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Abstract 

Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. How‑
ever, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be 
comprehensively investigated. In this study, we conducted a meta‑analysis of metagenomic sequencing data 
from both obese and non‑obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results 
demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese 
patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium 
eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered 
in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salas-
maviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures 
associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, 
and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as func‑
tional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacte‑
rial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved 
a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. 
Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated 
with obesity, with the potential to guide the development of microbiome‑based diagnostics.
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Introduction
In recent years, the number of obese people has been 
steadily increasing worldwide, making obesity a global 
public health issue [1]. According to the World Health 
Organization (2024), the global number of obese adults 
has exceeded 890 million and continues to rise [2]. Stud-
ies have demonstrated that obesity is linked to numerous 
complications, including diabetes, cardiovascular disease, 
cancer, neurological conditions, respiratory disorders, as 
well as diseases affecting the immune and digestive sys-
tems [3].
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The human gut microbiome is a complex ecosystem 
predominantly composed of bacteria, along with small 
numbers of archaea, viruses, and fungi, which have not 
been extensively studied, especially in terms of functions 
[4]. The gut microbiota performs a crucial role in break-
ing down and fermenting the indigestible carbohydrates, 
which results in the production of physiologically active 
substances, including short-chain fatty acids (SCFAs), 
amino acids and essential vitamins [5]. A growing body 
of evidence suggests that the gut microbiota significantly 
contributes to host physiology. Dysbiosis of the intestinal 
microbiota may contribute to the development of various 
diseases, including IBD, cancer, diabetes and obesity [6].

Numerous studies have documented significant differ-
ences in the composition and abundance of gut microbi-
ota between obese humans and mice in comparison with 
their respective lean controls [7–10]. Certain specific 
genera or species have been identified as obesity-associ-
ated (e.g., Corpococcus, Clostridium leptum) or lean-asso-
ciated (e.g., Akkermansia, Bacteroides) [11]. Specifically, 
studies have reported a reduction in the abundance of the 
Bacteroidetes phylum and an increase in the Firmicutes 
phylum in obese individuals compared to their lean coun-
terparts [12]. However, it is worth noting that the specific 
microbial taxa showing significant differences in relation 
to obesity have been found to vary across different stud-
ies. These inconsistencies can be attributed to variations 
among studies, including differences in methodologies, 
sample sizes, populations studied, and the use of different 
technical platforms. Performing integrated microbiome 
data analysis across multiple studies using meta-analysis 
techniques can effectively mitigate the risk of false posi-
tives and false negatives [13]. Numerous cross-cohort 
meta-analyses of obesity-related metagenomics data have 
been conducted, primarily using 16S sequencing data. 
However, these analyses have been limited in their ability 
to comprehensively assess the functional aspects of the 
gut microbiome [14–16]. The gut virome is also believed 
to be closely associated with the pathogenesis of several 
host diseases, including obesity [17–20]. However, the 
relationship between the gut virome and obesity has not 
been well-investigated.

To comprehensively characterize the composition and 
functional features of the gut microbiome in obese popu-
lations, we conducted an extensive and in-depth meta-
analysis across seven studies. We included 1351 fecal 
shotgun metagenomics sequencing files from five differ-
ent countries in this multi-cohort investigation. Incorpo-
rating a broader range of obese and non-obese samples, 
we aimed to accurately analyze shifts in bacterial and 
viral phylogenetic composition, metabolic functions 
within the gut microbiome, and correlations between 
resistance genes, virulence factors, and obesity status.

Methods
Data collection
We used PubMed to search for studies that published 
fecal shotgun metagenomic data of human obesity 
patients and healthy controls. As search term, we used 
“(Obesity) AND (Metagenomic)” and collected stud-
ies published from year 2012 to 2021. Raw SRA files 
were downloaded for the included studies from NCBI 
database. In this meta-analysis, 1351 stool metagen-
omic sequencing files from 862 subjects along with cor-
responding metadata including sex, age, nationality, and 
BMI values were retrieved from NCBI database. These 
data were derived from seven different published stud-
ies including samples from China, Australia, Denmark, 
Spain and Sweden (Table S1) [7–10, 21–23]. Four of the 
studies involving Chinese and Danish populations were 
related to obesity, while the remaining three studies were 
related to other diseases, and data from these three stud-
ies have been used in other metagenomic multicohort 
analyses [24]. We extracted only healthy control sam-
ples from these non-obesity studies and regrouped them 
according to BMI values. Considering the different body 
fat characteristics of Asian and European populations, 
we reclassified the obese and control populations accord-
ing to the following criteria: for the Chinese population 
when BMI ≥ 28 was designated as the obese phenotype, 
BMI < 28 as the control phenotype, and for other coun-
tries the grouping criteria were obese samples when 
BMI ≥ 30 and control samples when BMI < 30 [25, 26].

Sequence processing and bacterial species diversity 
analysis
The raw sequencing files were downloaded by 
SRA  Toolkit and split into paired-end FASTQ com-
pressed files for the subsequent analysis. FASTQ 
C(https:// github. com/s- andre ws/ FastQC) and Fastp 
[27] were used to remove adapter sequences and low-
quality bases (default parameters). Bacterial species 
relative abundance information was determined using 
MetaPhlan3.0, a marker gene-based species annota-
tion tool, which is mainly used to analyze the microbial 
composition of shotgun sequencing metagenomic data 
[28]. During the annotation process, 14 metagenomic 
data from the Danish group were failed with annotation 
due to the too short read length (< 70 bp), and duplicate 
sequencing results of 6 Spanish populations at differ-
ent time points were removed in microbiome analysis 
(but retained during virome mining). Finally, a total of 
862 samples were successfully annotated, and the anno-
tation results were used for subsequent analysis. Spe-
cies α-diversity analysis (Shannon, Simpson, Richness), 
inter-sample β-diversity analysis (Bray-Curtis) and PCoA 

https://github.com/s-andrews/FastQC
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(principal co-ordinates analysis) analysis of all samples 
were done through the vegan R package.

Differential enrichment analysis of bacterial species
We first performed a multivariate analysis of variance to 
account for impact of batch effects and potential con-
founders on the variance analysis. The results showed 
that the factor from different studies explained 11.796% 
of the sample variance, followed by nationality explained 
10.831% of the variance, and age, gender, and pheno-
type contributed less to the sample variance. But there 
is a large overlap between studies and nationalities, so 
we only consider study factor in the subsequent analy-
sis. Between-cohort and within-study batch effects were 
alleviated by MMUPHin, an R package developed spe-
cifically for microbiome meta-analysis that enables batch 
processing with covariate control and correction for 
batch effects [29]. The batch effects were removed using 
adjust_batch function implanted in the R package with 
factor from different studies as batch factor and pheno-
type as covariates (parameter setting: batch = “studyID”, 
covariates = “study_condition”). After batch effect cor-
rection, MaAsLin2 (Multivariate Association with Linear 
Models) was employed to identify differentially enriched 
bacterial species while adjusting for confounding fac-
tors such as age and gender. We retained only the results 
meeting the criteria of p < 0.01, FDR < 0.01, and a preva-
lence of > 20% [30]. Meanwhile, we also used the linear 
discriminant analysis effect size (LEfSe) analysis to fur-
ther validate the differentially enriched species (LDA > 2, 
p < 0.05).

Bacterial sequence assembly and functional annotation
Metagenomic sequences were assemble into contigs 
using MEGAHIT (v1.2.9) [31] (parameter setting: --k-
min 29 --min-contig-len 1000), and assess the quality 
of assembly with QUAST(v5.0.2) [32]. The gene predic-
tion was done by Prodigal (v2.6.3) (metagenomic mode) 
[33]. To construct a non-redundant gene catalogue, we 
use Cd-hit(Version 4.8.1) [34] to cluster the genes using 
a sequence identity cut-off of 95% and with a minimum 
coverage cut-off of 80%. The longest sequence is taken as 
the representative sequence for further analysis. To esti-
mate the prevalence of non-redundant genes, we first use 
the BWA tool [35] to re-align these genes to the clean 
FASTQ files, and then extract the mapping rate and num-
ber of aligned reads from the SAM file using SAMtools 
[36]. The relative gene abundance was obtained by divid-
ing the number of aligned gene reads by the total mapped 
reads.

The non-redundant gene sets were translated into 
protein sequences by EMBOSS (v6.6.0.0) [37] and 
the protein function assignment was carried out by 

eggNOG-Mapper(EggNOG db 5.0.2) [38]. We extracted 
KEGG Orthology (KOs) information from the results of 
functional annotations and determined the relative abun-
dance of KOs after additional processing. Subsequently, 
we integrated the KOs abundance using PICRUSt2 (spe-
cifically, the pathway_pipeline.py) [39] to obtain higher-
level abundance information, encompassing Pathways 
and Modules. The bacterial virulence factors and resist-
ance genes were identified by using Abricate(v1.0.1) 
(https:// github. com/ tseem ann/ abric ate) against the Viru-
lence Factor Database(VFDB) and the Comprehensive 
Antibiotic Resistance Database (CARD) respectively with 
default parameters. We used FishTaco [40] (parameter 
setting: -op fishtaco_out_de_novo_inf ) to perform the 
driving species inference analysis, and FishTacoPlot to 
visualize the results.

Identification of viral sequences
Viral sequences were recovered from the metagenomic 
assemblies using Virsorter2(Version 2.2.3) [41] (param-
eter setting: --include-groups “dsDNAphage, ssDNA” 
--min-length 5000). CheckV (v0.7.0) [42] was used to 
evaluated the quality of virus contigs and only kept virus 
contigs with a completeness greater than 50%. We clus-
tered the vOTUs by Cd-hit on the basis of 95% similar-
ity and 85% coverage, and the longest viral contig was 
used as the representative sequence of that group. The 
identified vOTUs were further analyzed by online server 
PhaBOX with default parameters. PhaBOX is an online 
server for phage contigs analysis in metagenomic data 
[43]. For the predicted host bacterial species, we used 
TaxonKit [44] to obtain their complete lineages and per-
formed statistical analysis at the taxonomic level of the 
phylum.

Differential enrichment analysis of virome
To obtain the relative abundance of each vOTUs, the 
vOTUs contigs were aligned to the clean FASTQ file 
using bowtie2 (v 2.4.4) [45] (parameter setting: -N 0). 
The aligned read counts of vOTUs were then extracted 
from the SAM files by SAMtools and normalized to rela-
tive abundance. The vegan R package was used to per-
form both alpha diversity (Shannon, Simpson, Richness) 
and beta diversity (Bray-Curtis) analyses of vOTUs, as 
well as PCoA analyses. To identify differentially enriched 
vOTUs, we used the LEfSe tool based on the linear dis-
criminant analysis (LDA) algorithm for analysis (LDA > 2, 
p < 0.01).

Correlation analysis and phenotype prediction
For the correlation analysis between viruses and bacteria, 
Spearman’s correlation was calculated by Hmisc R pack-
age. Only species and phage family with a prevalence 

https://github.com/tseemann/abricate
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greater than 20% were included in the correlation anal-
ysis and the BH (Benjamini & Hochberg) method was 
used for P-value correction to ensure the reliability of the 
results. The Shannon index correlation and richness cor-
relation between the microbiome and virome was per-
formed using the glm() function in the R.

The SIAMCAT [46] (Statistical Inference of Associa-
tions between Microbial Communities And host phe-
noTypes) R toolkit was used to explore the association 
between the species and functional characteristics of the 
gut microbiome and obesity phenotypes. In this study, we 
mainly used the LASSO algorithm provided by SIAM-
CAT for modeling. We firstly built a prediction model 
based on the relative abundance of bacterial species (or 
vOTUs) or the relative abundance of KOs, and then built 
a hybrid prediction model based on both datasets. The 
cross-validation adopts the method of 10 folds and 10 
crosses. The filtering threshold of the relative abundance 
of features was 1 ×  10−5, and the model evaluation was 
done through the ROC and PROC curves.

Results
Taxonomic characterization of the gut bacteriome
After eliminating duplicate and low-quality samples, our 
analysis dataset included a total of 396 obese samples 
and 466 control samples from seven independent stud-
ies (Table S1). The high-quality reads that remained after 
screening with Fastp were aligned using Metaphlan 3.0. 
This alignment revealed that bacteria accounted for the 
majority (98.80%) of the total samples, with a small per-
centage of archaea (0.53%) identified (referred to as the 
bacteriome here). The species level biodiversity analysis 
of the gut microbiota showed that the α-diversity (Shan-
non Index, p < 0.001) and richness of the control group 
were significantly higher than those of the obesity group 
(Fig.  1A,B). Furthermore, the β-diversity of the obese 
group (Bray-Curtis, p < 0.001) was significantly higher 
than that of the healthy control group (Fig.  1C). To 
delve deeper into the differences in the gut microbiome, 
we conducted a principal-coordinate analysis (PCoA). 
The results of the PCoA exhibited a distinct separa-
tion between the two groups (PERMANOVA, p < 0.001) 
(Fig.  1D), highlighting significant disparities in their 
microbial compositions.

PERMANOVA (Permutational multivariate analysis 
of variance) was employed to examine the factors con-
tributing to sample differences. In this study, we pri-
marily focused on disease phenotype, age, sex, country, 
and study as the main influencing factors. Our analysis 
indicated that the ‘phenotype’ factor of the participants 
accounted for a small portion of the variation, which 
aligns with previous studies [24]. Country and batch fac-
tors explained a significant portion of the variation, but 

the confounder analysis by SIAMCAT showed a substan-
tial overlap between these two factors (Fig. S1A). So, we 
considered only the batch factors in subsequent analyses. 
Initially, we corrected the batch effects using MMUPHin 
and then employed MaAsLin2 to identify differential spe-
cies. We included the two factors, sex ratio (MF) and age, 
as covariates in our analysis. After correcting for batch 
effects, the contribution of batch factors to the sample 
variance was reduced from 11.796 to 4.852%, and the cor-
rection effect was significant (Fig. S1B). We only retained 
the results from the differential enrichment analysis that 
met the criteria of p < 0.01 and FDR < 0.01, with a preva-
lence cutoff > 20%.

Microbial compositions analysis identified the Bacte-
roidetes, Firmicutes, Actinobacteria, Proteobacteria and 
Verrucumicrobia as the most dominant phyla in both 
groups (Fig.  1E). Further phylum level study revealed 
that the obesity group exhibited markedly higher levels 
of Bacteroidetes, Ascomycota and Fusobacteria Ascomy-
cota and lower levels of Actinobacteria, Verrucomicrobia, 
Firmicutes, Synergistetes and Euryarchaeota than those of 
the control groups (Fig. 1E, Fig. S2A). At the same time, 
the average abundance ratio of Firmicutes to Bacteroides 
in the obese group was significantly lower than that in the 
control group (Fig. S2B). This observation contrasts with 
the findings of certain previous studies [47]. At the genus 
level, the relative abundance of 25 bacterial genera and 
two archaeal genera was significantly different between 
the two groups (Fig.  1F, Fig. S2C). We then conducted 
a species-level comparison of the gut microbiome and 
identified 39 species that exhibited significant differences 
in relative abundance between the two groups. Among 
these, 29 bacterial species including Akkermansia mucin-
iphila, Eubacterium eligens, Coprococcus eutactus, and 
Alistipes shahii, and one archaeal species (Methanobre-
vibacter smithii), were found to be significantly enriched 
in the control group. In contrast, 9 bacterial species, 
including Eubacterium sp. CAG:274, Ruminococcus gna-
vus, Collinsella stercoris, and Megasphaera elsdenii, were 
enriched in the obese group (Fig. 1G). We confirmed the 
differential enrichment of species in both groups through 
LEfSe analysis, revealing that 3 species in the obesity 
group and 25 species in the control group exhibited sig-
nificant differential enrichment (Fig. 1G).

Taxonomic annotation and comparison of gut virome
Phages, or bacteriophages, are viruses that infect bacte-
ria and have the potential to modulate the structure of 
the human gut microbiome by lysing bacterial hosts and 
facilitating horizontal gene transfer [48, 49]. Numerous 
studies have suggested a strong correlation between the 
viral component of the gut microbiome and obesity. To 
further investigate this relationship, we assessed the viral 
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component using the virus identification tool Virsorter2. 
We finally obtained 27,651 high-quality viral contigs, 
which were then clustered into 22,620 representative 
viral operational taxonomic units (vOTUs). To under-
stand the intra-community and inter-community diver-
sity of the virome in the two groups, we analyzed the 
α-diversity, richness, and β-diversity. The analysis of gut 
viral composition revealed a significant decrease in both 
viral α-diversity (Shannon Index, p < 0.001) and richness 
in the obese group, and significant increase in β-diversity 
by comparing with the control group (Bray-Curtis, 
p < 0.001) (Fig.  2A, B, C). Bray-Curtis distance-based 

PCoA analysis showed that the obese and control groups 
were significantly divided into two distinct clusters (PER-
MANOVA, p < 0.001) (Fig.  2D). These results indicate 
that the gut virome profiles of subjects in the obese group 
differ significantly from those in the healthy control 
group. In our study, out of 22,620 vOTUs, 11,290 were 
finally annotated as phages by PhaBOX. Among these, 
70.18% were taxonomically assigned to 19 viral fami-
lies, with Peduoviridae being the most abundant family 
(16.75%) (Fig. 2E). Among the top 10 phage families with 
the highest average relative abundance, Mesyanzhinovvir-
idae, Chaseviridae, Salasmaviridae, Drexlerviridae, and 

PERMANOVA:
***

Group
Control

Obesity

***

1

4

Control Obesity

Sh
an

no
n 

In
de

x

Control Obesity

Individuals

R
el

at
iv

e 
Ab

un
da

nc
e

Top Genus
Others

Blautia

Parabacteroides

Lachnospiraceae_unclassified

Alistipes

Ruminococcus

Faecalibacterium

Eubacterium

Roseburia

Prevotella

Bacteroides

 Akkermansia_muciniphila*
 Eubacterium_eligens*
 Coprococcus_eutactus*
 Alistipes_shahii*
 Butyricimonas_synergistica
 Barnesiella_intestinihominis*
 Oscillibacter_sp_CA
 Ruminococcus_bicirculans*
 Bacteroides_intestinalis*
 Eubacterium_siraeum*
 Bacteroides_eggerthii*
 Bacteroides_cellulosilyticus*
 Firmicutes_bacterium_CA
 Firmicutes_bacterium_CA

 Alistipes_putredinis*
 Intestinimonas_butyriciproducens
 Alistipes_indistinctus*
 Methanobrevibacter_smithii*
 Lawsonibacter_asaccharolyticus
 Roseburia_hominis*
 Ruthenibacterium_lactatiformans*
 Firmicutes_bacterium_CA
 Coprobacter_fastidiosus
 Coprobacter_secundus
 Firmicutes_bacterium_CA

 Roseburia_sp_CA
 Bacteroides_uniformis*
 Eisenbergiella_tayi*

Gemella_sanguinis
Blautia_wexlerae 

Megamonas_hypermegale* 
Blautia_sp_CA

Allisonella_histaminiformans 
Collinsella_intestinalis

Collinsella_stercoris 
Ruminococcus_gnavus* 

Eubacterium_sp_CA

1
COEF

Control Obesity

Individuals

R
el

at
iv

e 
Ab

un
da

nc
e

Top Phylum
Others

Candidatus_Melainabacteria

Synergistetes

Spirochaetes

Fusobacteria

Euryarchaeota

Verrucomicrobia

Proteobacteria

Actinobacteria

Firmicutes

Bacteroidetes

A B C D

E

F

***

Control Obesity

R
ic

hn
es

s

***

Control Obesity

Br
a

rti
s 

D
is

si
m

ila
rit

y

G

Fig. 1 Structure and differential enrichment analysis of gut microbial communities in obesity. A, B, C Comparison of α diversity (Shannon index; A), 
β diversity (Bray‑Curtis similarity index; B) and gene richness(C) of microbial content between the obesity and the control group. D PCoA analysis 
based on Bray‑Curtis distance, with PERMANOVA used to assess differences in bacterial composition between the obesity and control groups. E 
Relative abundance of the top 10 bacterial phyla. F Relative abundance of the top 10 bacterial genera. G Differentially enriched species obtained 
through MAssLin2 analysis (p < 0.01, FDR < 0.01), with bacterial species names marked with “*” indicating consistency with LEfSe analysis results 
(LDA > 2, p < 0.05). The x axis represents the coefficient value calculated by MaAsLin2 analysis



Page 6 of 16Hu et al. BMC Microbiology          (2024) 24:119 

Casjensviridae showed significant differences in abun-
dance between the obese and control groups (Fig.  2F). 
To further predict the lifestyle of these phages, the phage 
genomes or contigs are classified via PhaTYP, a tool com-
bined in PhaBOX. The predictive outcome indicates 
that 58.70% of the phages were identified as temper-
ate phages, while 41.30% were classified as lytic phages 
(Table S2). Furthermore, the most prevalent identifiable 
hosts at the phylum level are primarily Proteobacteria 
(49.11%), Firmicutes (34.79%), and Bacteroidota (6.43%) 
(Fig.  2G). Other phyla, such as Tenericutes, Actinobac-
teria, Bacillota, Chlamydiae, and Cyanobacteria, were 
also represented (Fig.  2G). In addition, we analyzed the 
genomic GC content and size of phages associated with 
these hosts. Our findings showed that phages with Bac-
teroidota as their host exhibit significantly lower GC con-
tents and larger genomic sizes compared to other phages 
(Fig.  2H, S2D). Utilizing the relative abundance data of 
vOTUs, we conducted a differential enrichment analysis 
employing LEfSe. This analysis revealed 18 vOTUs that 
exhibited depletion in obesity and 10 vOTUs that dis-
played enrichment in obesity (LDA > 2.0, p < 0.01). Nota-
bly, out of these, only two vOTUs, namely vOTU15805 
(Straboviridae) and vOTU16408 (Drexlerviridae), were 
classified within known phage families (Fig. 2I).

Functional alternation of gut microbiome in obesity
To gain functional insights into the gut microbiome, we 
used eggNOG-Mapper for KEGG functional annotation 
at the assembly level. This annotation assigned genes to 
10,503 KEGG orthologs (KOs), with 33 of them exhib-
iting differential abundance between the obesity and 
control groups (LDA > 2.0, p < 0.05) (Fig.  3A). Among 
them, 18 KOs are significantly enriched in the obe-
sity group, including digestive enzyme-coding genes 
like beta-galactosidase (K01190), fucosidase (K15923, 
K01206), glucosidase (K01187, K05349), and starch uti-
lization system proteins (K21571, K21573, K21572). 
Conversely, 15 KOs are significantly enriched in the 
control group, encompassing genes encoding ABC 
transporter systems (K06147, K02004, K02003, K01990, 
K01992, K16786, K02027), type IV secretion system 
protein VirD4 (K03205), and DNA topoisomerase III 
(K03169) (LDA > 2, p < 0.05, Fig.  3A). Subsequently, the 

differentially enriched KEGG pathways and modules 
were identified (Fig.  3B, S3A). We revealed significant 
enrichment of 11 metabolic pathways and depletion of 
15 metabolic pathways in the obesity group (Fig.  3B). 
The representative obesity enriched pathways included 
the Glycosaminoglycan degradation pathway (ko00531), 
Fructose and mannose metabolism (ko00051), Protein 
digestion and absorption (ko04974) and Lipopolysaccha-
ride (LPS) biosynthesis pathways (ko00540) etc. (Fig. 3B). 
Moreover, the pathways associated with cofactors and 
vitamins metabolism or biosynthesis, such as Riboflavin 
metabolism, Folate biosynthesis and Ubiquinone and 
other terpenoid-quinone biosynthesis, were also signifi-
cantly enriched in obesity group (Fig.  3B). We also dis-
covered 15 metabolic pathways that were diminished 
in the obese group. Among these, the most noteworthy 
was the biosynthesis of ansamycins, a pathway related 
to terpenoids and polyketides metabolism. Additionally, 
pathways related to carbohydrate metabolism, including 
glycolysis/gluconeogenesis, pentose phosphate and pyru-
vate metabolism, were enriched in the control group. 
Notably, the bacterial secretion system was found to be 
depleted in the obese group, which is of particular inter-
est (Fig. 3B).

To identify the individual taxa that made the greatest 
contribution to the functional shifts, we used FishTaco, a 
permutation-based method for further analysis. Unlike 
the simple Sperman correlation analysis, FishTaco inte-
grates both taxonomic and functional comparative infor-
mation, which offer a more comprehensive, dynamic, 
and quantitative analysis of microbial contributions to 
pathways. Remarkably, the differentially abundant meta-
bolic pathways identified between the obesity and control 
groups exhibited a high degree of concordance with the 
results obtained from the KEGG pathway-level enrich-
ment analysis. Among all the significantly enriched 
functions observed in obesity, Ruminococcus gnavus 
emerges as the primary driver (Fig.  3C). In contrast, 
within the pathways enriched in the control group, the 
shifts in functionality appear to be attributed to fluctua-
tions in the abundances of Methanobrevibacter smithii, 
Akkermansia muciniphila, Ruminococcus bicirculans, 
and Eubacterium siraeum (Fig.  3C, S3B). The most sig-
nificant obesity-enriched glycosaminoglycan degradation 

(See figure on next page.)
Fig. 2 Characteristics of the gut virus catalogue and gut viral communities in obesity. A, B, C Comparison of α diversity (Shannon index; A, gene 
richness B) and β diversity (Bray‑Curtis similarity index C) of viral community between the obesity and the control group. D PCoA analysis based 
on Bray‑Curtis distance, with PERMANOVA used to assess differences in viral composition between the obesity and control groups. E Percentage 
of different viral families in the virome. F Relative abundance of the top 10 viral families. G Percentage of different phage hosts in the overall 
composition. H Boxplot of the GC content of phages. The x‑axis representing the corresponding hosts at the phylum level. The x‑axis representing 
the phage hosts at the phylum level. (I) vOTUs differentially enriched between the two groups obtained through LEfSe analysis (LDA > 2, p < 0.01)
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Fig. 2 (See legend on previous page.)
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pathway (ko00531) driver species were Bacteroides uni-
formis and Ruminococcus gnavus, whereas Eubacterium 
sp. CAG:274, Blautia wexlerae and Blautia sp. CAG:257 
may inhibit this functional shift. The control-enriched 
“biosynthesis of ansamycins” pathway was driven mostly 
by Methanobrevibacter smithii, Akkermansia mucin-
iphila, Ruminococcus bicirculans, Firmicutes bacterium 
CAG:170, Eubacterium siraeum and Firmicutes bacte-
rium CAG:110, while Bacteroides intestinalis, Firmicutes 
bacterium CAG:95 may play an inhibitory role (Fig. S3B).

Bacterial virulence factors and resistance gene analysis
Elevated carriage of virulence factors (VFs) and antibi-
otic resistance genes (ARGs) by the gut microbiome has 
been associated with various diseases, including obe-
sity [50, 51]. Bacterial VFs and ARGs were identified by 
screening the assembled sequences using ABRicate. In 

total, 218 VFs were identified across both groups (Table 
S3). Notably, the α-diversity (measured by Shannon 
and Simpson indices) and richness of VF-related genes 
were significantly higher in the obesity group compared 
to the control (Fig. 4A, B, C). Through logistic regres-
sion analysis, we discovered a significant correlation 
between the richness of bacterial VF-related genes and 
the obesity phenotype (OR 1.0098, CI1.0032–1.0166, 
p = 0.004). According to the results of a LEfSe analy-
sis, 11 VF-related genes were found to be significantly 
enriched in the obesity group (Fig.  4D). The repre-
sentative obesiy-enriched VF-related genes included 
substrates for type II and type III secretion systems 
(gspF, gspM, gspL, espX4, espR1), genes associated with 
enterobactin biosynthesis (entC, entE, entS), and genes 
involved in ferric enterobactin transport (fepA, fepB, 
fepD) (LDA > 2.0, p < 0.01) (Fig. 4D).
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Fig. 3 The microbiota functional characterization in obesity. Differential enrichment analysis of the KOs (A) and KEGG pathways (B) 
between the obesity and control groups. KOs or KEGG pathways with LDA > 2.0 and p < 0.05 are shown. Blue and red color represent 
obesity‑ and control‑ enriched KOs or pathways, respectively. (C) Taxon‑level contribution profiles of the functional shift in the obesity. The x‑axis 
depicts the ranking and statistical scores, while the y‑axis represents the associated pathways. Taxa attenuating each functional shift are presented 
on the left side of the vertical line, whereas those driving each functional shift are depicted on the right side of the vertical line. For each KEGG 
pathway, the top bars represent contributions from obesity‑associated taxa and the lower bars represents contributions from obesity‑depleted taxa. 
Red diamonds represent taxa‑based functional shift scores
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In the antibiotic resistome analysis, a total of 232 ARGs 
were identified across both groups (Table S3). Subse-
quent diversity analysis revealed a higher mean value 
of Shannon and Simpson indices in the obesity group, 
though these differences were not statistically significant 
(Fig. 4E, F). However, we observed a significantly higher 
richness of ARGs in the obesity group compared to the 
control group (p < 0.05) (Fig. 4G). Through application of 
LEfSe analysis, we pinpointed 32 ARGs that were signifi-
cantly enriched in the obesity group, notable examples 
of which include mdtF, evgS, and Escherichia coli acrA 
(LDA > 2, p < 0.001) (Fig.  4H). Moreover, when compar-
ing the abundance of resistance genes in samples from 
various countries, we observed that samples from China 

exhibited a significantly higher presence of ARGs com-
pared to the other four countries (Fig. S4).

Viral‑bacterial correlations analysis in obesity
In order to characterize the association between the 
gut virome and bacteriome in both obese subjects and 
healthy controls, a comparative analysis of phage and 
bacterial profiles within these two groups was con-
ducted. The regression analysis revealed significant 
positive correlations of the Shannon index and richness 
between the bacteriome and virome in both the con-
trol and obese groups, suggesting a close relationship 
between the bacterial-viral structures in the human gut 
(Fig. 5A, B). To further assess the correlation between 
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Fig. 4 Bacterial virulence factor and resistance gene annotation. A, B, C Comparison of bacterial virulence factor Shannon index (A), Simpson index 
(B), and richness (C) between the obesity and control groups. (D) Differential enrichment analysis of bacterial virulence factors (LEfSe, LDA > 2.0, 
p < 0.01). The yellow bar represents the obesity enriched VFs. E, F, G Box plots depicting bacterial resistance gene Shannon index (E), Simpson index 
(F), and richness (G). H Differential enrichment analysis of bacterial resistance genes (LDA > 2.0, p < 0.001). The yellow bar represents the obesity 
enriched VFs and the green bar represent the VFs enriched in control group
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them, we employed Spearman’s correlation coefficient 
to analyze the relationship between bacteria species 
and phage family levels. The results indicated that the 
number of correlations between the virome and bacte-
riome notably decreased in the obese group compared 
to the control group (993 vs. 1130, p < 0.001; Fig.  5C). 
Specifically, the correlations between the virus fami-
lies Vilmaviridae and Chaseviridae with their bacte-
rial hosts were significantly stronger in the control 
group (p < 0.01). Conversely, the correlation between 
the viral families Zierdtviridae and Drexlerviridae with 
gut bacteria was notably more intensive in the obese 
groups (Wilcoxon Test p < 0.01, ANOVA Test, p < 0.05, 
Fig. 5C). These results imply the existence of robust and 
intricate viral-bacterial relationships within the human 
gut. Furthermore, it raises the possibility that alteration 
in the virome-bacteriome relationship may be associ-
ated with the microbiome dysbiosis in obesity.

Obesity prediction based on multi‑kingdom signatures
Finally, we employed the machine learning framework 
provided by SIAMCAT to assess the predictive poten-
tial of species and functional features of gut microbes 
for obesity. We evaluated the predictive capacity of bac-
terial species traits, vOTUs traits, and KO functional 
traits individually. Notably, we observed higher predic-
tive accuracy for vOTUs relative abundance (AUC-ROC 
0.766, PRC-ROC 0.736) compared to that of KO func-
tional traits (AUC-ROC 0.710, PRC-ROC 0.688) and bac-
terial species traits (AUC-ROC 0.680, PRC-ROC 0.610) 
(Fig.  6A, B). A model trained on the combined relative 
abundances of differential bacteria, vOTUs, and KOs 
exhibited higher predictive power compared to using 
bacterial species or KO functional traits alone (Fig.  6C, 
D). However, its predictive accuracy remained lower than 
that achieved using vOTUs alone. To evaluate the influ-
ence of different algorithms on prediction accuracy, we 
reanalyzed the bacteria and vOTUs data using the Enet 
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algorithm, resulting in AUC-ROC values of 0.680 for bac-
terial data, which were not significantly different from 
those obtained with the LASSO algorithm. However, 
the predictive accuracy of vOTUs data decreased (AUC-
ROC value = 0.666).

We assessed the generalizability of various research 
models through cross-study validation, but the AUC-
ROC values for these prediction models are generally not 
high. The AUC-ROC values for predicting obesity based 
on bacterial species characteristics ranged from 0.40 
to 0.84, with prediction accuracy exceeding 0.7 in a few 
cohorts (Fig. 6E). Among these models, the model based 
on the cohort ‘China-2020’ can well predict the obesity 
phenotype in cohort ‘China-2020’ and the cohort ‘Aus-
tralia− 2015’. Meanwhile, the cohort ‘China-2020’ exhib-
ited the highest average prediction accuracy (AUC-ROC 
0.63) (Fig.  6E). The situation is similar for predictive 
models built with other single data sets. AUC-ROC val-
ues using KO data ranged from 0.21 to 0.76 (Fig. S4B), 
while AUC-ROC values derived from vOTU data ranged 
from 0.34 to 0.68, and the average AUC-ROC value is less 
than 0.6 (Fig. S4C). The cross-study validation results 
of prediction models using combined data sets did not 
show a significant improvement over those using a single 
data set. The AUC-ROC values ranges from 0.42 to 0.69
，and the average AUC-ROC value is less than 0.6 as well 
(Fig.  6F). These results suggest that obesity prediction 
models based on a single cohort do not always apply well 
to other cohorts, which may reflect the individual speci-
ficity of the gut microbiome.

Discussion
Mounting evidence has highlighted a promising link 
between the gut bacteriome or virome and obesity [11]. 
Nevertheless, systematic investigations into the intesti-
nal bacteriome and virome in the context of obesity have 
been lacking. In this study, we conducted an extensive 
meta-analysis of metagenomic data from both obese and 
non-obese control subjects, sourced from public data-
bases. Our findings revealed a significant reduction in 
both bacteriome and virome diversity and richness in 
obesity. Furthermore, the cross-kingdom correlations 
between the bacteriome and virome were found to be 
diminished in individuals with obesity. We then identi-
fied significant metabolic function alterations in the bac-
terial communities of obese individuals and pinpointed 
the responsible species driving these shifts. Notably, the 
analysis of the virulence group revealed significant cor-
relations with obesity, suggesting a non-negligible role of 
the virulence group in obesity development.

The Firmicutes to Bacteroidetes (F/B) ratio is one of 
the parameters used to assess gut microbiota in rela-
tion to various diseases, including obesity. Several earlier 

studies have reported an elevated F/B ratio in the gut 
microbiota of obese individuals compared to lean coun-
terparts. In fact, the F/B ratio has been proposed as a 
potential hallmark of obesity in some research. However, 
in contrast to these findings, a number of studies have 
reported no alteration or even a decrease in the F/B ratio 
in the context of obesity [12]. In this study, we identified 
a decreased F/B ratio in obese patients (Fig. S1B). These 
variations in results could have arisen from differences in 
study methodologies and the selection of study subjects. 
Therefore, we maintain that, at this point, the F/B ratio 
cannot be considered a reliable marker for obesity.

Our analysis revealed a total of nine bacterial species 
that were enriched in the obese group. As the species 
most enriched in obesity, Eubacterium sp. CAG:274 is 
reported here for the first time as an obesity-related bac-
terium. Notably, Megamonas hypermegale, Ruminococcus 
gnavus, Allisonella histaminiformans, Collinsella ster-
coris and Collinsella intestinalis are classified as “harm-
ful bacteria” that have been previously demonstrated to 
be positively correlated with the development of obesity 
[52–56]. The alignment with prior research reinforces 
the consistency of our findings. However, the case of 
Blautia wexlerae contradicts previous findings. A prior 
study indicated a depletion of Blautia wexlerae in obese 
children, which was associated with anti-inflammatory 
properties [57]. In a recent study, oral administration of 
Blautia wexlerae to mice induced metabolic changes and 
anti-inflammatory effects, ultimately improving obesity 
and diabetes [58]. Further work is needed to confirm the 
role of Blautia wexlerae in obesity. Most of the microbes 
enriched in control group that we identified are known 
as “beneficial microbes” related to non-obesity or respon-
sible for various anti-inflammatory functions in the gut. 
For example, Akkermansia muciniphila is a promising 
bacterium for modulating obesity, while Eubacterium 
eligens could promote host health by producing anti-
inflammatory agents [59, 60]. However, Alistipes shahii, 
previously recorded to be associated with obesity and gut 
inflammation in Japanese population [61], is significantly 
enriched in healthy control group in our study, which is 
in line with other reported studies [62, 63].

Obesity is recognized as a low-grade inflammatory 
condition contributing to systemic and adipose tissue 
inflammation [64, 65]. In our functional analysis, we 
identified significant enrichment of pathways associated 
with LPS synthesis in the obese group. This finding holds 
substantial implications, as heightened LPS release from 
the gut microbiota can lead to elevated circulating LPS 
levels and the subsequent release of pro-inflammatory 
factors within the body. These factors collectively con-
tribute to weight gain, adiposity, and insulin resistance, 
ultimately increasing the risk of conditions like obesity 
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and fatty liver [66]. Furthermore, our analysis revealed 
the enrichment of various metabolic pathways in the 
obese group, including riboflavin metabolism, folate 
biosynthesis, taurine and hypotaurine metabolism, glu-
tathione metabolism, and ubiquinone and other terpe-
noid-quinone biosynthesis. Among these, taurine and 
hypotaurine metabolism have been associated with intes-
tinal inflammation due to their potential to dysregulate 
the gut microbiota [67]. The remaining pathways primar-
ily exhibit antioxidant effects, likely reflecting a response 
to the elevated oxidative stress levels commonly seen in 
obesity. Our data also show a decreased microbial capac-
ity for the biosynthesis of ansamycins in obesity, a group 
of antibiotics displaying anticancer, antibacterial activity 
[68, 69]. It is intriguing to note that we observed a deple-
tion of the bacterial secretion system pathway and the 
Type IV secretion system module in the obese group (Fig. 
S3A). Moreover, a prior study also reported the absence 
of the Type VI secretion system module in the obese 
group [7]. Bacterial secretion systems have a significant 
connection to bacterial competition and their patho-
genicity toward the host. Variations in the abundance of 
these secretion systems within the intestinal flora may 
indicate shifts in the dynamics of microbial interactions 
and the overall ecological balance within the gut of obese 
patients. Moreover, these changes could affect the roles 
of intestinal bacteria in the overall health of the host.

Our analysis revealed that the richness and α-diversity 
of the VF-related genes were significantly higher in the 
obese group compared to the control group. Further-
more, the detection of differentially enriched virulence 
factor genes, such as espX4 and fepA, was consistent 
with the findings of previous studies [51]. Numerous 
studies have also demonstrated an association between 
virulence factors and inflammatory responses in humans 
[50], further indicating that the inflammatory conditions 
observed in obese patients might be attributable to the 
release of these virulence factors. Many virulence factor-
related genes remain unidentified. Thus, it is possible 
that the distribution of these genes in the gut microbes 
of obese patients is more extensive than what our study 
revealed.

The gut virome is increasingly reported to be corre-
lated with different diseases, including inflammatory 
bowel disease (IBD), cancer, diarrheal diseases and 
obesity [17]. Our study indicates that the gut virome 
may play a significant role in obesity, which is con-
sistent with previous literature [19]. In a recent study, 
researchers found that transplantation of fecal viral-like 
particles (VLPs) from lean mice to obese mice could 
lead to a notable reduction in weight gain and allevi-
ated symptoms of type 2 diabetes (T2D) in the recipi-
ent obese mice, suggesting a potential contribution of 

gut virus to obesity development [70]. It is currently 
understood that a significant portion of the human 
virome is composed of bacteriophages, while a substan-
tial portion remains unknown [71]. Within our analysis, 
over half of the vOTUs remained unannotated, while 
the annotated phages were mainly classified as Peduo-
viridae, Straboviridae, and Casjensviridae. To further 
evaluate the correlation between gut microbes and 
obesity phenotypes, we constructed predictive mod-
els and evaluated the models by machine learning. A 
recent study using large-scale gut microbiome data for 
machine learning to explore the relationship between 
gut microbiota and obesity obtained a strong correla-
tion between them [72]. Nevertheless, that study was 
restricted to a singular Chinese population and did 
not encompass an analysis of the viral composition. 
However, in our cross-study validation, the predic-
tion models showed a poor discriminative ability. The 
individual characteristics of the gut microbiome are 
determined by genes, geographical location and life-
style factors, and so on [73]. A study of populations in 
different regions of China also suggests that geographi-
cal differences may limit the application of metabolic 
disease diagnostic models based on gut microbes [74]. 
Although there are still some limitations in building 
machine learning models to predict obesity pheno-
types, relevant methods still have great application 
potential.

Conclusion
In summary, we have systematically examined the broad 
patterns of gut microbiome alterations among individuals 
with obesity. When compared to healthy counterparts, 
substantial shifts were observed in the characteristics 
of the gut microbiome. This was underscored by the 
presence of 39 distinct bacterial species and 28 vOTUs, 
accompanied by a noticeable decline in the correlation 
between the bacteriome and virome. Moreover, our 
in-depth functional analysis and investigation into the 
multi-kingdom signature within the context of the obe-
sity-related gut microbiome study further accentuate the 
potential significance of the gut microbiome as a crucial 
factor contributing to the obesity phenotype. Our study 
provides new insights into the understanding of the role 
of gut microbiome alterations in obesity and may be use-
ful for clinical intervention studies.
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