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Abstract
Background Prebiotic fibers are non-digestible substrates that modulate the gut microbiome by promoting 
expansion of microbes having the genetic and physiological potential to utilize those molecules. Although several 
prebiotic substrates have been consistently shown to provide health benefits in human clinical trials, responder and 
non-responder phenotypes are often reported. These observations had led to interest in identifying, a priori, prebiotic 
responders and non-responders as a basis for personalized nutrition. In this study, we conducted in vitro fecal 
enrichments and applied shotgun metagenomics and machine learning tools to identify microbial gene signatures 
from adult subjects that could be used to predict prebiotic responders and non-responders.

Results Using short chain fatty acids as a targeted response, we identified genetic features, consisting of 
carbohydrate active enzymes, transcription factors and sugar transporters, from metagenomic sequencing of in 
vitro fermentations for three prebiotic substrates: xylooligosacharides, fructooligosacharides, and inulin. A machine 
learning approach was then used to select substrate-specific gene signatures as predictive features. These features 
were found to be predictive for XOS responders with respect to SCFA production in an in vivo trial.

Conclusions Our results confirm the bifidogenic effect of commonly used prebiotic substrates along with inter-
individual microbial responses towards these substrates. We successfully trained classifiers for the prediction of 
prebiotic responders towards XOS and inulin with robust accuracy (≥ AUC 0.9) and demonstrated its utility in a human 
feeding trial. Overall, the findings from this study highlight the practical implementation of pre-intervention targeted 
profiling of individual microbiomes to stratify responders and non-responders.
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Introduction
The composition of the human gut microbiome is unique 
to each individual, highly variable even within simi-
lar populations, and resistant to change [1–3]. Thus, in 
clinical trials, dietary interventions directed at improv-
ing health outcomes via modulation of the gut microbi-
ome often result in variable responses. Such studies often 
lead to individuals who react favourably (i.e., respond-
ers) towards the intervention and individuals that either 
do not present a response or present an unfavourable 
response (non-responders) [4–6]. These observations 
suggest that personalized approaches to modulate the gut 
microbiome in a precise and consistent manner may pro-
vide a basis for enhancing responder rates [7, 8].

One such approach is via the consumption of nondi-
gestible oligosaccharides or prebiotic dietary fibers—
substrates that enrich host microorganisms that are 
considered to reduce disease risk and provide benefits to 
the host [9]. Although numerous studies have shown that 
prebiotic fibers enrich for bifidobacteria and can contrib-
ute to host health, responses are highly individualized [4, 
5, 10–12]. Indeed, in several prebiotic trials [6, 13–15], 
non-responder rates (based on both taxonomic and clini-
cal outcomes) of about 50% have been reported.

In general, two main approaches for developing per-
sonalized fiber interventions have been proposed. One 
way would be to design structurally unique fibers whose 
metabolism in the gut is precise and targeted [16]. Alter-
natively, if individual microbiomes were sufficiently inter-
rogated, models can be developed based on microbiome 
features to predict substrates that are likely to elicit the 
expected response [17]. Accordingly, several microbiome 
studies have demonstrated successful selection of predic-
tive biomarkers using machine learning approaches on 
data collected from hundreds to thousands of individu-
als [7, 18, 19]. However, given the wide range of prebiotic 
substrates available and the complexity and individual-
ity of the gut microbiome [20], the ability to predict if an 
individual is likely to benefit from a particular prebiotic 
remains challenging.

Several studies have performed biomarker discovery 
by first stratifying individuals into responder and non-
responder groups based on an observed pre-defined 
diagnostic or clinical response [2, 4, 5, 21]. Then, discrim-
inatory features were identified between groups by com-
paring gut microbial composition in pre-intervention 
fecal samples. Most of these studies have implemented 
a taxonomic approach that, although informative, is lim-
ited by its inability to discern accurate functional differ-
ences between phenotypes [22–24].

Moreover, recent findings suggest that differential 
responses are likely driven by specific strains capable of 
metabolizing different substrates, which cannot be dif-
ferentiated using a purely taxonomic approach [16, 25, 

26]. This is especially relevant for utilization of com-
plex carbohydrates and prebiotic fibers, where carbo-
hydrate active enzymes (CAZymes) of bacterial origin 
play a major role in carbohydrate catabolism [27]. Spe-
cific carbohydrate transporter genes are also required 
to shuttle these substrates and/or their smaller subunits 
across cell membranes prior to intracellular metabolism 
[28–30]. Thus, without the relevant genetic machinery to 
degrade and metabolize a prebiotic, either through direct 
microbe-substrate interactions or through cross-feeding 
reactions, it is highly unlikely that an individual would be 
able to benefit from its consumption.

In this study, we hypothesized that prebiotic respond-
ers share prebiotic-specific carbohydrate degradative 
systems required for effective utilization. Based on the 
well-established role of short chain fatty acids (SCFA) as 
beneficial biomarkers, SCFA production was used here 
as the targeted response. Accordingly, we used a combi-
nation of in vitro fermentations, shotgun metagenomic 
sequencing, and supervised machine learning to develop 
predictive tools to identify, a priori, prebiotic response 
phenotypes. The predictive models were subsequently 
tested and validated in a human feeding trial across three 
well-studied prebiotics, xylooligosaccharides (XOS), 
fructoligosaccharides (FOS), and inulin.

Results
SCFA profiles are dependent on prebiotic type and are 
individualized
A stepwise in vitro fermentation approach was used 
to identify responder and non-responder phenotypes 
based on SCFA production. Accordingly, fermenta-
tions were started by adding fecals slurries to fermen-
tation broth containing one of three prebiotics (FOS, 
inulin, and XOS). Dilution pressure was maintained 
by making 100-fold dilutions every 12  h into fresh fer-
mentation broth with fresh fecal spike-ins. Fermenta-
tions were performed using fecal samples obtained from 
40 individuals, in duplicate, and SCFA concentrations 
were quantified for every subject-prebiotic combination 
across four timepoints. As no significant interactions 
were observed over time, SCFA means across time points 
were used to phenotype subjects either as responders or 
non-responders. Accordingly, acetate made up the high-
est proportion of total SCFA, followed by butyrate and 
propionate (Fig.  1A). Overall, concentrations of acetate, 
butyrate and total SCFA were significantly higher for all 
three substrates compared to the no-prebiotic controls 
(Fig.  1B; Holm-Bonferroni adjusted p < 0.05), However, 
no significant differences in propionate concentrations 
were observed.

Fermentations were also evaluated by relating SCFA 
concentrations to pH and carbohydrate consumption. 
Although most of the terminal pH values ranged between 
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Fig. 1 SCFA production of in vitro fecal fermentations and classification of prebiotic responders and non-responders. (A) Average concentrations of ac-
etate, butyrate, and propionate across four timepoints from 40 fermentations. Samples are arranged according to decreasing sums of acetate and butyr-
ate concentrations. (B) Differences in SCFA production between treatments (ANOVA followed by pairwise t-test; Holm-Bonferroni adjusted *, p < 0.05; **, 
p < 0.01; ***, p < 0.001). Baseline concentrations were subtracted from the measured SCFA concentrations. (C) Correlations between individual SCFA with 
pH and the percentage of fermented carbohydrate. Each data point represents a sample collected after every 12-hour cycle per subject and is an average 
of duplicate experiments. The shaded regions represent 95% confidence intervals. Colors represent the treatments; FOS: blue, inulin; red, XOS: green, NP 
(no prebiotic added as a control): purple. (D) Venn diagram depicting the number of shared responders (R) and non-responders (NR) across each prebi-
otic substrate. (E) Mean difference in acetate and butyrate concentrations between prebiotic-treated samples compared to no-prebiotic controls across 
responders and non-responders (t-test, ****, p < 0.0001). Each data point corresponds to the average value across timepoints for a given fermentation. 
Baseline concentrations were subtracted from the reported sum of SCFA concentrations. Colors correspond to each phenotype; responders: green and 
non-responders: red. The upper and lower hinges of boxplots correspond to the 75% and 25% quantile respectively. The upper whiskers correspond to 
the largest observation less than ‘75th percentile + 1.5 X interquartile range’ while the lower whiskers correspond to the smallest observation greater than 
‘25th percentile – 1.5 X interquartile range’
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4.5 and 7.5, some samples reached as high as pH 9.0, pre-
sumably because alkaline end-produced were produced 
from amino acids by non-responder microbiotas. Acetate 
and butyrate concentrations were inversely correlated 
with pH and positively correlated with carbohydrate con-
sumption while propionate correlated positively with the 
percent of fermented carbohydrate (Fig. 1C). Thus, con-
current with the high and stable production of acetate 
and butyrate across all prebiotic treatments, and signifi-
cant correlations with other fermentation parameters, 
the sum of acetate and butyrate concentrations were used 
as a reliable read-out to assess prebiotic response in the 
in vitro system.

Acetate and butyrate concentrations were compared 
between every prebiotic treatment with parallel nega-
tive controls to assign phenotypes to individual samples 
(Fig. S1). Accordingly, based on the SCFA concentration 
differences between the treatment and control fermen-
tations,15 subjects were classified as responders, and 10 
subjects were non-responders across all three prebiot-
ics. Seven subjects were responders to only one substrate 
and eight subjects were responders towards two sub-
strates (Fig. 1D). On a prebiotic basis, there were 26 XOS 
responders (65.0%), 25 FOS responders (62.5%) and 17 
inulin responders (42.5%), with an average response rate 
of 57.0%. Also, all responders had a significantly higher 
mean difference in acetate and butyrate concentrations 
from controls, compared to non-responders (Fig.  1E). 
Overall, these results demonstrate that SCFA profiles 
varied in response towards both the type of prebiotic and 
the donor fecal sample which could be informative in dis-
cerning between responders and non-responders.

Shotgun metagenomic sequencing reveals distinct 
response-dependent taxonomic and CAZyme profiles
Shotgun metagenomic sequencing was performed on a 
subsample of fifteen subjects across four treatments after 
the 48  h fermentation timepoint  (n = 15 per treatment). 
Although not completely converged, the asymptotic 
shape of the rarefaction curves suggests that the sequenc-
ing depth was sufficient for identifying abundant genes 
or species (Fig.  2A). Pairwise Wilcoxon tests were used 
to determine significant differences between treatments 
across taxa at the genus and species level. At the genus 
level, Bifidobacterium abundance was observed to be 
significantly higher in XOS and FOS fermentations com-
pared to the no prebiotic control (FDR adjusted p < 0.05, 
Fig.  2B, C). Other genera that appeared at high abun-
dance in both the prebiotic and no prebiotic treatments 
included Escherichia, Citrobacter, and Streptococcus. No 
significant differences were found between treatments at 
the species-level.

To further assess the bifidogenic effect of these sub-
strates, qPCR quantification was used to compare 

absolute cell numbers of Bifidobacterium between 
responders and non-responders. The results showed that 
there were significantly higher Bifidobacterium counts 
in responders compared to non-responders across all 
three substrates after fermentation (Fig. 2D). At baseline, 
Bifidobacterium counts were significantly lower in XOS 
non-responders compared to responders. Correlation 
analyses between genus abundance and SCFA concentra-
tions showed positive correlations between Bifidobacte-
rium with acetate (r 0.73, adjusted p-value < 4.4e-8) and 
Clostridium with butyrate (r 0.65, adjusted p-value < 6.2e-
6) (Fig.  2E). Propionate, in contrast, was positively cor-
related with Bacteroides (r 0.47, adjusted p-value 0.011), 
although average propionate concentrations were rela-
tively low (< 1 mM) across all subjects.

Species-level profiles across treatments were visual-
ized using hierarchical clustering of relative abundances 
(Fig.  3A, Fig. S2A). Bifidobacterium species in XOS 
responders were mainly comprised of Bifidobacterium 
longum (16.06%), Bifidobacterium pseudocatenulatum 
(14.54%), and Bifidobacterium adolescentis (13.17%), 
whereas for FOS and inulin responders, Bifidobacterium 
adolescentis was the major Bifidobacterium species (FOS; 
13.05%, inulin; 25.33%) (Fig. S3). These findings sug-
gest that B. adolescentis strains might have functionally 
distinct roles depending on the substrate. In addition, 
the high percentage of Clostridium species in the fruc-
tan responder samples consisted mainly of Clostridium 
perfringens (FOS: 29.17%, inulin: 5.04%), followed by 
Clostridium butyricum (FOS: 1.53%, inulin: 3.48%). C. 
perfringens also made up a high proportion of Clostrid-
ium species in inulin non-responder samples (18.17%). 
Additionally, Streptococcus species appeared to be abun-
dant in all non-responder samples and were mostly 
comprised of Streptococcus pasteurianus (FOS: 34.36%, 
inulin: 14.07%, XOS: 4.61%) and Streptococcus lutetiensis 
(FOS: 19.03%, inulin: 0.25%, XOS: 0.09%).

An overall enrichment of genes associated with Clus-
ters of Orthologous Groups (COG) annotation of car-
bohydrate transport and metabolism was observed in 
prebiotic fermentations compared to no-prebiotic con-
trols (Fig. S2B). Thus, to investigate genes responsible 
for saccharolytic activity in these fermentations, we uti-
lized dbCAN2 to predict and assign genes into CAZyme 
families. Hierarchical clustering of GH families across 
samples provided a visual representation of the abun-
dance and distribution across prebiotic treatments and 
phenotypes (Fig.  3B). In XOS responders, xylan associ-
ated CAZyme families GH43 and GH120 were clustered 
together. In inulin responders, however, GH91 (inu-
linase) clustered with other GH families such as GH26 
(β-mannanase), GH89 (α-N-acetylglucosaminidase), 
GH150 (I-carrageenase), and GH165 (β-galactosidase), 
all of which are not relevant for inulin metabolism 
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according to current annotations. This observation is 
likely a result of an increase in a particular bacterial strain 
or species that also harbours these genes. We further 
observed that the fructan-associated CAZyme family, 

GH32, was not abundant in FOS and inulin responders 
and instead was prevalent in FOS non-responder sam-
ples. This is likely attributed to the size of the GH32 fam-
ily that also includes sucrose-6-phosphate hydrolase, an 

Fig. 2 Shotgun metagenomic sequencing of post-fermentation samples and bifidogenic response. (A) Rarefaction curve displaying the effect of se-
quencing depth on the number of new genes. Each line represents a unique metagenome sample (n = 15). (B) Mean relative abundance of taxonomic 
species at the genus level across samples for each prebiotic treatment. Taxonomic species that are present at less than 0.1% relative abundance are 
grouped as “Others”. (C) Significant differences in relative abundances of Bifidobacterium between prebiotic treatments. Each data point represents a 
metagenome sample (n = 15). (D) Significant differences in Bifidobacterium counts between responders (R) and non-responders (NR) for each prebiotic as 
determine through qPCR (n = 40). Wilcoxon tests were used to determine significant differences in taxa (FDR adjusted *, p < 0.05; **, p < 0.01; **, p < 0.001). 
(E) Correlations between SCFA production with genus relative abundances (FDR adjusted *, p < 0.05; **, p < 0.01; ***, p < 0.001)
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Fig. 3 (See legend on next page.)

 



Page 7 of 18Kok et al. BMC Microbiology          (2024) 24:183 

enzyme commonly involved in sucrose metabolism and 
reported to be present across many taxa.

Discovery and characterization of prebiotic-specific 
carbohydrate genes and carbohydrate gene clusters (CGC)
Differential analysis for all 173,305 predicted genes was 
conducted to identify differentially abundant (DA) genes 
between responders and non-responders for each pre-
biotic treatment (Fig.  3C, D). The number of DA genes 
and DA CAZyme-encoding genes in responders were 
higher compared to non-responders across all treat-
ments (Fig. 3D). Using existing annotations in the CAZy 
database, we first investigated specific GH families and 
subfamilies involved in xylan and fructan degradation 
as listed in Table S2 to obtain a list of substrate-specific 
CAZyme genes. These included GH32 and GH68 for FOS 
and GH32, GH68 and GH91 for inulin. CAZyme fami-
lies involved in XOS degradation included GH8, GH10, 
GH43, GH120, among many others. The number of 
DA substrate specific CAZyme genes were significantly 
higher in responders for XOS.

Genes were further annotated and assigned EC num-
bers with eggNOG-mapper and their respective func-
tions (Table S3). The CAZyme families for FOS and 
inulin have relatively fewer subfamilies and EC numbers 
with most genes denoted as EC 3.2.1.26, corresponding 
to β-fructofuranosidase. For FOS fermentations, thirteen 
GH32 genes were significantly higher in responders and 
nine were significantly higher in non-responders. In inu-
lin fermentations, two GH91 and ten GH32 genes had a 
significantly higher fold change in responders and seven 
GH32 genes were significantly higher in non-responders. 
Two Bifidobacterium GH32-encoding genes; GID_21721 
and GID_93934 were significantly enriched in both FOS 
and inulin responders, implying shared roles in degrada-
tion of both fructans. In addition, multiple S. pasteur-
ianus GH32-encoding genes were enriched in fructan 
non-responders. All FOS and inulin GH32-encoding 
genes that had an increase in fold-change were retained 
as substrate-specific responder-associated genes.

For XOS fermentations, EC assignments revealed 
that many genes were irrelevant to XOS metabolism. 
For example, most of the GH1 and GH3-assigned genes 
were β-glucosidases while most of the GH2-assigned 

genes were β-galactosidases. Other relevant significantly 
enriched genes in responders included one GH8, one 
GH120 and thirteen GH43 encoding-genes, while in 
non-responders, four GH43 encoding-genes were sig-
nificantly higher. Overall, the number of these prebiotic-
specific glycosyl hydrolases were higher in responders 
compared to non-responders across all prebiotics and 
were mostly derived from Bifidobacterium. Based on 
CAZyme assignments and EC number annotations, genes 
that were annotated as β-glucosidase, β-galactosidase, 
β-manosidase, β-N-acetylhexosaminidase and arabi-
nan endo-1,5  L-arabinosidase were removed and a list 
of 38 substrate-specific responder-associated genes was 
retained (Table S4).

Feature selection and primer design
Feature permutation across 100 Support Vector Machine 
(SVM) models with the Radial Basis Function (RBF) ker-
nel was used to rank discriminatory features according to 
order of importance prior to selection of targeted genes 
for absolute quantification (Fig. 4A). Genes belonging to 
Bifidobacterium were ranked highest across all substrates 
with relatively higher abundance in responders compared 
to non-responders. Lower ranking features, however, do 
not indicate that the genes were irrelevant. Instead, this 
could be attributed by their limited presence in only a 
few responder subjects.

We also investigated neighbouring accessory genes to 
assess their role as responder-associated genes for carbo-
hydrate uptake and metabolism in a context-dependent 
manner. These carbohydrate gene clusters (CGC) were 
identified using the CGCFinder functionality in dbCAN2 
and are comprised of CAZyme-genes that are linked to 
sugar transporter genes and other regulatory elements 
(Table S5). Some gene clusters contain several responder-
associated genes. Among the types of transporters iden-
tified were ATP-binding cassette (ABC) transporters, 
major facilitator superfamily (MFS) transporters, and 
phosphotransferase systems (PTS).

Based on the feature permutation results and the over-
all bifidogenic responses taxonomically and function-
ally, the top-ranking Bifidobacterium-derived genes were 
selected as predictive features to distinguish respond-
ers from non-responders. As carbohydrate uptake and 

(See figure on previous page.)
Fig. 3 Targeted selection of candidate prebiotic-associated CAZyme genes identified from fecal metagenomes. A, B) Heatmaps visualizing the hier-
archical clustering of Bifidobacterium species (A) and CAZyme families (B) based on z-score normalization of mean relative abundances obtained from 
metagenomes. Each column corresponds to responder (R) and non-responder (NR) phenotypes across prebiotic treatments. CAZymes that are associ-
ated with FOS, inulin and XOS based on annotations from the CAZy database are annotated with blue, purple and green circles, respectively. Abundances 
of taxonomic species and GH families were standardized across rows and clustered hierarchically according to similar patterns of abundance. C) Flowchart 
of CAZyme gene discovery and annotation. Differential abundant genes were assigned as CAZymes using dbCAN2 and substrate specific genes were 
defined according to CAZyme family annotations that were relevant to the prebiotic of interest. Responder-associated substrate specific genes were se-
lected for feature selection. D) The number of genes associated with responders (R) and non-responders (NR) per substrate are visualized using bar charts 
after each filtering step. Chi-square goodness of fit tests were used to determine significant differences in the number of differential abundant genes 
between responders and non-responders across each prebiotic treatment (Holm-Bonferroni adjusted **, p < 0.01; **, p < 0.001)
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Fig. 4 Feature selection and quantification of prebiotic responder-associated genes for the prediction of prebiotic responder and non-responder phe-
notypes. A) Feature importance comprising of CAZyme-encoding genes enriched in prebiotic responders as determined through feature permutation of 
SVM models. Features are ranked based on mean differences between test and permuted area under the curve (AUC) across 100 different models. Each 
data point represents a calculated difference with colors representing a prebiotic substrate. Data points in black indicates the mean difference with sym-
bols representing taxa. The relative abundance of each gene is also shown here across all three prebiotics. B, C,D) qPCR quantification of Bifidobacterium 
and prebiotic responder-associated genes at baseline for XOS (B), FOS (C) and inulin (D) fermentations. Wilcoxon tests were used to determine significant 
differences between responders and non-responders for each gene (Holm-Bonferroni adjusted *, p < 0.05; **, p < 0.01; ***, p < 0.001). Colors correspond 
to responders (green) and non-responder (red) phenotypes. E) Support vector machine (SVM) models with the Radial Basis Function (RBF) kernel were 
built using either baseline prebiotic genes or a combination of prebiotic genes and Bifidobacterium counts as features. The vertical lines in each boxplot 
represents the median AUC across 100 random permutations per prebiotic
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metabolism require intact genetic machinery to be pres-
ent, genes within entire gene clusters were considered 
for downstream predictive analyses. In total, four XOS 
(XCGC1, XCGC2, XCGC3 and XCGC4) and three fruc-
tan (FCGC1 for FOS; and F/ICGC1 and F/ICGC2 for 
both FOS and inulin) responder associated CGC were 
selected. Unique CGC identifiers were assigned to each 
cluster according to the substrate that it is associated 
with (“X”, “F” or “I”), followed by a number (Table S5). 
Further inspection of these gene clusters revealed that 
XCGC1, XCGC2, XCGC3 and XCGC4 (CGCs for XOS) 
harbored β-xylosidase encoding genes. XCGC4, in par-
ticular, contained 5 ABC transporters and 5 CAZymes, 
including one GH8 gene and one GH120 gene. The clus-
ters that included GID_21721 and GID_93934 were pres-
ent in both FOS and inulin responders and were referred 
to as F/ICGC1 and F/ICGC2, respectively.

Carbohydrate genes are detected at baseline and are 
discriminatory
After identifying the relevant genes and CGC upstream, 
primers were designed to target each gene in all seven 
gene clusters (37 genes; Table S6). The copy number of 
the selected genes in pre-fermentation baseline samples 
of all 40 individuals were determined by qPCR. The 
results demonstrated that the targeted genes were detect-
able at baseline (Fig. 4. B, C,D). The estimated copy num-
ber of each gene was subsequently compared between 
responders and non-responders. Significantly different 
genes between phenotypes were identified within all tar-
geted prebiotic-associated clusters. Interestingly, only 
the transporter genes comprising ABC substrate bind-
ing proteins and permeases in XCGC4 (GID_07943, 
GID_07944, and GID_07946) were significantly different 
between both phenotypes (Fig.  4B). Similarly, the ABC 
substrate binding protein, GID_21719 was the only gene 
in F/ICGC1 that was significantly different between phe-
notypes in both FOS and inulin treatments (Fig. 4C, D).

As noted previously, F/ICGC1 and F/ICGC2 were iden-
tified as responder-associated gene clusters in both FOS 
and inulin treatments. However, although the copy num-
ber of all genes in FCGC1 were significantly higher in 
FOS responders compared to non-responders at baseline, 
this gene cluster was not discriminatory between inulin 
responders and non-responders. Conversely, most of the 
F/ICGC2 genes (5 out of 6) were significantly higher in 
inulin responders (Fig.  4D) compared to non-respond-
ers, while only GID_93938 was significantly different 
for FOS (Fig. 4C). These results imply that each of these 
gene clusters have specialized roles in uptake and degra-
dation of fructans of differing complexity and degree of 
polymerization.

Support vector machine classifiers for prediction of 
response phenotypes
The selected features were used to train RBF SVM classi-
fiers to classify responders and non-responders for each 
prebiotic. There were twelve, nine, and twenty-four genes 
associated with FOS, inulin and XOS response, respec-
tively. For each substrate, SVM models were built using 
features that consisted of either Bifidobacterium prebi-
otic-associated gene copy number only or combined with 
Bifidobacterium counts. Model accuracy was measured 
according to the area under the curve (AUC) (Table S7). 
According to the AUC reported for the models using Bifi-
dobacterium prebiotic-associated genes only, the XOS 
model achieved the highest classification accuracy (train: 
0.95, test: 0.91), followed by inulin (train: 0.93, test: 0.90) 
and FOS (train: 0.82, test: 0.83) (Fig. 4E). In addition, the 
combined use of Bifidobacterium counts and Bifidobacte-
rium prebiotic genes either lowered (XOS, inulin) or did 
not alter (FOS) model accuracy. These results suggests 
that gene features identified from the metagenomes of 
fecal fermentations were predictive of prebiotic response 
phenotypes in vitro, with high accuracy for XOS and inu-
lin treatments.

Xylooligosaccharide model predicts SCFA response in vivo
To test the model in vivo, a blinded pilot clinical feeding 
trial was conducted in healthy human subjects (n = 27). 
During run-in, fecal samples were collected and pre-
biotic prediction features were assayed and used to 
predict responders and non-responders (Fig.  5A). Pre-
biotics were administered according to their predicted 
phenotypes, resulting in seven predicted XOS respond-
ers, seven FOS responders, and five inulin responders. 
All participants received the assigned prebiotic (5  g per 
day) for a period of two weeks. Eight subjects were pre-
dicted to be non-responders for all prebiotics and were 
given XOS and served as a non-responder control group. 
No significant differences in gastrointestinal symptoms 
were reported before and after intervention for any of 
the treatment groups (Table S8). However, three subjects 
reported flatulence scores of 5 and 7 at visit 3 towards 
inulin and XOS, respectively (Table S9). Similarly, there 
were no significant associations found between reported 
dietary habits and response phenotypes (Table S10, S11, 
S12).

Following the in vitro experiments, we evaluated 
changes in the sum of acetate and butyrate in fecal sam-
ples pre- and post-prebiotic intervention to confirm pre-
dicted response phenotypes (Fig.  5B). Using a two-way 
repeated measure ANOVA, significant increases were 
observed in the XOS-responder group, primarily in ace-
tate while significant shifts in SCFA were not observed 
in other treatment groups (Fig. S4; p < 0.05). Therefore, 
overall responder phenotypes were not reflected, in 
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Fig. 5 Prediction and stratification of subjects as prebiotic responders and non-responders in a human feeding study. (A) A feeding trial was conducted 
using a single-blind multi-arm parallel-group stratified design whereby subjects were stratified to different treatment groups according to their prebiotic-
associated gene profiles. Subjects were given prebiotics to consumed for a 2-week period. Green circles represent data that was collected per visit. B, C,D) 
Changes in the sum of acetate and butyrate (B) Bifidobacterium counts (C) and prebiotic-associated gene copy numbers (D) before and after the feeding 
period (paired t-test; *, p < 0.05; **, p < 0.01). Horizontal lines connect data points from samples of the same individual. E) Beta diversity ordination plots 
(PCoA) of Bray-Curtis dissimilarity matrix using either 16S taxonomic profiles or prebiotic-associated gene profiles as features
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vivo, by increased SCFA production, as observed in the 
in vitro fermentations. Taxonomic changes were also 
observed, specifically a consistent increase in Bifidobac-
terium abundance in all subjects within the XOS groups 
(Fig.  5C, Fig. S4B). In contrast, the FOS responder and 
XOS non-responder control group displayed varied and 
individualized changes in Bifidobacterium abundance. 
In addition, the abundance of targeted gene clusters 
was evaluated across samples by summation of the gene 
copy number of each gene within a cluster. A significant 
increase in prebiotic-associated genes in F/ICGC2 and all 
XCGC clusters was also observed in the inulin and XOS 
responder groups respectively (Fig. 5D).

Shifts in microbial diversity between visits were also 
evaluated. No significant changes in alpha diversity 
(Shannon index) were observed between visits or treat-
ments at the end of the intervention period (Fig. S5A, 
B). Beta diversity ordination plots (PCoA) of Bray-Curtis 
dissimilarity matrix demonstrated that the fecal microbi-
ome composition of the same subjects clustered tightly 
through the three timepoints, but separately from other 
subjects, reflecting highly individualized composition 
of the gut microbiome (Fig. S5C-F). Similar ordinations 
using taxonomic information derived from 16S rRNA 
sequencing did not reflect differences between respond-
ers and non-responders (Fig.  5D). Conversely, ordina-
tions with the prebiotic-associated genes as features 
revealed a distinct non-responder cluster consisting of 
samples that did not harbor any targeted prebiotic-asso-
ciated genes.

Discussion
Although many mechanistic studies and clinical tri-
als have demonstrated that fiber-rich diets consistently 
influence the composition and function of the gut micro-
biome [31–33], these dietary treatments often result in 
observed changes in only a subset of individuals [4, 6, 34] 
Indeed, the occurrence of non-responders in dietary clin-
ical trials is very common [35–38]. Thus, a major chal-
lenge for researchers and clinicians has been to predict 
treatment responses, a priori, providing opportunities for 
practical precision nutrition recommendations [39].

In general, the first step in developing models capable 
of predicting responder and non-responder phenotypes 
is to identify clinically relevant and measurable responses 
to a treatment, based on either previously established or 
expected outcomes. These measured responses usually 
include changes in taxonomy, SCFA concentrations, or 
physiological changes such as body mass index, insulin 
resistance, or immune biomarkers [5, 6]. Accordingly, in 
this study, SCFA concentrations from in vitro fecal fer-
mentations were selected as metabolic responses, in part 
because they are well-known to have an important role 
in gastrointestinal health [40] and also because they serve 

as consistent, discriminatory, and relevant measures of 
prebiotic utilization [34]. Acetate and butyrate concen-
trations, in particular, were used to distinguish respond-
ers from non-responders. For many individuals, similar 
responses were observed regardless of the prebiotic sub-
strates used, implying shared involvement of microbial 
communities in the utilization of these common prebiot-
ics. On average, the in vitro responder rate per prebiotic 
was 57%, consistent with several human prebiotic feeding 
studies, where responder rates of around 50% (based on 
taxa or functional outcomes) have been observed [5, 12, 
13, 41].

Although acetate and butyrate concentrations were 
reliable response markers in vitro, the in vivo measure-
ments of these SCFA from the feeding trial were generally 
less informative. Instead, increases in Bifidobacterium 
abundance and specific gene clusters were observed 
across individuals in the XOS and inulin responder 
groups. This might be due to unreliable quantification 
of SCFA directly from fecal samples in vivo as SCFA are 
rapidly absorbed by colonocytes after production in the 
colon [42, 43]. Additionally, the 5  g per day doses may 
have been insufficient to elicit significant differences in 
fecal SCFA concentrations. Improvements in measur-
ing SCFA flux in vivo, such as through breath and serum 
samples, may be necessary for model testing [44–47]. In 
addition, an ex-vivo approach using short timescales has 
been proposed to evaluate potential SCFA production 
directly from fecal samples [48].

Ultimately, our goal was to identify features prior to a 
fiber intervention that could predict an individual’s abil-
ity to metabolize that substrate. Glycosyl linkages are 
abundant among prebiotic structures and their degra-
dation requires CAZymes such as glycosyl hydrolases 
(GH) [27, 49]. Therefore, to identify potential gene tar-
gets for screening prebiotic responders, we selected 
GH families based on annotations that were specified 
in the CAZy database. Previous reports on the involve-
ment of some of these GH families (both in silico and 
experimentally) in dietary glycan degradation provided 
increased confidence for the selection of these GH fami-
lies [50–54]. In particular, the role of GH32 (includes 
β-fructofuranosidase and inulinase) and GH91 (includes 
inulin lyases) in fructan utilization is well established 
[29, 55–57], while the GH families involved in xylan 
utilization systems are much more diverse and include 
GH120 (β-xylosidase), GH8 (includes xylanase), GH43 
(includes β-xylosidase) and GH10 (includes xylanase), 
among many others [58–60]. Given the vast diversity of 
substrates available, finer CAZyme subfamily resolutions 
will be necessary to aid the discovery of other prebiotic 
associated genes to allow for a greater scale of preci-
sion. Improvements in CAZyme annotation and curation 
frameworks as described in Cohen & Borenstein [61]will 
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be especially beneficial in capturing fiber degradative 
profiles and subsequent biomarker discovery across fiber 
intervention studies.

Despite evidence of functional redundancy in the gut 
microbiome [62, 63], shifts in CAZyme composition 
have previously been observed in response to different 
substrate feeding [64, 65]. Likewise, in population-based 
studies, CAZyme profiles have also been shown to reflect 
dietary preferences and the type of glycans that microbes 
encounter in the gut [61, 66, 67]. Moreover, strain hetero-
geneity in CAZyme profiles within the same genus has 
been described such as in species of Bifidobacterium and 
Prevotella [68, 69]. This strain-specific genotype is likely 
a result of adaptation towards different spatial niches, 
resulting in the evolution of specialized glycan prefer-
ences [70]. Together with horizontal gene transfer events, 
these factors have led to a high repertoire of glycan deg-
radation systems within the gut that likely translates into 
the observed inter-individual differences and subsequent 
responses towards dietary interventions [23, 71]. In our 
study, the association of unique CGCs towards each fruc-
tan indicates the presence of genes specialized towards 
similar substrates of varying complexity.

In addition to CAZymes, an array of accessory carbo-
hydrate utilization proteins is also necessary for metabo-
lism of prebiotic fibers. As described in Leth et al., (2018) 
[58], the capture and degradation of different xylan com-
pounds are reflected by the expression of different sub-
strate binding modules and transport systems in gut 
commensals. Indeed, we observed that genes encoding 
substrate binding proteins and permeases appeared to 
be more predictive of responder phenotypes compared 
to the CAZymes present in the same cluster. This was 
shown for XCGC4 and F/ICGC1 and implies that the 
transporter genes in these clusters are essential for sub-
strate uptake and subsequent metabolism. In addition, 
secretory signal peptides were predicted to be present 
on the N-terminus of the GID_07946 (XCGC4) perme-
ase and GID_21719 (F/ICGC1) substrate binding pro-
tein genes suggesting extracellular uptake of substrate. 
Similarly, Yoshida et al. (2021) [33] demonstrated that the 
abundance of a solute binding protein was indicative of a 
bifidogenic response towards lactulose in humans.

Recently, gene clusters homologous to XCGC3 and 
XCGC4 were reported to be involved in metabolism of 
arabinoxylan-derived oligosaccharides in B. pseudoca-
tenulatum YIT 4072 [59]. The authors experimentally 
validated the presence of GH43 xylosidases and arabino-
furanosidases in both gene clusters [59]. This co-localiza-
tion (also observed here in XCGC1, XCGC3 and XCGC4) 
suggests a possible evolutionary adaptation towards ara-
binoxylan, a major dietary fiber found in cereal grains 
[72]. The putative role of clusters homologous to F/

ICGC2 in FOS and inulin metabolism have also been 
previously described [51, 73].

Importantly, quantification of baseline Bifidobacterium 
abundance and its inclusion in our models suggest that 
the abundance of targeted species at baseline is not suf-
ficient for response prediction. Indeed, when abundance 
of bifidobacteria was included, model accuracy either 
remained unchanged or decreased slightly. Thus, our in 
vivo data further emphasizes the potential use of prebi-
otic gene profiles instead of taxonomic profiles as a stable 
guide for prebiotic stratification given that taxonomic 
composition and diversity was highly resilient and indi-
vidualized over time. Overall, our findings confirm the 
importance of carbohydrate-associated genes in prebiotic 
utilization and supports the potential of utilizing a gene 
profiling approach to differentiate between prebiotic 
responders and non-responders.

Variation in model performance was observed in vitro 
with the FOS model performing the worst. Accordingly, 
the models were able to reliably predict XOS respond-
ers both in vitro and in vivo but was less informative in 
predicting FOS responders. This might be attributed to 
the accessibility of the short-chain fructan (DP < 10) to 
a wider range of bacterial species [74] as observed by 
the enrichment of Streptococcus and the corresponding 
GH32-encoding genes in FOS non-responder samples in 
vitro. This suggests that robust biomarker selection from 
the in vitro system could be dependent on substrate com-
plexity and accessibility. Interrogation of a larger number 
of microbiomes and inclusion of a larger set of predictive 
features such as other FOS scavenging enzymes is likely 
required to overcome this and improve model perfor-
mance. In addition, other non-binary methods for build-
ing effective predictive models should also be explored. 
For example, discretization can be carried out by bin-
ning responses into discrete classes (i.e. low, medium, 
and high responders) while minimizing information loss 
occurred through binary classification. Furthermore, the 
use of regression models such as Support Vector Regres-
sion (SVR), allowing for the incorporation of quantified 
responses, should also be considered.

To our knowledge, this study is the first to report 
the development of predictive models based on genes 
involved in carbohydrate metabolism beyond a taxo-
nomic approach for making prebiotic recommendations. 
Overall, our results demonstrate the expansion of Bifi-
dobacterium, their saccharolytic genes, and their diverse 
transport machinery in prebiotic responders, reflecting 
the evolutionary adaptation of this species for glycan 
degradation in the gut. Importantly, our findings revealed 
that the functional composition of baseline microbi-
omes provides a rational and reliable basis for predict-
ing microbiome-associated responses towards prebiotic 
interventions and the need to fine-tune personalized 
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prebiotic interventions and improve efficacy rates beyond 
a one-size-fits-all approach. Thus, greater opportuni-
ties for successful clinical outcomes can be achieved 
in dietary intervention studies by genotyping base-
line microbiomes prior to assigning individuals to their 
respective treatments.

Nevertheless, we recognize that larger sample sizes will 
be necessary for more rigorous testing of the described 
framework. In addition, the prebiotics used in this study 
had relatively simple structures, and predictive models 
for structurally complex substrates may require more 
experimental data. Furthermore, biochemical experi-
ments and transcriptomics will be needed to validate 
the mechanistic capture and metabolism of substrates 
by these genes and to establish that they are actively 
expressed in the presence of the prebiotic substrate.

Conclusions
In this study, we combined in vitro fecal enrichments, 
shotgun metagenomics, and machine learning to iden-
tify substrate-specific gene signatures that could predict 
prebiotic responders and non-responders. The use of 
in vitro fecal fermentation systems provided a basis for 
assessing changes in the microbiome and relevant meta-
bolic markers to distinguish responses across different 
prebiotic interventions. In particular, we used microbial 
carbohydrate metabolism genes as features to personal-
ize prebiotic recommendations and importantly, we vali-
dated these predictions in a pilot human feeding study. 
The panel of predictive features could be functionalized 
by incorporation into a rapid PCR-based diagnostic test 
for real-time dietary recommendations in clinical spaces. 
Additionally, this microbiome approach can be scaled 
and integrated into screening pipelines for the discovery, 
design, and development of nutraceuticals beyond prebi-
otics, aimed at personalized responses.

Experimental procedures
Fecal sample collection and processing for in vitro 
fermentations
Fecal samples were collected from 40 adult volunteers. 
The following criteria were used to determine participant 
eligibility; (i) has no known gastrointestinal disease, (ii) is 
at least 19 years of age, (iii) have not consumed antibi-
otics or probiotic supplements in the last 3 months and 
(iv) is not a regular consumer of yogurt. This study was 
approved by the University of Nebraska-Lincoln Institu-
tional Review Board (IRB No. 20,160,616,139). All par-
ticipants provided written informed consent prior to 
performing study protocols.

All participants were provided with a commode speci-
men collection kit (Fisher Scientific, NH, USA) along 
with ice packs for sample collection and preservation. 
Samples were processed immediately after collection 

in an anaerobic chamber (Bactron IV anaerobic cham-
ber; Sheldon Manufacturing, Cornelius, OR, USA) (5% 
H2, 5% CO2, 90% N2). Samples were weighed, diluted 
(1:10) and homogenized in phosphate-buffered-saline 
(PBS) with 10% glycerol at pH 7. Subsequently, samples 
were filtered with cheese cloth, and these fecal slurries 
were stored at -80  °C. Follow-up questionnaires were 
distributed to subjects after sample collection to obtain 
information corresponding to age, sex and broad dietary 
preferences. Out of 40 subjects, 36 responded to the fol-
low up survey (Table S1).

In vitro fecal fermentations
Stepwise in vitro fermentations were conducted anaero-
bically as described in Kok et al. [75] with slight modifi-
cations. Prebiotic substrate of high purities (> 95%) were 
used for the fecal fermentations; XOS (Prenexus Health, 
Az, USA), FOS (Orafti P95, Beneo, Belgium) and inulin 
(Orafti HP, Beneo). Each fecal sample was treated as an 
individual experimental unit and duplicate fermentations 
were performed for each fecal-prebiotic combination. 
Negative controls, with fermentations conducted in the 
absence of a prebiotic substrate, were done in parallel. 
Fecal slurries (3.0 ml) were thawed and then inoculated 
into 6.0 ml of a peptone-based fermentation media [76] 
containing prebiotic substrates at a final concentration of 
0.5%. Every 12  h, 100-fold dilutions were performed by 
transferring 100 ul of fermentation sample into 9.9 ml of 
fresh fermentation broth. Each fermentation was contin-
ued for a total of 48 h that included 3 transfers. In addi-
tion, a spike-in of the same fecal origin was introduced 
after 24 h at a 1:9 ratio (v/v) in an effort to maintain com-
petition. Samples were collected after each transfer and 
stored at -80 °C for subsequent downstream analyses.

Carbohydrate quantification and metabolite analyses
Fecal fermentation samples were centrifuged at 8,000 x 
g for 5  min, and supernatants were collected and used 
for downstream analyses that included SCFA quantifica-
tion, quantification of total carbohydrates, and pH. SCFA 
concentrations were measured using gas chromatogra-
phy with a flame ionization detector as described in Yang 
and Rose [76]. The extraction procedure was carried out 
as described in Kok et al. [75]. An internal standard of 
2-ethylbutyrate was used for standardization across all 
samples. Total carbohydrates were quantified with a phe-
nol-sulfuric acid microplate assay as described in Medina 
et al. [77]. Standard curves were made from a dilution 
series of xylose and fructose, starting at a concentration 
of 0.1 mg/ml. The absorbance was measured using a plate 
reader (BioTek Synergy H1, Winooski, Vermont, USA) at 
490 nm. Supernatant pH was measured using a standard 
pH meter (Orion Research Inc., Boston, Mass., USA) 
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with a micro combination electrode (Mettler Toledo 
LE422, Columbus, Ohio).

DNA extraction, metagenomic sequencing and analyses
DNA was extracted using phenol-chloroform as 
described in Martinez et al. [78]. DNA was resuspended 
in DNAse-free water. Illumina metagenomic librar-
ies were prepared using an NEBNext Ultra II FS DNA 
Library Prep Kit (New England Biolabs, Ipswich, MA, 
USA) and frozen DNA samples were sent to Novogene 
Co. Ltd (Sacramento, CA, USA) for shotgun metage-
nomic sequencing on an Illumina HiSeq platform 
(2 × 150 bp). Reads were removed if they contained adapt-
ers, contained > 10% of undetermined bases, had a phred 
score of lower than 25, or were of host contaminant, 
which resulted in an average of 12.3  million reads per 
sample. Rarefactions curves were plotted to assess the 
impact of sequencing depth on the number of predicted 
genes. Reads were subsampled at different depths (0.1, 
0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 million reads) and the num-
ber of predicted coding genes were determined for each 
subsample using Prokka [79].

Taxonomic profiling of metagenomic reads were car-
ried out with MetaPhlAn2 [80]. To avoid fragmented 
assemblies, reads were firstly assembled individually 
using Megahit [81] and then merged. Duplicates and 
contigs shorter than 2000 bp were removed. The result-
ing longer contigs were co-assembled with individual 
reads using metaSPAdes [82] and the final assembly was 
evaluated using metaQuast [83]. Reads were mapped 
back to the assembly to determine read coverage using 
bamtools [84]. The Prokka rapid annotation tool [79] 
and eggNOG-mapper was used to annotate genes in the 
assembly. dbCAN2 [85]was used to identify CAZymes 
as well as CGCs. These clusters included CAZymes that 
were present together with at least one transporter and 
with an intergenic distance threshold of 5 non-signature 
genes. Additional annotation was performed using a 
DIAMOND search [86] against the NCBI non-redun-
dant sequence database. Salmon was used to quantify 
abundances of gene clusters across all samples [87], and 
DESeq2 [88] was used to identify DA CGCs between 
responders and non-responders for each prebiotic. Pho-
bius [89] was used to predict transmembrane topology 
and the presence of signal peptides in genes.

Statistical analyses and machine learning
All statistical analyses were carried out in R (version 
4.1.1). Using the bestNormalize package [90], an ordered 
quantile normalized transformation was used to trans-
form SCFA concentrations to satisfy modelling assump-
tions for normality. No significant outliers were detected 
using the identify outliers helper function in the rstatix 
package [91]that adopts boxplot methods to identify 

univariate outliers. Then, a two-way repeated measure 
ANOVA was used to evaluate significant differences in 
total acetate and butyrate concentrations using prebi-
otic treatment and time as factors while accounting for 
within subject dependence. As there were no significant 
interactions between prebiotic and time, the means of all 
time points of duplicate experiments were jointly con-
sidered when phenotyping subjects as responders and 
non-responders.

One-way ANOVA was used to compare differences 
in total acetate and butyrate concentrations between 
treatments within each subject, followed by pairwise 
t-test. Post-hoc Dunnett’s test was then used to com-
pare each prebiotic treatment with the no-prebiotic 
control to determine responder and non-responder phe-
notypes. Overall significant differences in the sum of 
acetate and butyrate concentrations between respond-
ers and non-responders per prebiotic substrate were 
determined using a t-test. Wilcoxon tests were used to 
determine significant differences in taxonomic relative 
abundances and gene copy number between respond-
ers and non-responders. Chi-square goodness of fit 
tests were used to determine differences in the number 
of differential abundant genes between responders and 
non-responders. Paired t-tests were used to compare 
SCFA concentrations, Bifidobacterium counts and pre-
biotic gene cluster copy numbers before and after pre-
biotic consumption in the human feeding trial. One-way 
ANOVA tests were used to compare each dietary com-
ponent/category between treatments as reported in the 
dietary history questionnaire (DHQ3). Friedman test was 
used to compare changes in gastrointestinal symptoms 
between visits within subjects. Spearman correlations 
were used to determine significant correlations between 
SCFA production with pH, carbohydrate consumption, 
and taxonomic abundances derived from metagenomic 
sequences. Holm-Bonferroni adjustments were used for 
multiple comparisons and FDR adjustments were used 
for multiple hypotheses testing.

The mikropml package [92] was used to create RBF 
SVM classification models for each of the three prebi-
otics and for feature permutation and feature selection. 
Due to sample size limitation, a random partition seed 
was used to split the dataset into training and testing 
sets at a ratio of 50:50. The training set was used to tune 
and train the model while the testing set was withheld 
for unbiased evaluation of model performance. Specifi-
cally, a grid search was used to tune hyperparameters and 
estimate the optimal cost (C) and sigma (σ) parameters 
and 100 times repeated 5-fold cross validation was used 
to train the model. Model performances on both train-
ing and test sets were evaluated using measures such as 
sensitivity, specificity, and the area under the receiver 
operating characteristic curve (AUC-ROC). Feature 
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permutation was carried out to identify discriminatory 
features between responders and non-responders. Fea-
tures are ranked based on mean differences between test 
and permuted AUC. A larger difference indicates a higher 
feature contribution towards model robustness. Pheno-
type predictions were assigned using the stats package in 
R with quantified gene copy numbers as features.

Quantification of Bifidobacterium and prebiotic candidate 
genes using quantitative PCR (qPCR)
Quantification of Bifidobacterium in baseline and post-
fermentation (48  h) samples were performed by qPCR 
as described previously [93] using genus-specific prim-
ers (5’-TCGCGTCYGGTGTGAAAG-3’, forward and 
5’-CCACATCCAGCRTCCAC-3’, reverse). A standard 
curve was made using 10-fold serial dilutions of genomic 
DNA isolated from a pure culture of Bifidobacterium 
longum. Cycle threshold (CT) values were plotted against 
log10 CFU/ml values for quantification. For targeted pre-
biotic-specific genes in the previously identified CGCs, 
qPCR primers were designed using RUCS [94]. In silico 
validation was performed to ensure primer specificity 
(emboss primersearch), followed by Sanger sequencing 
of PCR products. qPCR reactions were performed using 
a QuantStudio 5 Real-Time PCR system (ThermoFisher 
Scientific, Waltham, MA, USA). Each reaction mixture 
contained 5ul of qPCR Master Mix (2X Maxima SYBR 
green; ThermoFisher Scientific, Waltham, MA, USA), 
1 μm of a forward and reverse primer, 3.5 ul of water and 
0.5ul of DNA template for a total volume of 10 ul reac-
tions per well. An annealing temperature of 60  °C was 
used for all primers. Standard curves were made using 
10-fold dilutions of purified PCR products and concen-
trations of PCR products were measured using a Qubit 
fluorometer. The number of gene copies of the puri-
fied PCR products were calculated using the following 
formula:

 

gene copies =
(
DNAconcentration

[
ng
ul

]) (
1g

1,0003ng

)(
1mol bpDNA
660g DNA

)

×
(
6.023×102

3
bp

molbp

)(
1 copy

PCRproduct size [bp]

)
× volume of template (ul)

Then, log10 copy number values were plotted against CT 
values to obtain a standard curve. Baseline pre-fermenta-
tion samples and cDNA samples were then screened for 
the presence of these genes and quantified according to 
the standard curves.

Human feeding trial
A human prebiotic feeding trial was conducted using a 
single-blind, multi-arm parallel-group stratified design. 
Subjects were enrolled with the following eligibility cri-
teria: (i) no known gastrointestinal disease; (ii) is at least 
19 years of age; (iii) have not consumed antibiotics in 
the last 6 months; and (iv) is not a regular consumer of 

probiotic supplements. This study was approved by the 
University of Nebraska-Lincoln Institutional Review 
Board (IRB #20210821276FB). All subjects provided 
written informed consent prior to enrolment.

Enrolment was conducted on a rolling basis and each 
participant delivered three fecal samples to the clini-
cal facility. The first run-in fecal sample (visit 1) was 
screened for genes of interest and to predict response 
status to each of the test prebiotics, FOS, XOS, and inu-
lin. The previously trained SVM models were used for 
these predictions, and prebiotic gene profiles were gen-
erated for each subject. In instances where subjects were 
predicted responders to two or more prebiotics, subjects 
were randomly stratified such that treatment groups were 
balanced with a near equal number of samples. Subjects 
who were predicted non-responders to all prebiotics were 
given XOS (5 g per day) and were used as a null response 
control group in the study. Participants were stratified 
as follows; 7 XOS responders, 7 FOS responders, 5 inu-
lin responders and 8 non-responders. Participants were 
also asked to complete a dietary history questionnaire 
online at visit 1. Participants begin the feeding study (5 g 
of each prebiotic) after a period of two-three weeks from 
the first visit. At visit 2, participants provided another 
fecal sample and were asked to complete a gastrointes-
tinal symptom questionnaire. At this visit, participants 
were also given the test prebiotics and were instructed to 
consume the prebiotics for a period of two weeks. After 
two weeks, participants provided a third fecal sample and 
were asked to complete another gastrointestinal symp-
tom questionnaire. Fecal sample collection and process-
ing (DNA extraction and SCFA measurements) of all 
samples across all visits (n = 81) is as described above for 
in vitro fermentations. Frozen DNA samples were sent 
to Novogene Co. Ltd (Sacramento, CA, USA) for V3-V4 
16  S rRNA sequencing with an Illumina NovaSeq 6000 
(2 × 250  bp). 16  S rRNA sequences were analysed using 
QIIME2 and sequences were dereplicated into unique 
amplicon sequence variants (ASV) with DADA2 [95, 
96]. Taxonomy was assigned to representative sequences 
using a pretrained classifier of the SILVA database (v138) 
based on 99% sequence identity. Downstream statistical 
analysis was carried out in RStudio (ver 4.2.2) with the 
phyloseq package [97].
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