 0 5 0 5 0
N. nova 5 0 5 0 5 0 5 0 5 0
Total 75 5 74 6 75 5 76 4 80 0
D: differentiated to the species level

M: Not differentiated to the species level
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is endemic, the NTM infections are misdiagnosed as TB 
and the agent is reported as MTB [30, 31]. According to 
the ATS guideline, the clinical NTM isolates should be 
identified at the species level for choosing an appropri-
ate treatment plan [11]. Appropriate and rapid molecular 
diagnostic methods for the identification of mycobacte-
rial species should be developed to avoid unnecessary 
treatment and delay in appropriate treatment regimen.

In this study, four genes tuf, rpoB, dnaK and atpE were 
used as targets in PCR-sequencing method. The three 
genes tuf, rpoB, and dnaK were introduced as the high-
est power to detect and distinguish Mycobacterium spe-
cies in previous studies (24,25,26), and the atpE gene 
was used in this study because it was introduced as a 
new identification tool (27). seventy NTM isolates were 
identified by rpoB, dnaK, tuf, and atpE genes using the 
PCR-sequencing method. Sixty five out of 70 NTM iso-
lates were well identified by the rpoB gene, and 5 (7.1%) 
isolates included 2 (2.9%) M. intracellulare, 1(1.4%) M. 
gordonae and 2 (2.9%) M .pulveris weren’t well differenti-
ated. Sixty four isolates were well identified by the dnaK 
gene, but 1 (1.4%) M. paraintracellulare, 2 (2.9%) M. yon-
gonense,1(1.4%) M. paragordonae, 1 (1.4%) M. gordonae, 
and 1 (1.4%) M .pulveris weren’twell differentiated. Sixty 
five out of all NTM isolates were well identified by the 
tuf gene, and 3 (4.28%) M. yongonense and 2 (2.9%) M. 
gordonae weren’t well differentiated. The atpE gene was 
able to differentiated 66 (94.3%) of 70 NTM isolates from 
each other correctly but this fragment couldn’t correctly 

distinguish 3 (4.28%) M. paraintracellulare and 1 (1.4%) 
M. conceptionense. N. nova and M. tuberculosis complex 
isolates were identified by 4 genes.

The aligned nucleotide sequences of rpoB, tuf, atpE, 
and dnaK were concatenated to increase the identifica-
tion and differentiation of clinical mycobacteria. Based 
on the maximum similarity, 14 species (100% isolates) 
were identified. In another study, Kim et al. used 3 PCR 
targets, 16Sr RNA, hsp65 and rpoB genes and improved 
their results by 97.3% using MLSA [32]. The difference 
between the results and our study may be due to dif-
ferences in the isolates studied and used fewer targets. 
Hashemi et al. used four genes, including 16SrRNA, rpoB, 
hsp65 genes, and ITS region, and could identify all spe-
cies by MLSA (18). Similar to our study, they were able 
to distinguish all species. MLSA has also been shown to 
successfully identify clinical mycobacterium isolates in 
other studies [29, 33].

In this study, the HRM assay was designed by an 
atpE fragment to identify 70 NTM isolates. All NTM 
isolates were classified into eight HRM groups. Each 
group showed a specific melting temperature from 87.3 
to 89.0  °C. In this method, M. tuberculosis with 87.8  °C 
melting temperature was placed separately in group IX. 
Also, N. nova could be identified and differentiated from 
Mycobacterium species by this method, and with 90.0 °C 
was placed in group X.

Discrimination of closely related species of Mycobac-
terium by traditional culture and phenotypic methods is 

Fig. 1 Normalized melting curves of atpE, illustrating the high-resolution melting (HRM) for identification of Mycobacterium isolates and N. nova isolate
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very tedious and ambiguous. On the other hand, PCR-
Sequencing based on single target also does not have the 
ability to completely differentiate the species from each 
other. Due to its very high identification and differentia-
tion of clinical mycobacteria, the MLSA technique has 
recently been recognized as the molecular standard in the 
diagnosis of non-tuberculous mycobacteria, but due to 
its long process including multi-gene PCR, and sequenc-
ing of individual genes, building a concatenated chain of 
several genes and its analysis are practically only used in 
the research field. But the HRM assay to identify myco-
bacterium species has clinical application. The high speed 
and proper accuracy of this method distinguish many 
species in less than 3 h. One of the advantages of HRM 
assay is the ability to separate NTM from TB simultane-
ously, which is very useful and vital. A number of clinical 
specimens referred to specialized TB centers are actually 
specimen from Nocardia infection because clinical and 
radiological findings are not specialized. On the other 
hand, laboratory tests including microscopic smears and 
culture may be wrongly identified as mycobacterium. 
Some patients are even mistakenly treated with anti-
mycobacterial drugs and are interpreted as drug-resistant 
tuberculosis due to lack of proper treatment [34]. There-
fore, proper diagnosis of Nocardia from Mycobacterium 
is very important. Simultaneous differentiation of Nocar-
dia from Mycobacterium species is another extraordinary 
advantage of this method, which quickly identifies the 
species causing the infection and determines the treat-
ment line of the disease. The low price of real-time PCR-
HRM assay compared to other methods like probe-based 
real-time PCR is a great advantage. On the other hand, 
in this method, unlike probe-based real-time PCR, there 
is no need to design a specific probe and primer for each 
species separately.

The real-time PCR method has been used to detect 
and identify Mycobacterium isolates, which can identify 
a maximum of three to four species in a reaction tube 
[35–37]. In this study, we designed a real-time PCR-
HRM assay, which could successfully identify the clinical 
mycobacterial species, including M. tuberculosis, M. for-
tuitum, M. kansasii, M. simiae, M. avium, M. abscessus, 
M. yongonense, M. intracellulare, M. paraintracellulare, 
M. gordonae, M. porcinum, M. paragordonae, M. lentifla-
vum, M. conceptionense and M. pulveris in 9 HRM group. 
Issa et al. evaluated the HRM assay using 16 S rRNA as 
the target gene for differentiation of Mycobacterium iso-
lates. However, they could not identify some common 
species such as M. fortuitum, M. kansasii, M. simiae, 
and M. abscessus [21]. Chen et al. developed a dual-tar-
get real-time PCR-HRM assay by combined hsp65 and 
16 S rRNA target, and they were able to identify a large 
number of NTM species in 12 HRM groups. The results 
of their study were as good as ours; however, they used 

dual-target, and we targeted a single gene [20]. Perng et 
al. evaluated the real-time PCR-HRM assay targeting the 
16 S rRNA gene and ITS region to detect mycobacterial 
isolates. 101 isolates out of 134 isolates were divided into 
four groups, including M. chelonae group, M. gordonae 
group, M. avium group, and M. fortuitum group; in com-
parison to our study, they could identify fewer distinct 
groups [38].

Conclusion
In conclusion, this study proved that the most reliable 
method for detecting and differentiating mycobacte-
rium isolates from each other is the MLSA method, 
which can differentiate 100% between species. Since this 
method is based on sequencing and needs to construct 
a concatenated sequence and analyze it, MLSA is a dif-
ficult method. In real-time PCR-HRM assay, there is no 
need for gene sequencing and all the analysis is done in 
one tube, so this method very fast and quickly detects the 
Mycobacterium species and determines the treatment 
line.
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