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Abstract
Background  Oral microbiota imbalance is associated with the progression of various lung diseases, including lung 
cancer. Pulmonary nodules (PNs) are often considered a critical stage for the early detection of lung cancer; however, 
the relationship between oral microbiota and PNs remains unknown.

Methods  We conducted a ‘Microbiome with pulmonary nodule series study 1’ (MCEPN-1) where we compared PN 
patients and healthy controls (HCs), aiming to identify differences in oral microbiota characteristics and discover 
potential microbiota biomarkers for non-invasive, radiation-free PNs diagnosis and warning in the future. We 
performed 16 S rRNA amplicon sequencing on saliva samples from 173 PN patients and 40 HCs to compare the 
characteristics and functional changes in oral microbiota between the two groups. The random forest algorithm was 
used to identify PN salivary microbial markers. Biological functions and potential mechanisms of differential genes in 
saliva samples were preliminarily explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster 
of Orthologous Groups (COG) analyses.

Results  The diversity of salivary microorganisms was higher in the PN group than in the HC group. Significant 
differences were noted in community composition and abundance of oral microorganisms between the two 
groups. Neisseria, Prevotella, Haemophilus and Actinomyces, Porphyromonas, Fusobacterium, 7M7x, Granulicatella and 
Selenomonas were the main differential genera between the PN and HC groups. Fusobacterium, Porphyromonas, 
Parvimonas, Peptostreptococcus and Haemophilus constituted the optimal marker sets (area under curve, AUC = 0.80), 
which can distinguish between patients with PNs and HCs. Further, the salivary microbiota composition was 
significantly correlated with age, sex, and smoking history (P < 0.001), but not with personal history of cancer (P > 0.05). 
Bioinformatics analysis of differential genes showed that patients with PN showed significant enrichment in protein/
molecular functions related to immune deficiency and energy metabolisms, such as the cytoskeleton protein RodZ, 
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Background
Globally, lung cancer has one of the highest mortality 
rates due to its difficulty in being diagnosed early [1]. 
Pulmonary nodules (PNs) pose a potential risk for lung 
cancer. Screening for PNs can contribute to early diag-
nosis of lung cancer. Typically, PN is asymptomatic, 
and doctors often rely on imaging for the detection of 
PNs in the early stages of lung cancer [2, 3]. Presently, 
high-resolution computed tomography (CT) is the main 
screening method for PNs [4]; however, imaging methods 
alone are insufficient to accurately assess the malignancy 
of PNs and the prognosis of patients [5–7]. Biomarkers 
can be detected in the early stages of the disease, even 
before symptoms appear, and can be used to predict the 
risk, diagnosis, progression, and outcome of the disease 
[8, 9]. However, there is currently no research on PN bio-
markers; therefore, there is an urgent need for reliable 
biomarkers.

The human symbiotic microbiome plays a crucial role 
in various biological processes and has shown enor-
mous potential for the diagnosis and treatment of vari-
ous diseases [10–13]. The oral microbiota is the second 
largest microbiota after the intestinal microbiota, and 
many studies have shown that it is associated with the 
occurrence and development of various disease [14, 15]. 
Recent research on respiratory diseases has focused on 
the relationship between oral microbiota and lung can-
cer. These studies indicate that the oral microbiota is the 
main source of microorganisms in the lungs and that the 
oral microbiota of lung cancer patients differs from that 
of healthy individuals. Some oral microbiota can pro-
duce sustained chronic inflammation in the oral cavity, 
and some strains can enter the bloodstream or directly 
colonize the lungs to undergo immune reactions with the 
host, thereby promoting the occurrence and development 
of lung cancer [16–20]. In view of this, some studies have 
utilized saliva microbiomes to examine oral microbiota 
imbalance and have found multiple saliva microbiota sig-
nificantly associated with the risk of lung cancer. Oppor-
tunistic oral pathogens such as Neisseria, Prevotella, and 
Porphyromonas are enriched in the saliva of patients with 
lung cancer, and salivary microbiota imbalance is corre-
lated with disease severity [21, 22]. These studies suggest 
that the characteristics of the oral microbiota can reflect 

disease progression and have the potential to be used as 
biomarkers for the non-invasive diagnosis of early lung 
diseases. However, most current research on oral micro-
biota has focused on the stage of lung cancer, and few 
studies have focused on the interrelationship between 
PNs and oral microbiota. The potential of the salivary 
microbiome as a biomarker for the assisted identification 
of PN has not been previously reported.

Therefore, based on 16  S rRNA amplicon sequenc-
ing, we analyzed the characteristics and functions of the 
microbiota in saliva samples from patients with PNs and 
those from healthy individuals (MCEPN-1) (Fig.  1). We 
explored candidate salivary microbiota biomarkers that 
may have the assisted identification effects on PN and 
preliminarily explored how the oral microbiome affects 
the development of early-stage lung cancer.

Materials and methods
Trial design
This was a prospective, nonrandomized, concurrent 
controlled trial (MCEPN-1). Participants were recruited 
between July 2022 and March 2023 at the Hospital of 
Chengdu University of Traditional Chinese Medicine 
(TCM), Sichuan Cancer Hospital, and the Chengdu Inte-
grated TCM and Western Medicine Hospital. This study 
adhered to the Declaration of Helsinki and was approved 
by the Ethics Committee of the Hospital of Chengdu 
University of TCM (Ethical approval Number: 2022KL-
051). The trial was registered with the China Clinical 
Trial Registration Center (Trial Registration Number: 
ChiCTR2200062140; Date of registration: 07/25/2022). 
This study used the CONSORT reporting guidelines [23].

The following inclusion criteria applied: (1) The inclu-
sion criteria for patients with PN is the presence of defi-
nite abnormalities on chest CT imaging that meet the 
diagnostic criteria for PNs according to the Fleischner 
Society Guidelines for Managing Incidental PNs (2017 
version) [24]; the inclusion criteria for healthy control 
(HC) are the absence of PNs and other abnormalities on 
chest CT imaging; (2) voluntary consent to participate in 
this study obtained; (3) no personal history of cancer; (4) 
no history of respiratory system-related surgery; and (5) 
age ranging from 18 to 80 years.

nicotinamide adenine dinucleotide phosphate dehydrogenase (NADPH) dehydrogenase, major facilitator superfamily 
transporters and AraC family transcription regulators.

Conclusions  Our study provides the first evidence that the salivary microbiota can serve as potential biomarkers for 
identifying PN. We observed a significant association between changes in the oral microbiota and PNs, indicating the 
potential of salivary microbiota as a new non-invasive biomarker for PNs.

Trial registration  Clinical trial registration number: ChiCTR2200062140; Date of registration: 07/25/2022.
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The exclusion criteria were: (1) a history of untreated 
infectious disease; (2) a history of autoimmune dis-
ease; (3) respiratory infections, oral diseases, and other 
comorbidities; (4) treatment with oral antibiotics during 
the month before the commencement of the study; (5) 
undergone continuous treatment with immunosuppres-
sants for a duration of 6 months or longer; and (6) yogurt 
consumption in the previous 3 days.

Sample collection
Demographic information and clinical characteristics 
data were collected from each subject including: clinical 
data, such as sex, age, smoking history, and personal his-
tory of cancer. This information was gathered through a 
combination of self-reporting by the participants and 
extracting relevant data from their primary care notes. 
“Smokers” in our study referred to individuals who had 
a history of smoking more than 100 cigarettes through-
out their lifetime. On the contrary, individuals who had 
not reached this threshold were categorized as “never 
smokers”. Before sample collection, we instructed all 
participants to adhere to certain restrictions: they were 
prohibited from dieting, smoking, and oral hygiene 

prophylaxis for a minimum of 3 h prior to the sampling 
procedure. In order to collect the oral samples in a sterile 
manner, participants were asked to vigorously rinse their 
mouths with 10 mL of sterile saline solution for a dura-
tion of 30  s [25]. CT imaging data such as the size and 
location of PN; and the stratified risk information for PN 
which was obtained by applying the Mayo Malignancy 
Probability Prediction Model (MPPM) recommended by 
the American College of Chest Physicians (ACCP). By 
inputting the patients’ demographic and clinical char-
acteristics information, and imaging data including the 
characteristics of relevant PNs into the MPPM software, 
a malignancy probability score (MPS) was calculated. 
Based on the calculated MPS value, the MPPM catego-
rized patients into three risk groups: the low-risk group 
with an MPS of less than 5%, moderate-risk group with 
an MPS ranging from 5 to 60%, and high-risk group with 
an MPS greater than 60% [26].

Oral biological samples were collected from partici-
pants as follows. The participants rinsed their mouths 
with drinking water before sampling, and the samplers 
placed a sterile EP tube on the lower lip of the partici-
pants allowing saliva to flow into the tube naturally. The 

Fig. 1  A prospective, non-randomized, concurrent controlled trial (MCEPN-1) found oral microbiome characteristics and function between healthy 
individuals and pulmonary nodule patients
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non-irritating saliva was collected for 2–3 mL, preserved 
in dry ice, and transferred to the laboratory refrigerator 
set at -80 ℃ to wait for the follow-up experiment.

Microbial DNA extraction and sequencing
We extracted total genomic DNA from the microbial 
community according to the manufacturer’s instructions 
(Omega Bio-tek, Norcr. oss, GA, Thermo Scientific). A 
NanoDrop2000 was used to measure DNA concentration 
and purity (American Thermo Scientific Company), and 
samples were stored at -80 ℃ for further use. Next, 16 S 
rRNA amplicon sequencing was performed. Using the 
extracted DNA as a template, the 16 S rRNA gene V3-V4 
regions were amplified using universal primers 338  F 
(5’-​A​C​T​C​C​T​A​C​G​G​A​G GCAGCAGCAGMur3’)-806R 
(5’-GGACTACHVGGTWTCTAAT3’) [27]. The gene 
products were attached with forward and reverse error-
correcting barcodes in order to distinguish each sample 
and yield accurate phylogenetic and taxonomic informa-
tion. Subsequently, PCR products were purified using 
NanoDrop2000 (American Thermo Scientific Company) 
and quantified using Quantus™ Fluorometer (Promega, 
USA). The normalized equimolar concentrations of each 
amplicon were pooled and sequenced on the MiSeq 
PE250 sequencing instrument (Illumina, San Diego, CA, 
USA). Fastp online platform (https://github.com/Open-
Gene/fastp, version 0.19.6) was employed to complete 
the quality control of the original sequence [28]. Using 
FLASH (http://www.cbcb.umd.edu/software/flash, ver-
sion 1.2.11) software for splicing [29].

Amplicon sequence processing and analysis
Based on default parameters, QIIME2 (version 2022.2) 
was used to process the biometric data of the microbi-
ota. The DADA2 plug-in was used to sequentially filter, 
reduce noise, and merge and remove chimerism. The 
sequence after DADA2 denoising was ASVs (i.e., the 
variant of the amplified subsequence) [30]. Sequences 
from each sample were rarefied to 20,000 to minimize 
the effects of sequencing depth on diversity measures. 
Based on the Sliva 16  S rRNA gene database, the naive 
Bayes classifier in QIIME2 (version 2022.2) was used for 
species taxonomic analysis. PICRUSt2 predicted the dif-
ferential community function based on ASV representa-
tive sequences. Gene family profiles were predicted, and 
gene pathways were identified using MinPath. The entire 
analysis process was performed in accordance with the 
PICRUSt2 protocols.

Statistical analysis
Mothur software was used for the calculation of the α 
Diversity index (Sobs, Shannon) (http://www.mothur.
org/wiki/Calculators) and R software (version 3.6.2) was 
used for visualization of the results [31]. The β diversity 

index is analyzed and visualized using the principal 
component analysis (PCoA) method based on ANO-
SIM/Bray Curtis algorithm and the non-metric multidi-
mensional scale analysis (NMDS) method based on the 
ANOSIM/Euclidean distance metric. A Wilcoxon rank-
sum test, linear discriminant analysis and the influenc-
ing factor method [Linear discriminant analysis Effect 
Size (LEfSe); http://huttenhower.sph.harvard.edu/LEfSe; 
Latent dirichlet allocation (LDA) > 3, P < 0.05] were 
used to estimate species abundance differences between 
groups [32]. We visualized the distribution of samples 
using t-Distributed Stochastic Neighbor Embedding 
(t-SNE) technique. Random forest models were realized 
using the random Forest function from the random for-
est R package. Feature importance scores were generated 
using a random forest classifier with 80% training and 
20% testing sets. After the training, we predicted the test-
ing dataset with the resulting random forest model, and 
combined the predictions with the testing observations. 
Finally, the observations that occurred during the train-
ing process of risk factors based on area under the curve 
(AUC) verification was used to assess disease prediction 
efficiency of the saliva samples. Based on the Bray-Curtis 
distance, the effect of clinical characteristics on salivary 
microbial community composition was evaluated using 
distance-based redundancy analysis (db-RDA). The cor-
relation between the salivary microbial community com-
position and clinical characteristics of the subjects was 
assessed using Spearman’s correlation coefficient, and the 
results were visualized through a heatmap diagram. The 
R package MaAsLin2 (Microbiome Multivariable Asso-
ciations with Linear Models) from MaAsLin2 framework 
(adjusted for age, gender, smoking history and personal 
history of cancer; PN was set as reference group) was 
used to determine multivariable associations between 
microbial taxa (the relative abundance of bacterial results 
was used) and PN/ HC. It was considered statistically 
robust if the Spearman’s correlation coefficient was over 
0.6 or less to -0.6, with a P-value less than 0.001. In addi-
tion, we used the Wilcoxon rank sum test to compare 
the differences in demographic and clinical characteris-
tics between groups. All the methods were performed in 
accordance with relevant guidelines and regulations.

Results
Clinical characteristics of study subjects
This study recruited 234 subjects. Following the exclusion 
of 17 subjects who did not meet the inclusion criteria or 
refused to participate, a total of 217 subjects underwent 
a non-random assignment. Four subjects were subse-
quently excluded based on unqualified 16 S rRNA ampli-
fying results. Saliva samples from 173 patients with PNs 
and 40 healthy individuals were included in the final anal-
ysis (Fig. 2). The comparison of demographic and clinical 

https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
http://www.cbcb.umd.edu/software/flash
http://www.mothur.org/wiki/Calculators
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http://huttenhower.sph.harvard.edu/LEfSe
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characteristics between the two groups revealed that, 
except for smoking history, baseline characteristics, such 
as age and gender, did not differ significantly between the 
groups (Table 1).

Oral microbiota profile alterations in PN patients

Sample overview
After sequence denoising, pruning, and chimera filtering, 
we obtained a total of 19,236,964 optimized sequences 
and 8,117,947,662 bases from the saliva samples, with an 
average sequence length of 422  bp. Species annotations 
included one domain, one kingdom, 24 phyla, 56 classes, Fi
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124 orders, 222 families, 482 genera, 1047 species and 
40,555 ASVs. The pan/core species analysis showed that 
the sample size was relatively sufficient (Supplementary 
Fig.  1A, B), and the rank-abundance curve showed that 
the saliva samples had high microbial species richness 
and evenness (Supplementary Fig. 2).

Biodiversity between PN patients and healthy individuals
Next, we compared the oral microbiota diversity of 
patients with PN to that of healthy individuals. α diversity 
describes the species richness and species diversity in the 
microbial community by calculating the Sobs index and 
Shannon index. The dilution curve analysis of the Sobs 
and Shannon indices showed that the dilution curve was 
smooth and flat, indicating that the sequencing depth 
was sufficient, and the sequencing data was reasonable, 
reflecting the microbial diversity information of most 
samples (Supplementary Fig. 3A, B). Compared with the 
HC group, the Sobs index (496.11 v.s. 378.95, P < 0.001) 
(Fig.  3A) and Shannon index (6.05 v.s. 3.89, P = 0.005) 
(Fig. 3B) in the PN group were significantly higher than 
in the healthy control group (HC), indicating that the α 
diversity of the oral microbiota in patients with PN was 
higher than that in healthy people.

β diversity performance evaluates the species diversity 
of the overall microbiota between the two communities. 
We first used sample hierarchical cluster analysis to show 
that there may be differences in oral microbiota similari-
ties between patients with PN and healthy individuals 
(Supplementary Fig.  4A, B, C). Subsequently, we used 
the PCoA analysis method based on the ANOSIM/ Bray 
Curtis algorithm and the NMDS analysis method based 

on the ANOSIM/Euclidean distance metric to analyze 
the salivary samples of two groups using β diversity test-
ing of inter-group differences for diversity (Fig. 3C, D), to 
determine whether the species diversity could distinguish 
the PN group from the HC group. The results showed 
that, compared to the intra-group difference, the differ-
ence in saliva sample microbiota composition between 
the PN and HC groups was more significant (R = 0.118, 
P = 0.01; R2 = 0.028, P = 0.001). This was consistent with 
the results of the sample hierarchical cluster analysis, 
indicating that saliva microbiota were significantly dif-
ferent between PN patients and healthy subjects. These 
results suggested that the oral microbiota of PN patients 
is ecologically unbalanced.

Composition of microbiota communities in PN patients and 
healthy subjects
The Venn diagram at the genus level (Fig.  4A) showed 
188 unique genus in the PN group and 31 unique genus 
in the HC group, with 244 genus in both groups. To fur-
ther analyze the differences in the genus level micro-
biota between PN patients and healthy subjects, we 
compared the relative abundance of microbiota composi-
tion between the PN group and HC group using a com-
munity bar map, heatmap map, and Circos map (Fig. 4B, 
C, D). The top 5 genera with relative abundance in the 
PN group was: Streptococcus (23.86%), Rothia (12.83%), 
Prevotella (8.40%), Actinomyces (6.65%) and Veillonella 
(5.59%); while the top 5 bacteria in HC group were: Strep-
tococcus (24.94%), Rothia (10.82%), Haemophilus (9.06%), 
Neisseria (8.72%), and Veillonella (6.33%). The results 
show differences in the most abundant taxa between PN 
and HC groups.

Microbiota differences at genus level between patients with 
PN and healthy subjects
The Wilcoxon rank-sum test and LEfSe analysis were 
used to confirm the genus differences and identify 
potential oral microbial biomarkers. Compared with 
the HC group (Fig.  5A, B, C), there were nine genera 
with significant differences between the PN and HC 
groups (P < 0.05), including Neisseria, Prevotella, Hae-
mophilus, Actinomyces, Porphyromonas, Fusobacte-
rium, 7M7x, Granulicatella and Selenomonas. The saliva 
samples showed a rich diversity of genus according to 
the ANCOM difference test results at the genus level 
(Fig. 5D). Furthermore, we utilized MaAsLin2 to examine 
the association between the oral microbiome and clinical 
features of PN. Compared with the HC group, the base-
line oral microbiota composition of PN was enriched 
in 19 bacterial genus and characterized by the genera 
including Porphyromonas, Lachnoanaerobaculum, Pre-
votella and 7M7x (Fig. 5E).

Table 1  Patient characteristics
Characteristics PN group 

(n = 173)
HC group 
(n = 40)

P 
value

Age (years), median (IQR)a 45 (32, 55) 42 (33, 48) 0.39
Gender, n (%)b 0.25
Male 69 (39.9%) 12 (30%)
Female 104 (60.1%) 28 (70%)
Smoking history, n (%)b < 0.001
NO 134 (77.5%) 40 (100.0%)
Yes 39 (22.5%) 0 (0.0%)
Personal history of cancer, n 
(%)c

0.99

NO 167 (96.5%) 39 (97.5%)
Yes 6 (3.5%) 1 (2.5%)
Risk stratification of PN, n (%)
Unable to layer 9 (5.2%) /
Low risk 100 (57.8%) /
Moderate risk 58 (33.5%) /
High risk 6 (3.5%) /
P < 0.05 was considered a statistically significant difference

IQR, interquartile range; PN, pulmonary nodule; HC, healthy control

a: Wilcoxon rank sum test; b: Chisq test; c: Yates’ correction
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Potential microbe biomarkers for PN
To further identify the characteristic oral microbial gen-
era related to PN and evaluate the potential of salivary 
biological samples as new non-invasive biomarkers, we 
discriminated the disease prediction efficiency of sali-
vary microbiota using a random forest model (Fig.  6). 
As shown in Fig. 6A, the distribution of microbial com-
munities in the two groups of saliva samples is uniform. 
Subsequently, we selected the genus with the top 15 

importance features and the accuracy of the validation 
AUC was 87.00% (Fig. 6B, C). After excluding 11 unclas-
sifiable and less clinically relevant genera from the lit-
erature, Fusobacterium, Porphyromonas, Parvimonas, 
Peptostreptococcus and Haemophilus formed the optimal 
biomarker sets. By utilizing only these five features, the 
AUC value can reach 0.80 (95% CI: 0.72–0.88) (Fig. 6D). 
This prediction model identified five microbial genera 

Fig. 3  Analysis of the α- and β- diversity indices between PN group and HC group. (A) Comparison of Sobs index between PN group and HC group. 
Wilcoxon rank sum test, P = 0.0001667). (B) Comparison of Shannon index between PN group and HC group. Wilcoxon rank sum test, P = 0.005309). (C) 
Scatter plot of the comparison of β diversity analysis conducted with PCoA between PN group and HC group. Samples from the PN group and HC group 
are tightly clustered and separated from each other on the plot, it suggests that there are distinct microbial community differences between the two 
groups. (D) Scatter plot of the comparison of β diversity analysis conducted with NMDS between PN group and HC group. The plot represents the distri-
bution and clustering patterns of samples based on their microbial composition. Each point represents a sample, and the position of the points reflects 
the dissimilarity in microbial composition between samples. A larger distance indicates a greater dissimilarity, while a shorter distance suggests a higher 
similarity in microbial composition
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that could be used to distinguish between patients with 
PN and healthy populations.

Correlation between the oral microbiota and clinical 
characteristics of PN
In addition, we used db-RDA (based on Bray-Curtis dis-
tance) to evaluate the correlation between the clinical 
characteristics of the subjects and the composition of 
the salivary microbiota. Before the correlation analysis, 

we identified environmental factors affecting micro-
bial communities by using the variance inflation factor 
(VIF < 5). The VIF values of the subjects’ clinical charac-
teristic environmental factors did not change before and 
after identification, which could be used for the follow-
up analysis (see Supplementary Table 1). The subsequent 
db-RDA analysis results showed that all sample points 
formed two clusters, indicating that clinical features have 

Fig. 4  (A) Venn diagram of genera between PN group and HC group. The shared region represents genera that are present in both groups, while the 
separate regions represent genera specific to each group. The size of each region corresponds to the number of genera within it. (B) Relative abundance 
(%) of genera in the PN and HC groups. Genera are arranged on the y-axis, and the x-axis represents the relative abundance (%) of each genus. The dif-
ferent colors represent different genera, and the heights of the bars indicate the abundance of each genus. (C) Heatmap of the salivary sample similarity 
and difference matrix. Each row and column in the heatmap correspond to a sample, and the color intensity reflects the degree of similarity or difference 
between samples. (D) The co-occurrence relationships of core bacteria between the PN and HC groups. Each node represents a bacterial genus, and the 
edges indicate co-occurrence relationships between them. The size of the nodes reflects the abundance or prevalence of each bacterial genus, while the 
thickness of the edges represents the strength of their co-occurrence relationship
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a potential impact on the composition of salivary micro-
biota in patients with PN (Fig. 7A).

The Spearman correlation coefficient was used to 
evaluate the correlation between the composition of the 
salivary microbiota and the clinical characteristics of 
the subjects (Fig. 7B). In general, age, gender, and smok-
ing history were positively or negatively correlated with 
salivary microbiota (P < 0.001, r > 0.6/ r< -0.6). Age was 
positively correlated with Capnocytophaga (r = 0.228, 
P < 0.001) and negatively correlated with Fusobacte-
rium (r= -0.225, P < 0.001) and Haemophilus (r= -0.237, 
P < 0.001). Gender was positively correlated with Pepto-
streptococcus (r = 0.267, P < 0.001) and Porphyromonas 
(r = 0.245, P < 0.001), negatively correlated with Strepto-
coccus (r= -0.221, P = 0.001). Smoking history was posi-
tively correlated with Granulicatella (r = 0.223, P = 0.001), 
negatively correlated with Haemophilus (r = -0.227, 
P < 0.001), and had no significant association with per-
sonal history of cancer (Supplementary Table 2). These 
results suggest that changes in salivary microbiota com-
bined with host age and smoking history may affect the 
disease process.

Functional potentials of the oral microbiome associated 
with PN
We examined the functional changes in the oral micro-
biome of patients with PN to understand the relation-
ship between the oral microbiome and PN development. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
orthology (KO) function abundance results showed that 
the oral microbiome in the PN group was enriched in 
cytoskeleton protein RodZ, pseudouridine 2457 syn-
thase, universal stress protein E, hemolysin activated/
secreted protein, nicotinamide adenine dinucleotide 
phosphate (NADPH) dehydrogenase γ- Functional genes 
related to glutamyl putrescine oxidase, Na+ transporter, 
phage shock protein E, tellurium methyltransferase, MFS 
transporter protein, and AraC family transcription regu-
latory factor (Fig.  8A, B). The COG Function classifica-
tion analysis showed that in the PN group, the abundance 
of functional genes related to RNA processing and modi-
fication, chromatin structure and dynamics, energy gen-
eration and conversion, cell cycle control, cell division, 
chromosome division, amino acid transport, and metab-
olism were significantly reduced (Fig. 8C, D). These data 
suggest that the oral microbiota may participate in the 

Fig. 5  (A)Wilcoxon rank-sum test bar plot on genus level between the PN and HC groups. Each bar represents a genus, and the height of the bar indicates 
the magnitude of the difference in abundance between the PN and HC groups. (B) Cladogram plot of LEfSe analysis indicating the enriched taxa of saliva 
microbiome in PN and HC groups. The central point represents the root of the tree (Bacteria), and each ring represents the next lower taxonomic level 
(phylum to genus: p, phylum; c, class; o, order; f, family; g, genus). The diameter of each circle represents the relative abundance of the taxon. (C) Histogram 
of linear discriminant analysis (LDA) scores (> 3) for differentially abundant genera between two groups. Each bar represents a genus, and the height 
of the bar indicates the strength of its discriminatory power. The cutoff of LDA score > 3 indicates significant differential abundance between the two 
groups. (D) The volcano plot of the comparison of differences in abundance of common genera by analysis of the composition of microbiomes (ANCOM) 
analysis. Each scatter in the diagram represents a compared genera. Each scatter on the plot represents a compared genus, with the ordinate representing 
the W value and the abscissa representing the CLR (Center Log Transform). The CLR represents the degree of difference in sample abundance between 
groups, with larger absolute values indicating greater relative abundance differences. (E) The association between PN and HC groups with oral micro-
biome features as determined by MaAsLin2 (adjusted for age, gender, smoking history and personal history of cancer; PN was set as reference group) 
(P < 0.05). Each bar represents a specific bacterial taxon, and the height of the bar represents the magnitude of enrichment or depletion in either the PN 
or HC group. * 0.01 < P-value ≤ 0.05, ** 0.001 < P-value/≤ 0.01, *** P-value ≤ 0.001
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process of PN disease through pathways such as redox 
reactions, immune escape, and energy metabolism.

Discussion
The oral microbiota is rich in species and comprises 
large quantities of bacteria. The continuity of the micro-
biome from the oral cavity to the lower respiratory tract 
makes the oral microbiota the main determinant of the 
lung microbiota with important potential for clinical 

application, in the early diagnosis and treatment of lung 
diseases. A recent study found that using saliva samples 
for detection has a higher sensitivity and specificity than 
using nasal and pharyngeal swabs [33]. Similarly, Pro-
fessor Ding’s team observed the shaping process of the 
lung microbiota using multi-source microbiota, such 
as saliva, nasal cavity, oropharynx, and bronchoalveolar 
lavage fluid samples, as well as the systematic correlation 
between oral microbiota and lung microbiota [34]. The 

Fig. 6  (A) Two-dimensional scatter plot of saliva sample based on t-Distributed Stochastic Neighbor Embedding (t-SNE) technique. (B) Bar plot of species 
importance at the genus level performed by random forest algorithm. Each bar represents a genus, and the height of the bar indicates the importance or 
contribution of that genus to the overall predictive power of the random forest model. Genera with higher importance values have a stronger influence 
on the classification outcome. (C) Trend graph of area under the curve (AUC) increasing with the number of top important features. (D) Receiver operating 
characteristic (ROC) curve of saliva sample for predicting pulmonary nodules at the genus level. The x-axis of the curve represents the false positive rate 
(1-specificity), and the y-axis represents the true positive rate (sensitivity)
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results also confirmed the enormous value of saliva sam-
ples for evaluating lung microbiota. The results of these 
studies suggest that changes in the salivary microbiome 
can serve as non-invasive biomarker for pulmonary 
microbiome ecological imbalance or lung pathogen inva-
sion. However, no studies have been conducted on the 
microbial characteristics or diagnostic efficacy of saliva 
samples obtained from PN patients [35]. MCEPN-1 is the 
first research to conduct a prospective, multicenter, non-
randomized, concurrent controlled trial to determine the 
diagnostic efficacy of oral microbiome markers.

Microbiome diversity is an important parameter for 
characterizing microbial communities. Growing evi-
dence suggests that changes in microbiome diversity are 
associated with disease risk [36]. We found that the sali-
vary microbiota α and β diversity index of patients with 
PN was higher than that of HCs, indicating that there was 
an ecological imbalance in the oral microbiota of patients 
with PN. It is worth mentioning that a related discovery 
was that primary or recurrent lung cancer had a more α 
diversity microbiota than healthy lung tissue [37]. Addi-
tionally, Zeng et al. discovered that the microbiota in the 
lungs show increased α diversity and significant changes 
in β diversity during carcinogenesis [38]. The results 
were consistent with the results of the α and β diversity 
index in the present study. However, Shi et al. [39] and 
Tsay et al. [16] found no differences in diversity between 
lung cancer patients and healthy subjects. It is possible 
that the discrepancy between our results is due to differ-
ences in the living environment, the number of samples 

collected, the control group, or the way the sequencing 
data was analyzed.

In this study, we identified the microbiota characteris-
tics and differences in the saliva of patients with PN for 
the first time. The saliva samples from patients with PN 
was significantly enriched in Prevotella, Porphyromonas, 
Actinomyces, Selenomonas, Granulicatella and 7M7x. 
This was corroborated by using the Wilcoxon rank-sum 
test and LEfSe analysis, demonstrating the stability and 
reliability of our statistical analysis. To date, no stud-
ies have reported evidence of microorganisms and PN 
for horizontal comparison. However, the potential of 
microbes as novel biomarkers for distinguishing patients 
with lung cancer from healthy individuals and patients 
with benign lung lesions has been previously suggested. 
Zhang et al. reported that compared with healthy sub-
jects, the number of Veillonella and Streptococcus in 
patients with NSCLC increased, while Fusobacterium 
and Prevotella decreased [40]. Kovaleva et al. reported 
similar results for NSCLC specimens [41]. Another study 
found that the abundances of Veillonella and Capnocy-
tophaga in the saliva of patients with lung cancer were 
higher than those in healthy individuals. Importantly, the 
enrichment characteristics of Veillonella and Capnocyto-
phaga in saliva can distinguish healthy individuals from 
patients with lung cancer [42]. These results suggest that 
lung cancer may be related to an imbalance in the salivary 
microbiome, which has diagnostic value for lung can-
cer. Although there are differences between these stud-
ies, these show that oral pathogenic bacteria potentially 

Fig. 7  db-RDA analysis based on Bray-Curtis distance between environmental factors and bacterial groups (genus level). Each point on the plot repre-
sents a sample point. The arrows indicate the direction and magnitude of the influence of each environmental factor on the bacterial genera, and the 
length and direction of the arrow represent the strength and direction of the correlation. (B) Heatmap diagram based on Spearman correlation analysis 
between environmental factors and bacterial groups (genus level). Each row corresponds to an environmental factor, and each column represents a 
bacterial genus. The colors in the heatmap represent the Spearman correlation coefficients
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play an important role in the microbial environment dur-
ing the development of lung cancer. To a certain extent, 
oral microbial markers may have diagnostic value in the 
evolution of lung nodules and lung cancer. Oral micro-
bial markers may have potential diagnostic value in the 
development of PN and lung cancer. In addition, to more 
accurately evaluate the potential of saliva as a new non-
invasive biomarker, we conducted a discriminant analysis 
on disease prediction efficacy of saliva samples based on 
the random forest model verified by the AUC. We identi-
fied five microbial genera, Fusobacterium, Porphyromo-
nas, Parvimonas, Peptostreptococcus and Haemophilus as 
the best predictors, which can distinguish patients with 
PN from HCs. Therefore, oral microbes may contribute 
to the assisted identification of PN; however, the exact 
underlying mechanism remains to be explored.

According to previous reports, clinical characteris-
tics such as sex, age, and smoking history can affect the 
severity of PN and lung cancer [43, 44]. An imbalance 
in microbiome ecology can promote an environment 

conducive to the development of PN disease, thus pos-
sessing the potential to become a risk factor for disease 
severity. This study examined whether salivary micro-
organisms are positively or negatively correlated with 
PN characteristics. These results suggest that changes in 
the oropharyngeal microbiota may affect the occurrence 
and development of PN due to their interaction with age, 
smoking history, and sex indices in patients with PN. 
Therefore, oral microbes are expected to be reliable indi-
cators of PN severity.

In addition, we preliminarily explored the bioinformat-
ics function of differential genes in saliva samples from 
patients with PN and healthy individuals using PIC-
RUSt2 analysis based on the KEGG and COG databases. 
We found that the cytoskeletal proteins RodZ, NADPH 
dehydrogenase, oligofructose transport system osmotic 
enzyme protein, and other proteins/molecular functions 
directly related to energy metabolism were the most sig-
nificantly enriched, and their abundance showed vary-
ing degrees of change. A similar conclusion was reached 

Fig. 8  Functional profiling performed with PICRUSt2. (A) Q-value heatmap of KEGG function enrichment in two groups. The colors in the heatmap indi-
cate the q-value, which is a measure of false discovery rate (FDR) adjusted p-value. Lighter colors indicate lower q-values, indicating higher significance 
or enrichment of the KEGG function in that group. (B) Histogram of KEGG pathway enrichment analysis between PN and HC groups. Histogram of KEGG 
pathway enrichment analysis between PN and HC groups. (C) Box-plot of COG functional classification. Each box in the plot represents a specific COG 
functional category, and the height of the box indicates the range or dispersion of the category’s abundance or frequency across the samples or groups. 
(D) Histogram of COG pathway enrichment analysis between PN and HC groups. Each bar in the histogram represents a COG pathway, and the height 
of the bar indicates the enrichment score or significance level. Higher bars indicate more significant enrichment in the corresponding COG pathway
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regarding the statistical results of COG Function classifi-
cation. Recent studies have reported that salivary micro-
biota can affect the p53 and apoptosis signaling pathways 
in lung cancer cells [45]. Additionally, salivary micro-
biota have been shown to influence systemic inflamma-
tion in patients with cancer [46]. Veillonella in the saliva 
of patients with NSCLC is positively correlated with the 
neutrophil-to-lymphocyte ratio, whereas Streptococcus is 
negatively correlated with the lymphocyte-to-monocyte 
ratio [47]. Yu et al. found that cathepsin downregula-
tion, peroxidase activity, and cell redox homeostasis were 
significantly downregulated in a lung cancer group [48]. 
Cellular redox homeostasis is a key indicator for main-
taining a symbiotic relationship between the microbiota 
and host [49]. Dysregulation of this function can lead to 
microbiome dysbiosis and inflammation within the host, 
which can lead to lung cancer and PN [50, 51]. The above 
experimental evidence is consistent with the results of 
the bioinformatics analysis in this study. Therefore, the 
downregulation of microbiota abundance and the cor-
responding redox function may be an important start-
ing point for revealing redox homeostasis imbalances in 
PN in the future. Although long-term immune responses 
are associated with chronic inflammation and carcino-
genesis, increasing evidence suggests that microbiomes 
shape adaptive immunity to evade immune surveillance 
[52, 53]. Research has found that in lung cancer, there 
is a significant enrichment in flagellar assembly path-
ways related to energy metabolism, an increase in bac-
terial migration ability and cell development level, and 
a decrease in immune-related functions [54]. Therefore, 
immune deficiency and abnormal energy metabolism 
may lead to the occurrence of PN or “nodule-cancer” 
transformation driven by microbial translocation. In 
summary, the current limited research provides new evi-
dence and interpretable evidence for the mechanism of 
oral microbiota in the occurrence and development of 
PN.

Our study is an initial exploration of the relationship 
between PN and oral microbiota. However, there are 
several limitations to our study. First, there is no classi-
fication of benign and malignant PNs, which makes the 
results not necessarily representative, and our research 
group will further explore this in subsequent follow-up 
studies. Second, there is lack of mechanistic research in 
cell and animal experiments to confirm whether the dis-
covered microbial differences can be used as biomarkers.

Conclusions
In this study, we observed a significant association 
between changes in oral microbiota and PN. These find-
ings suggest a potential link between oral microbiota and 
PN. Potential molecular markers for PN include Fusobac-
terium, Porphyromonas, Parvimonas, Peptostreptococcus 

and Haemophilus. In addition, changes in oral micro-
ecology may be associated with the development of PN 
as a result of induction of host immune deficiency and 
abnormal cellular redox homeostasis. Future prospective 
studies with a follow-up period and incident PN cases are 
needed to validate the potential of salivary microbiota as 
a non-invasive biomarker for early detection and predic-
tion of PN.
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