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Abstract 

Background Mangrove sediment microbes are increasingly attracting scientific attention due to their demonstrated 
capacity for diverse bioremediation activities, encompassing a wide range of environmental contaminants.

Materials and methods The microbial communities of five Avicennia marina mangrove sediment samples collected 
from Al Rayyis White Head, Red Sea (KSA), were characterized using Illumina amplicon sequencing of the 16S rRNA 
genes.

Results Our study investigated the microbial composition and potential for organohalide bioremediation in five 
mangrove sediments from the Red Sea. While Proteobacteria dominated four microbiomes, Bacteroidetes dominated 
the fifth. Given the environmental concerns surrounding organohalides, their bioremediation is crucial. Encouragingly, 
we identified phylogenetically diverse organohalide‑respiring bacteria (OHRB) across all samples, including Dehalo-
genimonas, Dehalococcoides, Anaeromyxobacter, Desulfuromonas, Geobacter, Desulfomonile, Desulfovibrio, Shewanella 
and Desulfitobacterium. These bacteria are known for their ability to dechlorinate organohalides through reduc‑
tive dehalogenation. PICRUSt analysis further supported this potential, predicting the presence of functional 
biomarkers for organohalide respiration (OHR), including reductive dehalogenases targeting tetrachloroethene 
(PCE) and 3‑chloro‑4‑hydroxyphenylacetate in most sediments. Enrichment cultures studies confirmed this predic‑
tion, demonstrating PCE dechlorination by the resident microbial community. PICRUSt also revealed a dominance 
of anaerobic metabolic processes, suggesting the microbiome’s adaptation to the oxygen‑limited environment 
of the sediments.

Conclusion This study provided insights into the bacterial community composition of five mangrove sediments 
from the Red Sea. Notably, diverse OHRB were detected across all samples, which possess the metabolic potential 
for organohalide bioremediation through reductive dehalogenation pathways. Furthermore, PICRUSt analysis pre‑
dicted the presence of functional biomarkers for OHR in most sediments, suggesting potential intrinsic OHR activity 
by the enclosed microbial community.
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Introduction
Distributed along tropical and subtropical coastlines at 
the land-sea interface, mangrove ecosystems occupy a 
unique environmental niche [1, 2]. Notably, mangrove 
forests play pivotal roles in ecosystem function by filter-
ing and reducing both dissolved and particulate nutri-
ents. Additionally, they serve as crucial reservoirs for 
carbon, nitrogen, and phosphorus, even sequestering 
heavy metals from adjacent terrestrial environments [3]. 
These unique conditions render mangrove sediments 
ideal habitats for diverse microbial communities to 
thrive.

Mangrove-associated microbial communities exert 
significant influence on biogeochemical cycling within 
these ecosystems, facilitating the transformation of car-
bon, sulfur, nitrogen, and phosphorus through diverse 
metabolic pathways [1]. Furthermore, the complex and 
phylogenetically diverse nature of mangrove microbiota 
underpins their critical roles in maintaining ecosystem 
productivity and facilitating post-disturbance recovery 
processes within these vital habitats [4].

Mangrove sediments, characterized by their high nutri-
ent content, serve as a rich habitat fostering the prolif-
eration of diverse bacterial communities with potent 
metabolic and bioremediation capabilities [5, 6]. Man-
grove ecosystems act as biogeochemical sinks for vari-
ous xenobiotic pollutants, including polychlorinated 
biphenyls (PCBs), heavy metals, and polycyclic aromatic 
hydrocarbons (PAHs) [7–9]. This widespread accumula-
tion suggests the presence of a robust microbial commu-
nity harboring diverse bioremediation capabilities.

Studies have identified a wide range of phyloge-
netically diverse bacterial genera residing within this 
environment, including Pseudomonas, Marinobacter, 
Alcanivorax, Microbulbifer, Sphingomonas, Micrococ-
cus, Cellulomonas, Dietzia and Gordonia. Notably, these 
bacteria have exhibited the ability to degrade harmful 
hydrocarbons, such as polycyclic aromatic hydrocar-
bons (PAHs) [10, 11]. Furthermore, research suggests 
that mangrove sediments possess significant potential for 
bioremediation strategies, demonstrating efficacy in the 
decontamination of oil spills [12]. Metagenomic analy-
sis of oil-contaminated mangrove sediments identified 
Geobacter, Rhodopseudomonas, and Pseudomonas, She-
wanella, Anaeromyxobacter, Rhodopirellula, and Thioal-
kalivibrio as the dominant bacterial genera [13].

Chloroethene contaminants, such as tetrachloro-
ethene (PCE), trichloroethene (TCE), and dichloroeth-
ane (DCE), are prevalent in groundwater due to their 

extensive use in industry as solvents and degreasers [14]. 
Their persistence and potential to cause cancer neces-
sitate their classification as priority pollutants, requir-
ing monitoring across diverse environmental settings. 
Microbial reductive dechlorination, a process extensively 
documented in anaerobic groundwater systems, serves 
as the primary mechanism for degrading PCE and TCE, 
potentially mitigating their environmental impact [15, 
16]. This process relies on organohalide-respiring bac-
teria (OHRB), which utilize organohalide compounds 
as their final electron acceptors for energy production 
[17]. The environmental significance of OHRB-mediated 
dechlorination, particularly in sedimentary systems, has 
attracted significant research interest due to its potential 
for natural bioremediation [18, 19]. This biogeochemical 
phenomenon exhibits near-ubiquity in anaerobic aquifers 
[15, 16, 20–22] and extends to a diverse array of sedimen-
tary environments [23–26], highlighting its widespread 
ecological importance.

This study investigates the potential for microbial-
mediated dechlorination of organohalides within the 
mangrove ecosystem. Illumina amplicon sequencing of 
the 16S rRNA gene will be employed to characterize the 
microbiome composition of mangrove sediment samples. 
Given the established role of organohalide respiration 
(OHR) in anaerobic bioremediation of toxic organohal-
ides, the study further aims to detect the presence of phy-
logenetically diverse OHRB. Additionally, efforts will be 
made to predict functional OHR biomarkers and directly 
assess in situ organohalide dehalogenation activity within 
an enrichment culture simulating the mangrove sedi-
ment environment.

Materials and methods
Sampling site and samples collection
Five mangrove sediment samples designated MS1-
MS5 were collected from the root zone of Avicen-
nia marina stands (MS1, 23°35’57.2"N 38°32’39.5"E; 
MS2, 23°35’58.3"N 38°32’28.3"E; MS3, 23°35’47.9"N 
38°32’36.1"E; MS4, 23°35’23.3"N 38°32’23.4"E; MS5, 
23°19’59.7"N 38°41’52.3"E) along the shore of Al Rayes 
city, Red Sea, KSA (Fig. 1). Avicennia marina is the domi-
nant mangrove species in the marine environment of the 
Al Rayes White Head region and along the shore of Al 
Rayes city. They typically range in height from 1 to 4 m 
and possess light gray bark with stiff flakes and thick, 
glossy, and bright green leaves on the upper side and 
gray or silvery white with small hairs on the lower side. 
Mangrove sediment samples were collected from various 
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locations to a depth of approximately 0.15 m using pre-
sterilized polyethylene bags. The collected samples were 
then placed in sterile containers, sealed tightly, and 
transported to the laboratory for further microbiological 
analyses.

Genomic DNA extraction, PCR amplification and Illumina 
amplicon sequencing
Total genomic DNA was directly extracted from approxi-
mately 1.0 g of mangrove sediment using an UltraClean 
Soil DNA purification kit (Mo Bio Laboratories, Solana 
Beach, CA, USA) according to the manufacturer’s pro-
tocol. Subsequently, PCR amplification targeted the 
bacterial hypervariable region V3-V4 of the 16S rRNA 
gene using the universal primer pair 341  F (CCT ACG 
GGNGGC WGC AG) and 805R (GAC TAC HVGGG 
TAT CTA ATC C) [27, 28]. The reaction followed the 
Illumina 16S rRNA Metagenomic Sequencing Library 
protocol (www. illum ina. com) and was performed at 
Macrogen sequencing facility (Seoul, South Korea). The 

amplification program included an initial denaturation 
step at 95  °C for 3  min, followed by 25 cycles of dena-
turation at 95  °C for 30  s, annealing at 55  °C for 30  s, 
and extension at 72  °C for 30  s. A final extension cycle 
at 72  °C for 5  min concluded the program. The result-
ing PCR amplicons (~ 450 bp) were sequenced using the 
Illumina MiSeq platform (2 × 300 bp paired-end reads) at 
Macrogen (Seoul, South Korea).

Bioinformatics and diversity analysis
Following 16S rRNA gene amplicon sequencing, taxo-
nomic assignment and downstream statistical analy-
ses were performed on raw reads using the MG-RAST 
platform [29]. Low-quality sequences were trimmed 
from FASTQ files uploaded to MG-RAST using Solex-
aQA [30]. Potential human sequences were subsequently 
removed with Bowtie [31], leaving only high-quality 
reads for further analysis. Sequences were annotated 
against the SILVA SSU Ref database [32] with a minimum 
identity of 60%, maximum alignment length of 15  bp, 

Fig. 1 Geographical map showing sampling sites for the five samples addressed by this study

http://www.illumina.com
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and an e-value of 1e-5. Downstream bioinformatic and 
statistical analyses were conducted using the 16S rRNA 
gene Microbiome Taxonomic Profiling (MTP) pipeline 
(https:// www. ezbio cloud. net/ conte nts/ 16smtp) on an 
EzBioCloud server [33]. Paired-end reads were merged 
after uploading using VSEARCH version 2.13.4 [34] and 
filtered for low-quality (< Q25), chimeric, and non-target 
amplicons. Operational taxonomic units (OTUs) were 
then clustered at 97% sequence similarity using UCLUST 
[35] and CDHIT [36] softwares integrated within the 
EzBioCloud server. OTU picking and annotation were 
performed against the server’s PKSSU4.0 database [33]. 
Alpha-diversity indices, including Good’s coverage, 
rarefaction, observed OTUs, Simpson, Shannon, and 
Abundance-based Coverage Estimator (ACE), were then 
calculated. Beta diversity was determined using the Uni-
Frac distance metric and principal coordinate analysis 
(PCoA). PCoA analysis was also calculated by the EzBio-
Cloud server, conducted at the genus level and visualized 
using XLSTAT (Addinsoft, New York, USA) software. A 
correlation analysis was done using the online free server, 
Science and research online plot (https:// www. bioin 
forma tics. com. cn/ en). The p significance level was set at 
0.05. A Venn diagram depicting unique and shared OTUs 
across samples was generated using the InteractiVenn 
online tool (http:// www. inter activ enn. net/).

Predictive functional profiling and phylogenetic analysis
Predictive functional profiling was performed using the 
Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States (PICRUSt) tool embed-
ded in EzBioCloud [37] in conjunction with Kyoto 
Encyclopedia of Genes and Genomes (KEGG) databases 
[38]. The PICRUSt tool uses the Kruskal-Wallis H test to 
identify significantly.

different functional profiles on a cutoff value of P < 0.05 
[39]. Heatmaps visualizing functional biomarker dis-
tribution were generated with the SRplot online tool 
(https:// www. bioin forma tics. com. cn/ en). Finally, a phylo-
genetic tree for identified genera was constructed using 
the neighbor-joining method in MEGA X software [40] 
and visualized with the Interactive Tree of Life (ITOL), 
(https:// itol. embl. de).

Establishment of mangrove sediment enrichment cultures
Mangrove sediment enrichment cultures were estab-
lished in 100 mL sterile Duran bottles equipped with 
leak-proof screw caps. Each bottle contained 20% (w/v) 
sediment prepared in a basal mineral medium com-
posed of (per liter):  K2HPO4, 4.36  g;  NaH2PO4, 3.45  g; 
 (NH4)2SO4, 1.26 g;  MgSO4.6H2O, 0.91 g; trace salt solu-
tion, 1  ml. Trace salt solution contained (per 100  ml): 
 CaCl2.2H2O, 4.77  g;  FeSO4.7H2O, 0.37  g;  CoCl2.6H2O, 

0.37  g;  MnCl2, 0.1  g;  Na2MoO4.2H2O, 0.02  g. Cultures 
were spiked with PCE (Sigma-Aldrich, Deisenhofen, 
Germany) as an electron acceptor to a final concentra-
tion of 100 µM. An unspiked culture served as a control. 
Established enrichment cultures were then injected with 
hydrogen gas as an electron donor and incubated at 30 °C 
for one month before further analysis [41].

Gas chromatography/FID analysis
Chlorinated ethenes were analyzed by using a high-res-
olution gas chromatograph (GC) equipped with a flame 
ionization detector (FID) (Thermo Scientific Trace 1300 
series). Ten µL samples were withdrawn from the head-
space of established enrichment cultures and directly 
injected into the GC using a split/splitless injector. Sep-
aration of chlorinated ethenes was achieved on a TG-
5MS fused silica capillary column (Restek, USA; 30  m, 
0.25 mm ID, 0.25 μm film thickness) using the following 
temperature program: initial oven temperature of 40  °C 
held for 3 min, followed by a ramp to 80 °C at 8 °C/min, 
then another ramp to 190  °C at 44  °C/min, with a final 
hold at 190 °C for 5 min. Injector and detector tempera-
tures were maintained at 260 °C and 300 °C, respectively. 
Splitless injection mode was employed with helium as the 
carrier gas [42].

Results
Characterization of mangrove sediment bacterial 
community
Five mangrove sediment samples were examined to 
unveil their bacterial community structure (microbiome) 
using Illumina MiSeq sequencing of the 16S rRNA gene. 
The valid reads values were ranged from 99.16 to 99.16% 
(Table 1). The sequencing effort yielded a total of 47,419 
to 92,882 reads per sample, encompassing 301 to 4467 
operational taxonomic units (OTUs) (Table  1). Varia-
tions in OTUs composition across mangrove sediments 
might be associated with ecological factors influencing 
community structure along Al Rayyis White Head (Red 
Sea, KSA). Sampling sites MS1, MS4, and MS5 exhibited 

Table 1 Alpha diversity indices (valid reads, valid reads percentage, 
OTUs obtained and Good’s coverage of library (%)) identified in our 
microbiomes

Sample name Valid reads Valid reads 
percentage

OTUs Good’s coverage 
of library (%)

MS1 56,029 56.0% 4467 99.33

MS2 82,916 92.3% 301 99.98

MS3 92,878 92.9% 731 99.94

MS4 61,222 63.4% 3359 99.46

MS5 47,419 59.8% 2425 99.16

https://www.ezbiocloud.net/contents/16smtp
https://www.bioinformatics.com.cn/en
https://www.bioinformatics.com.cn/en
http://www.interactivenn.net/
https://www.bioinformatics.com.cn/en
https://itol.embl.de
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well-developed mangrove trees, forming dense veg-
etation, while sites MS2 and MS3 were characterized by 
patches of dwarf mangroves with limited stands of Avi-
cennia marina. These contrasting plant communities 

could contribute to the observed differences in microbial 
diversity and community composition. High Good’s cov-
erage scores (> 99%) (Table  1) indicated comprehensive 
capture of the resident bacterial communities, further 
supported by plateauing rarefaction curves (Fig. 2), dem-
onstrating adequate sequencing depth for accurate diver-
sity assessment.

Diversity analysis of bacterial communities
Shannon, ACE, and Chao1 indices revealed significantly 
higher alpha diversity in MS1, MS4, and MS5 compared 
to MS2 and MS3, suggesting greater richness and even-
ness within these microbial communities (Fig.  3). Con-
versely, the Simpson index indicated lower dominance in 
MS1, MS4, and MS5, further supporting diverse and less 
skewed taxonomic distributions. PCoA analysis (Fig. 4A) 
visualized distinct beta diversity patterns across sam-
pling sites. Samples clustered into four distinct groups: 
MS1, MS2, MS3, and a combined group for MS4 and 
MS5, highlighting substantial compositional dissimi-
larities between sites. A correlation analysis (Fig.  4B) 
showed a positive correlation between all samples. The 
highest positive correlation value was identified between 
MS1 and MS samples, while the lowest one was found 
between MS3 and MS4 samples. Further, the Venn dia-
gram (Fig.  4C) identified 66 OTUs shared across all 
microbiomes, while 112, 109, 52, 49, and 33 OTUs were 
unique to MS1, MS2, MS3, MS4, and MS5, respectively, 
emphasizing site-specific differences in bacterial taxa.

Comparative analysis of mangrove microbiome
Taxonomic classification of sequencing reads from the 
five mangrove microbiomes was performed using the 
SILVA reference database and the MG-RAST pipeline. 

Fig. 2 Rarefaction curves for the five mangrove‑microbiomes 
identified in this study

Fig. 3 Diversity indices for the five mangrove microbiomes identified 
in this study

Fig. 4 Similarity (or dissimilarity) between the five microbiomes where (A), PCoA plot showing clustering of the five microbiomes obtained 
in this study, the plot was performed based on weighted UniFrac distances. (B), Venn diagram showing the shared and the unique OTUs 
for the microbiomes obtained in this study
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At the phylum level (Fig.  5A), the Proteobacteria was 
the dominating phylum 3 of our 5 samples, account-
ing for 42.5%, 26% and 45.8% of the identified taxa in 
MS1, MS2 and MS4 samples, respectively. Unclassi-
fied bacterial sequences (18.6–60%) and Bacteroidetes 
(8.8–57.8%), Actinobacteria (0.2–4.2%) and Firmicutes 
(0.4–23.3%) followed in abundance across most sam-
ples. Notably, MS3 exhibited a unique phylum composi-
tion, with Bacteroidetes (57.6%) exceeding Proteobacteria 
(33%) in abundance. Interestingly, MS5 diverged by har-
bouring the highest proportion of unclassified bacterial 
sequences (60%). At the genus level, (Fig. 5B) the major-
ity of sequences were assigned to unclassified derived 
from bacteria (37.6%), unclassified derived from Gam-
maproteobacteria (5.3%) and unclassified derived from 
Deltaproteobacteria (5.2%) in MS1 sample, unclassi-
fied derived from bacteria (18.5%), Pseudoalteromonas 
(11%) and Aquimarina (8.2%) in MS2 sample, Flammeo-
virga (48.4%), unclassified derived from bacteria (8.4%) 
and Vibrio (5.4%) in MS3 sample, unclassified derived 
from bacteria (26.9%), unclassified derived from Epsi-
lonproteobacteria (21%) and unclassified derived from 
Gammaproteobacteria (7.1%) in MS4 sample and unclas-
sified derived from bacteria (60%), Gammaproteobac-
teria (4.5%) and Arenibacter (4%) in MS5 sample. These 
observations highlight distinct phylum and genus levels 
profiles across the mangrove sediment microbiomes, 
suggesting potential functional and ecological variations.

Distribution and abundance of OHRB
Known organohalide-respiring bacteria (OHRB) pre-
dominantly reside within the phyla Chloroflexi, Proteo-
bacteria, and Firmicutes [43]. In this study, Chloroflexi 
exhibited a small relative abundance (< 1%) across all 
samples (Fig. 5A), Conversely, Proteobacteria and Firmi-
cutes displayed markedly higher relative abundance val-
ues ranged from 20 to 45.8% and 0.8–23.3%, respectively 
(Fig.  5A). OHRB genera can be categorized as either 

obligate or versatile based on their sole reliance on OHR 
for energy acquisition [44]. Figure  6 depicts obligate 
OHRB genera Dehalococcoides and Dehalogenimonas 
belonging to Chloroflexi. Versatile OHRB genera, encom-
passing Anaeromyxobacter, Desulfuromonas, Geobac-
ter, Desulfomonile, Desulfovibrio, and Shewanella from 
Proteobacteria, and Desulfitobacterium from Firmicutes, 
have been detected in mangrove sediments (Fig. 7).

Potential organohalide respiration and diverse metabolic 
activities
PICRUSt functional predictions identified two key OHR 
biomarkers: PCE reductive dehalogenase (KEGG KO 
K21647) and 3-chloro-4-hydroxyphenylacetate (Cl-
OHPA) reductive dehalogenase (KEGG KO K21566) 
(Fig. 8A, B). These findings, coupled with the taxonomic 
presence of known OHRB genera (Figs.  6 and 7), sug-
gest potential OHR activity within the sediment samples. 
Beyond OHR, PICRUSt revealed functional biomark-
ers for diverse metabolic activities across the samples 
(Fig.  8A). Notably, biomarkers associated with anaero-
bic processes, such as dissimilatory nitrate reduction to 
ammonia (DNRA), anaerobic hydrocarbon degradation, 
and methanogenesis, displayed high relative abundances. 
These findings suggest a rich and potentially com-
plex metabolic landscape within the studied mangrove 
sediments.

Confirmation of dechlorination activity 
and bioremediation potential
Dechlorination activity within the studied mangrove sed-
iment was confirmed through gas chromatography-flame 
ionization detection (GC-FID) analysis (Fig. 9). The chro-
matogram demonstrated the successful dechlorination of 
PCE to its daughter products, including trichloroethene 
(TCE), dichloroethene (DCE), vinyl chloride (VC), and 
ultimately, ethene. This confirms the presence and activ-
ity of dechlorinating microorganisms in the sediment. 
The bioremediation potential of the collected mangrove 
sediments was further evaluated through an enrichment 

Fig. 5 Bacterial community composition associated with the five 
mangrove sediments at phylum level (A) and genus level (B). Phyla 
and genera that took up < 0.01% of our microbiomes were identified 
together as other in the figure

Fig. 6 Heatmap plot showing the OHRB identified in the five 
microbiomes obtained in this study
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culture study using PCE as a representative organohal-
ide contaminant. This choice was based on its frequent 
detection as a groundwater pollutant and its known 

carcinogenicity. A comparative analysis of our find-
ings with previously reported PCE dechlorination data 
(Table 2) suggests that various OHRB may be involved in 
PCE dechlorination to TCE and DCE, while Dehalococ-
coides, the only identified OHRB with documented DCE-
to-ethene dechlorination activity, likely drives the final 
step.

Discussion
Despite their established role as crucial microbial sinks 
[10, 11], the potential of mangrove sediments for biore-
mediation and removal of toxic pollutants like organo-
halides remains largely unexplored. Previous studies, 
such as Ding and He [51], suggest that the intrinsic biore-
mediation capacity of sediments is linked to the activ-
ity and distribution of indigenous bacteria, particularly 
those possessing reductive dehalogenation capabilities. 
This study investigates the microbial communities asso-
ciated with five mangrove sediments, focusing on genera 
identified as OHRB, key players in the efficient and effec-
tive bioremediation of organohalides under anaerobic 

Fig. 7 16s rRNA‑based circular phylogenetic tree showing all genera obtained in this study. Genera belonging to phyla Firmicutes, Chloroflexi 
and Proteobacteria, identified so far to harbor OHRB, were highlighted in the yellow, green, and red color, respectively. black arrows refer to genera 
of OHRB identified in this study. OHRB genera were shown also in bold font

Fig. 8 PICRUSt‑constructed heatmap plot showing predictive 
functional biomarkers where (A) represents the overall major 
metabolic biomarkers identified as I, OHR; II, Nitrogen cycle; III, 
Aerobic hydrocarbon degradation; IV, Anaerobic hydrocarbon 
degradation; V, Sulfur cycle; VI, Methane oxidation and VII, 
Methanogenesis, while (B) represents identified biomarkers for OHR. 
The heatmap was constructed using EZ‑biocloud server based 
on taxonomic 16S rRNA gene sequences
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conditions. Additionally, an enrichment culture experi-
ment assesses the actual ability of these mangrove sedi-
ments to bioremediate organohalides using PCE as a 
representative example.

After excluding unclassified sequences from our sam-
ples, Proteobacteria emerged as the dominant phylum in 
four examined microbiomes, aligning with established 
trends in mangrove sediments [52–54]. Notably, Bacte-
roidetes ranked second in two samples, mirroring find-
ings from the Beibu Gulf and Red Sea [55, 56]. However, 
our results diverged from Beilun Estuary, where Chloro-
flexi held the second-most abundant position [56], and 
the Bay of Bengal, where Cyanobacteria and Acidobacte-
ria dominated [57]. These variations highlight the influ-
ence of regional and environmental factors on mangrove 
sediment microbiome composition.

This study identified diverse OHRB and PCE dechlo-
rination activity in mangrove sediments along Al 
Rayyis White Head (Red Sea, KSA). Notably, obligate 
OHRB belonging to the genera Dehalococcoides and 

Dehalogenimonas were detected in two sediment sam-
ples, both affiliated with the phylum Chloroflexi. Interest-
ingly, phylum Chloroflexi was absent in sediment MS3, 
where Proteobacteria was not the dominant phylum. 
The presence of obligate OHRB like Dehalococcoides and 
Dehalogenimonas strongly suggests potential OHR activ-
ity in these sediments, as this dehalorespiration process 
serves as their sole energy and growth source [58–60]. 
These findings highlight the potential role of specific bac-
terial taxa in mediating organohalide biodegradation in 
these mangrove ecosystems.

Several studies support the role of Dehalococcoides 
(phylum Chloroflexi) in mangrove sediment biodegrada-
tion. For instance, Dehalogenating Dehalococcoides sp. 
has been previously reported for the anaerobic removal 
of BDE-47 [61]. Additionally, Liang et al. [62] described 
interactions between obligate OHRB like Dehalococ-
coides and non-obligate OHRB like Geobacter (phylum 
Proteobacteria) during OHR. These interactions might 
include syntrophic cooperation or synergistic growth, 

Fig. 9 PCE dechlorination in mangrove sediment‑amended enriched culture

Table 2 Potential OHRB detected in this study and their experimentally proved dehalogenating activities identified in previous studies

Organism Organohalides as electron acceptors Other electron acceptors References

Dehalococcoides PCE, TCE, DCEs, VC, chlorophenols, chlorobenzenes, polychlorin‑
ated biphenyls, ‑brominated diphenyl ethers

‑  [43]

Dehalogenimonas 1,2‑Dichloroethane, 1,2‑dichloropropane, 1,1,2‑Trichloroethane ‑  [43]

Desulfitobacterium PCE, TCE, 3‑chloro‑4‑hydroxyphenylacetic acid,
1,2‑Dichloroethane,
Dichlorophenol and tri‑chlorophenol

Sulphate  [43, 45]

Desulfomonile 3‑chlorobenzoate Sulfite, sulphate and thiosulphate,  [43]

Desulfovibrio 2‑chlorophenol and 2,6‑dichlorophenol Sulphate  [43]

Anaeromyxobacter 2‑chlorophenol, 2,6‑dichlorophenol and 2,5‑dichlorophenol Nitrate and fumarate  [43, 46, 47]

Desulfuromonas PCE and TCE fumarate, polysulfide and Fe(III) nitriloacetate  [43, 48]

Shewanella PCE Fe(III), Mn(IV) and U(VI)  [43, 49]

Geobacter PCE, TCE Fe(III) and Mn(IV)  [43, 50]
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potentially explaining the high relative abundance of 
Proteobacteria observed in our study and its possible 
positive correlation with Chloroflexi abundance, OHRB 
presence, and OHR activity.

Beyond Dehalococcoides, our study identified various 
non-obligate OHRB genera, including Anaeromyxobac-
ter, Desulfuromonas, Geobacter, Desulfomonile, Des-
ulfovibrio, Shewanella (phylum Proteobacteria) and 
Desulfitobacterium (phylum Firmicutes). Notably, Des-
ulfitobacterium encompasses numerous strains capable 
of dechlorinating both aliphatic and aromatic hydrocar-
bons [45], suggesting its potential contribution to biodeg-
radation processes in these sediments.

PICRUSt analysis identified functional biomarkers for 
OHR, including PCE and Cl-OHPA reductive dehaloge-
nases, confirming the potential for OHR activity within 
our sediment samples. To our knowledge, this is the 
first report of PICRUSt-predicted reductive dehaloge-
nases in mangrove sediments. Notably, PICRUSt also 
revealed functional biomarkers for diverse anaerobic 
metabolic activities, exhibiting higher relative abun-
dances than aerobic pathways. These include DNRA, 
anaerobic hydrocarbon biodegradation, and methano-
genesis. This suggests a specialization of the mangrove 
sediment microbiome towards anaerobic processes, 
potentially supporting ecosystem productivity through 
DNRA-mediated nitrogen cycling [63, 64]. Furthermore, 
previous studies have demonstrated the role of mangrove 
sediments in anaerobic hydrocarbon biodegradation of 
polycyclic aromatic hydrocarbons [65, 66] and petroleum 
oil [67], while methanogenesis has been established as a 
significant contributor to global methane emissions, with 
mangrove wetlands playing a major role [68–70]. Anaer-
obic bacterial capabilities were recoded before at a depth 
of 10–15 cm for aromatic hydrocarbon degradation using 
a mangrove sediment [66] and at a depth of 11–15 cm for 
methanogenesis using a lake sediment [71].

GC-FID analysis of PCE-spiked enrichment culture 
revealed DCE as the primary daughter product, followed 
by minor VC and ethene detections. This pattern suggests 
potential involvement of various OHRB in PCE dechlo-
rination to DCE, while the subsequent transformation to 
non-toxic ethene might be driven by Dehalococcoides, as 
reported previously [72]. This aligns with Maymo-Gatell 
et al.‘s observation of slower Dehalococcoides growth on 
DCE compared to other electron acceptors [73], although 
the reason for this remains unclear.

Previous studies have utilized molecular tools to detect 
OHRB in mangrove sediments. Pan et al. [61] employed 
qRT-PCR to confirm the presence of OHRB, including 
Dehalococcoides, and suggested their potential contribu-
tion to PBDE bioremediation. While T-RFLP and clone 
library analyses revealed PBDE degradation in mangrove 

sediments, no significant correlation between Dehalo-
coccoides abundance and debromination activity was 
observed [74]. Additionally, Chen et  al. [75] identified 
OHRB genera (Dehalobacter, Dehalococcoides, Dehalo-
genimonas, and Desulfitobacterium) in a BDE-47 degrad-
ing microcosm enriched with mangrove sediment and 
biochar. However, unlike our study, none of these inves-
tigations employed environmentally benign PCE as the 
organohalide source or implemented PICRUSt analysis to 
specifically confirm the presence of functional OHR bio-
markers (reductive dehalogenases).

Conclusion
This study provides compelling evidence for the intrin-
sic bioremediation and dechlorination potential of PCE 
within mangrove sediments collected from Al Rayyis 
White Head (Red Sea, KSA). Anaerobic enrichment cul-
tures experiments directly demonstrate this capability, 
while 16S rRNA metagenomic analysis reveals the pres-
ence of diverse OHRB potentially involved in the pro-
cess. Importantly, the study provides strong evidence for 
the existence of both OHRB and their activity through 
the identification of key functional biomarkers, reduc-
tive dehalogenases using the PICRUSt tool. These find-
ings significantly contribute to our understanding of how 
indigenous microbes in mangrove sediments mediate 
PCE dechlorination and bioremediation. Moreover, they 
highlight the exciting possibility of enriching and isolat-
ing specific microbes from these sediments for further 
bioremediation applications.
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