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varies widely across bacteria [2]. Fast-growers such as 
Vibrio cholerae display a generation time (GT, the elapsed 
time between successive divisions) of 17 min [3]. Mean-
while, slow-growing bacteria, such as Bradyrhizobium, 
can take weeks to develop in culture, making its study 
challenging and limiting their biotechnological utility. 
A recent study considers slow-growing microorganisms 
those having a GT > 5  h [4]. Despite more than a cen-
tury studying bacterial physiology [5, 6], the genetic and 
genomic factors shaping GR remain an open question [4, 
7]. Moreover, most of what we know of bacterial physiol-
ogy comes from fast-growing organisms like Escherichia 
coli, Salmonella or Bacillus [5]. Another well-known bac-
terial system is Caulobacter vibrioides (formerly known 
as C. crescentus) which has been thoroughly character-
ized as model for α-Proteobacteria [8–10]. This latter 
group includes biotechnologically relevant microorgan-
isms such as Rhizobiaceae since they are well-known as 
crop symbionts. Among rhizobia, Bradyrhizobium is a 

Introduction
Duplication is the fundamental property of all living 
cells. Bacteria are the simplest cells and growth rate (GR) 
is the key parameter to model their duplication capac-
ity, yield and stress tolerance. It reflects bacterial fitness, 
biochemistry and competitiveness [1]. The maximal GR 
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Abstract
The α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite 
their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this 
work, we produced quantitative data on four different isolates: B. diazoefficens USDA110, B. diazoefficiens USDA122, 
B. japonicum E109 and B. japonicum USDA6 which are representative of specific genomic profiles. Notably, we 
found conserved physiological traits conserved in all the studied isolates: (i) the lag and initial exponential 
growth phases display cell aggregation; (ii) the increase in specific nutrient concentration such as yeast extract 
and gluconate hinders growth; (iii) cell size does not correlate with culture age; and (iv) cell cycle presents polar 
growth. Meanwhile, fitness, cell size and in vitro growth widely vary across isolates correlating to ribosomal RNA 
operon number. In summary, this study provides novel empirical data that enriches the comprehension of the 
Bradyrhizobium (slow) growth dynamics and cell cycle.
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complex monophyletic clade of slow-growing bacteria [2, 
11–14]. The genus is highly prevalent in soil and includes 
symbiotic and free-living microorganisms of great eco-
nomic interest [15–18]. Its metabolism and its symbiotic 
interaction with crops, such as soybean or peanut, have 
been very well characterized but little is known about its 
growth physiology and cell cycle [19–21].

The bacterial cell physiology is addressed using the 
growth curve i.e., following optical density over time, 
as an estimator of bacterial abundance. Classically, four 
stages are recognized along bacterial growth curve since 
first characterized by Janet Lane-Claypon in 1909 [5, 6, 
22]: the lag phase (I), the exponential growth phase (II), 
the stationary (III), and the decline phase (IV). Growth 
curve study allows determining key physiological param-
eters such as growth rate (or its inverse, the GT), the 
lag phase duration and, the maximum system carry-
ing capacity. In the literature, Bradyrhizobium growth 
curves are typically performed by taking one OD mea-
surement per day (e.g [23, 24]). While for general studies 
this sampling frequency provides enough information, 
detailed cell physiology studies require higher resolu-
tion. For instance, the doubling time, a key parameter of 
bacterial physiology, requires sampling at least twice per 
generation time, which in Bradyrhizobium ranges from 6 
to 48 h. Additionally, since OD is an indirect method of 
estimating cell numbers, growth curves must be comple-
mented with colony counting and/or microscopy studies.

In the present work, we chose four representative 
Bradyrhizobium, isolates from temperate land whose 
genomes are fully available: B. diazoefficiens USDA122 
[25], B. diazoefficiens USDA110 [18, 26], B. japonicum 
USDA6 [27] and B. japonicum E109 [28]. We character-
ized the physiology of this isolates using several experi-
mental approaches: manual and automatic growth 
curves, colony counting, microscopy, and pairwise 
competition experiments. B. diazoefficiens USDA110 
(Bd110), B. diazoefficiens USDA122 (Bd122), B. japoni-
cum USDA6 (Bj6) are the main representatives of spe-
cific genomic profiles regarding the presence of genomic 
islands [29]. Meanwhile, the B. japonicum E109 (BjE109) 
has a similar profile to BjU6 but it is highly used for 
soybean growth promotion in temperate regions [28]. 
Despite their high genome similarity, we observed some 
significant physiological differences among these isolates, 
which that we correlated to specific genomic features.

Experimental procedures
Growth conditions and quantification
the strains used in this study are summarized in Addi-
tional File 1: Table S1 in the supplements. Brady-
rhizobium strains were grown aerobically in yeast 
extract-mannitol (YEM) [30], or the AG medium [30]. 
Total biomass was estimated by measurement of the 

optical density at 450  nm (OD450nm) and the number 
of viable bacteria by the number of CFU on YEM agar 
plates supplemented with Congo Red (10 mg/L) (YMA), 
using the microdilution method [31]. For manual growth 
curves, 50-mL cultures were grown in 250-mL Erlen-
meyer flasks at 28  °C with rotary shaking at 200 rpm in 
contact with the air.

Automated growth curve measurements
Saturated cultures of the indicated microorganism were 
diluted 1/1000 in culture media. Bacterial prepara-
tions were distributed in triplicate or quadruplicate in 
p96 microplates. Growth-curve experiments were per-
formed using a Tecan Infinite Sunrise microplate reader 
at 28  °C, with absorbance measurements (450  nm) 
taken at 30-minute intervals for 5–7 days with agitation 
for 15  min. The slopes during exponential phase were 
directly obtained using GrowthRates program [32].

Microscopy
Bacterial samples were placed on a PBS agar 1.5-2% m/v 
slide (or the described medium) and observed at the indi-
cated growth phase. For cell size and fluorescence deter-
minations, we employed a Nikon Eclipse T2000U light 
microscope at 640X to 1000X magnification.

For time-lapse microscopy, an aliquot was taken from 
an exponentially growing culture and placed in AG-agar 
medium slide sealed with VALAP resin (vaseline, linoleic 
acid, paraffin 1:1:1) [33]. A Zeiss Axiobserver 7 micro-
scope, with an iPlan-Apochromat 63x oil M27 objective 
was automated every 30 min for 5 days. To maintain the 
focus along the experiment, a small region of interest 
(ROI) containing a cell was selected. Then, we programed 
the autofocus set up within the Zen Blue controller 
software (Zeiss) to find the plane that maximized the 
contrast. In case that contrast maximization failed, we 
registered 4 fields and 10 planes in Z axis using a 0.5 μm 
difference.

Confocal laser-scanning microscopy (CLSM), was per-
formed in an Olympus FV1000 microscope employing 
the oil objective PlanApo N (60 × 1.42 NA). Images were 
taken in the XY plane along the Z axis using a z-step 
increment of 0.22 μm (Z-stack).

Cell size measurement
To carry out the measurement, the strains B. japonicum 
E109 and B. diazoefficiens USDA110 were grown in YEM 
medium, starting from precultures and then cultivated 
with shaking at a temperature of 28 °C in a 50 mL Erlen-
meyer flask. Aliquots were taken at different times and 
placed in PBS-agar medium on a slide. Images were taken 
on a Nikon Eclipse TE2000-U microscope. They were 
analyzed using FIJI [34].
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Competitive fitness assays
These assays were performed similarly as in [35] but 
microscopy instead of flow cytometry was utilized for 
determining the proportion of fluorescent cells in each 
sample. B. japonicum E109, B. diazoeffeciens USDA110, 
B. japonicum USDA6T and B. diazoefficiens USDA122 
were co-cultivated with a Bd110 expressing the green 
fluorescent (GFP+) by integration into its genome (Addi-
tional File 1: Table S1). For this, 3–4 days-old precul-
tures were quantified by OD and mixed with Bd110 
gfp + in a ∼ 1:1 proportion that was verified by fluores-
cent microscopy. The experiment started by using 15 µL 
of the mix to inoculate 15 mL of YEM medium in 50mL 
Erlenmeyer with each mix of cells composed of ∼ 50% 
of fluorescent Bd110 gfp + and ∼ 50% of each non-fluo-
rescent strain tested. Subsequently, daily aliquots were 
taken, measuring the gfp + vs. gfp- ratio. B. diazoeffeciens 
USDA110 gfp + strain was grown alone to normalize the 
fluorescence value but practically no loss of fluorescence 
was observed. Fitness for each strain was calculated as 
follows Wstrain = ln

(
Nfinal
Ninitial

)
/ln

(
Ngfp.final
Ngfp.initial

)
 where 

Wstrain is the fitness of the strain under study, Ninitial and 
Nfinal are the quantity of the derivative strain before and 
after the competition (non-fluorescent) and Ngfp.initial 
and Ngfp.final are the numbers of cells of B. diazoefficiens 
USDA110 gfp+ before and after the competition. Final 
cell numbers were estimated using OD. The experiments 
were performed at least 3 times. Results were expressed 
as relative fitness (Wrel) is the ratio of the W of each 
strain and the W of the reference strain, B. diazoefficiens 
USDA110 gfp+.

Fluorescent D-amino acid (FDAA) labeling
The procedure was done as referred in [36]. E. coli was 
grown in LB at 37  °C. A. fabrum C58 was grown in LB 
at 28  °C. Bradyrhizobia were cultured in AG at 28  °C. 
The saturated cultures were washed and a 1/1,000 dilu-
tion was made on the same medium. At exponential 
phase (OD ≈ 0.4) and a 750 µL aliquot was resuspended 
in 100 µL of fresh media and 5 µL of FDAA of a stock 
solution (5 µM) was added. As FDAA, green sulfonated 
BODIPY-FL 3-amino-D-alanine (sBADA) was used. This 
was incubated for 10% of GT. Cells are then washed twice 
and placed on a PBS agar 1.5-2% m/v slide to microscopy 
observation.

Results
Bradyrhizobia growth curve presents an abnormal lag 
phase
We performed manual growth curves following OD450nm 
over time on the earlier described temperate isolates of 
Bradyrhizobium: Bj6, BjE109, Bd110, and Bd122. In the 
initial 20 to 24 h, we noticed that the cultures of the four 
strains display a decrease in OD450nm (Fig. 1a).

The reduction in OD was quantified for all 4 strains and 
corresponded to a clearing in the growth media. To test 
if OD450nm evolution accompanied population growth we 
plated bacteria along the growth curve. Throughout most 
of the experiment, colony forming unit (CFU) count fol-
lowed the OD450nm evolution (Fig.  1b). However, dur-
ing the first 24  h, during the lag phase the CFU counts 
increased or remained stable. This phenomenon was not 
exclusive of the classic YEM medium; it also occurred in 
other media such as AG or in YEM with alternate carbon 
sources (data not shown). The OD450nm reduction was 
accompanied with the appearance of aggregates (Fig. 1c). 
These aggregates were not inorganic precipitates of the 
medium components, as it can be normally observed, 
since under the microscope they clearly corresponded to 
Bradyrhizobium as shown by cell shape (Fig. 1c). In sum, 
Bradyrhizobium displays a distinctive lag phase in which 
cells do not die but aggregate, clarifying the medium. 
Hence, during this period CFU evolution does not cor-
relate to OD.

B. Japonicum tend to have a faster growth than B. 
diazoefficiens
We compared the growth rate of these four strains com-
puting the generation time obtained from manual growth 
curves of OD over time in several experiments. Results 
are synthesized in Fig. 1d and in Table 1.

We observed that growth rate was not uniform in all 
the isolates. Notably, Bj6 displayed the lowest genera-
tion time of approximatively 9.4 ± 1.6 hs. BjE109 showed 
a doubling time of 15.7 ± 2.7 hs. Meanwhile, with a gen-
eration time of 17.8 ± 4 hs. and 18.8 ± 3.5 hs., Bd110 and 
Bd122 respectively displayed the slowest growth among 
the tested strains. Statistical analysis showed that Bj6 was 
significantly faster that Bd110 and Bd122. Meanwhile, 
BjE109 showed a growth rate that was not statistically 
different of either group although there is a biological 
trend in our experiments for this strain to grow slower 
than the former but faster than the B. diazoefficiens 
strains. Despite these strains displayed a wide variability 
between experiments, we observed that B. japonicum 
tends to be faster than B. diazoefficiens.

Nutrient-dependent growth inhibition
YEM, the classical medium for Bradyrhizobium cultiva-
tion, is a minimal medium that allows robust but slow 
and variable growth of these microorganisms [37]. To 
facilitate its cultivation, we aimed at improving its com-
position. Two critical components of YEM are mannitol, 
as carbon source, and yeast extract (YE) as source of vita-
mins and micronutrients [38]. Also, gluconate (Glc) has 
been recommended to improve growth of slow-growing 
rhizobia. Previous studies showed that, in YEM, man-
nitol is in excess and does not condition Bradyrhizobial 
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growth [37, 39]. They suggest also suggest that YE con-
tent influences Bradyrhizobial growth [38].

To test this, we assayed the growth of Bradyrhizobium 
in modified YEM medium increasing YE concentra-
tion. First, we tested BjE109 and Bd110 using manual 
growth curves which allow optimal aeration, critical to 
obtain faster growth rates (Fig. 2). One would expect that 
increasing nutrient concentration would lead to higher 
growth until reaching the maximum growth capacity [1, 
40, 41]. Growth curves were performed increasing YE 
content from its original concentration (0.5 gr/L) up to 
5 gr/L (10 times more, but similar to amount used in the 
classical Lysogeny Broth). Notably, YE addition improved 
the growth of both Bradyrhizobium strains until reaching 
a maximum at 1.5 gr/L displaying a GT of 12.32 ± 0.57 hs. 
for BjE109 and 11.32 ± 0.73 hs. for Bd110 (Fig. 2). After 2 

gr/L, further addition of YE repressed growth (16.76 ± 0.6 
gr/L for BjE109) or it completely inhibited growth in the 
case of Bd110 at 5 gr/L (Fig. 2).

To generalize our observations to other isolates of the 
species, we extended our study to include Bd122 and 
Bj6 by performing automated growth curves increas-
ing YE. For instance, the optimal growth of Bd110 and 
Bd122 occurred at 1.5 gr/L, but at 2gr/L, growth started 
to be inhibited, ultimately being arrested at 5 gr/L (Addi-
tional File 1: Figure S1). A similar situation was observed 
for BjE109 and Bj6, except that, the maximum growth 
occurred at 1.5 and 2.0 gr/L, and that growth was not 
fully inhibited at 5 gr/L (Additional File 1: Figure S1). 
As a general trend, we observed that Bradyrhizobium 
japonicum tolerated higher nutrition concentration and 
developed higher growth rates than Bradyrhizobium 
diazoefficiens.

To test if this phenomenon was a peculiarity of YE 
or could be noticed with other nutrients we also tested 
growth under increasing concentrations of Glc. We 
tested concentrations ranging from 0.01 to 1% m/v. Over-
all, results were similar but to a lesser extent than with 
the addition of YE. Supplementing the media with extra 
Glc improved growth in all 4 strains, but a concentration 

Table 1 Generation time of Bradyrhizobium strains cultivated in 
classic YEM medium

Generation time (hours)
Strain Average Median SD N
BjE109 15.7 15 2.745 11
Bj6 9.4 9.3 1.631 5
Bd110 17.8 17.3 4.054 8
Bd122 18.8 19.9 3.532 5

Fig. 1 General features ofBradyrhizobium growth.(a) A representative growth curve manually performed by following OD450nm along time in classical 
YEM medium of B. japonicum E109 (Blue), B. japonicum USDA6T (Red), B. diazoefficiens USDA110 (green) and B. diazoefficiens USDA122 (purple). (b) Colony 
Forming Units per mL from a) of culture are plotted as a function of time. (c) Photograph of typical cell aggregates observed for the four isolates that 
spontaneously appear during the first 48hs accompanying the OD reduction (left). Microscopy observation of B. japonicum E109 aggregates using 1000X 
magnification (right). The photograph shows the cellular nature of aggregates. The black bar indicates 10 μm. (d) Generation times were calculated 
from several manual growth curves. The graph shows the box & whiskers plot minimum to maximum showing all the individual values. The central line 
indicates the median (n ≥ 6). Statistical significance was analyzed using Kruskal-Wallis non-parametric tests followed by Dunn’s multiple comparisons. *** 
means p < 0.001
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of the compound beyond 0.1% m/v it inhibited Bradyrhi-
zobium growth (Additional File 1: Fig. S2).

This set of experiments allowed us to obtain an 
improved YEM formulation using 1.5 gr/L of YE and 
0.1% of Glc that optimized Bradyrhizobium growth using 
the optimal concentration of both medium components.

Bradyrhizobia cell size does not correlate with cell age
Bacteria usually divide by binary fission which leads to 
two equally sized symmetric daughter cells. In most of 
the best-known models, size positively correlates with 
cell age [6]. Meanwhile, many α-Proteobacteria have 
been shown to present an asymmetric division with a 
new cell smaller than the mother cell [42]. To charac-
terize cell division in Bradyrhizobium, we followed the 
cell size along 12 days (288  h) of growth curve by con-
trast microscopy for strains Bd110 and BjE109 in YEM 
(Fig.  3a and Additional File 1: Table S2). Initially cell 
reduced their size between day 0 and day 3 (72 h) until 
day 6 (144  h). Subsequently, between day 6 and day 12 
cell size increased again returning to initial length values. 
By comparing the obtained cell length to OD450nm values, 
we can correlate cell size to the growth curve (Fig.  3b 

and c). Interestingly, bradyrhizobia reduced cell length 
upon entering exponential phase. Then cell size increases 
again during the transition between late exponential and 
stationary phase. This is opposite to what is observed 
to well-known models such as Escherichia coli. Mean-
while, B. japonicum E109 shows a larger cell size than B. 
diazoefficiens USDA110 during most of the experiment, 
particularly in exponential phase (Fig. 3a). This behavior 
was not specific to the medium or strain, since the same 
trend was observed when the experiment was performed 
in AG medium using Bd110, Bd122, Bj6, and BjE109 
(Additional File 1: Figure S3).

Bradyrhizobia isolates display large fitness differences that 
correlate with growth rate and cell size
Growth rate is a good estimator of cells fitness although 
it must be taken with caution [43]. However, it does not 
take into account advantages occurring beyond balanced 
growth (i.e. outside the exponential growth phase). Addi-
tionally, we observed varying growth rates and cell sizes 
among each of the Bradyrhizobium isolates. In the case 
of BjE109, we observed a repeated trend, though not 

Fig. 2 Increasing nutrient concentration inhibitsBradyrhizobium growth. Growth curves plotting OD450nm as a function of time (in hours) of Bd1110 
(shades of green) and, Bj109 (shades of blue) in manual growth curves. Strains were grown on increasing yeast extract concentration as indicated by 
darker colors. Upper panels show representative growth curves out of 3 performed that were used to calculate the GT values. The lower panels plot the 
mean value of generation times for both strains at the indicated YE concentration. Statistical significance was analyzed using One-way ANOVA and the 
Tukey test for multiple comparisons. Letters denote groups displaying statistically significant differences (P of at least < 0.05)
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statistically significant, of a faster growth than Bd110 and 
Bd122.

To disentangle both questions simultaneously, we 
measured the fitness of Bj6, BjE109, Bd110, and Bd122. 
In this aim, we assessed competitiveness in pair-wise 
competitions. We used a GFP-tagged Bd110 (Additional 
File 1: Table S1) to co-culture it in equal amounts with 
each one of the aforementioned Bradyrhizobium strains. 
Then, we grew the cells for two weeks and, using fluores-
cence microscopy, we monitored deviations from a 1:1 
ratio during this period until arriving to stationary phase 
(OD450nm ≈ 2.5). Next, we calculated the absolute fitness 
(W) from these deviations and then we relativized to the 
competition Bd110 against Bd110::gfp + to obtain a rela-
tive competitivity index (Wrel, see methods). As a general 
trend, we observed that Bd110 is outcompeted by the rest 
of the isolates in all the growth phases (Fig. 4a). In all data 
points the Wrel was > 1. Also, Bj6 is significantly fitter that 
the rest of the strains, displaying the highest competitiv-
ity index at the end of the experiment (Fig. 4a and Addi-
tional File 1: Figure S4 and Table S3). While there are not 

statistically significant differences between BjE109 and 
Bd122, the former tends to be more competitive than 
the latter, showing higher Wrel in 2 out of 3 experiments 
(Additional File 1: Figure S4 and Table S3).

The slow growth of Bradyrhizobium allows to observe 
the moment of the growth curve where the strains dis-
play highest fitness differences. Interestingly, the highest 
differences are observed at the beginning of early expo-
nential phase, suggesting that the competitiveness differ-
ences occur during lag phase (Fig. 4b) and then diminish 
as the growth curve progresses.

Bradyrhizobia present division asymmetry and an unusual 
cell cycle
The observation that bradyrhizobia cell size does not cor-
relate to cell age (Fig. 3) led to pursue a better character-
ization of its entire cell cycle. In this aim, we performed 
time lapse microscopy of Bj E109 and Bd110. For this, 
we imaged cells on agar pads, taking photographs every 
30  min for 5 to 6 days. Under our experimental condi-
tions, we noticed that cell duplication is not a continuous 

Fig. 3 Cell size dynamics along the growth curve. Bd110 (green) and BjE109 (blue) were grown on YEM medium. Samples were taken at different phases 
of the growth curve. Cells were photographed under the microscope and the OD450nm of the culture was measured. (a) The distribution of individual cells 
lengths of Bd1110 (green, USDA110) and, Bj109 (Blue E109) was plotted along the experiment. The thick lines indicate the median for each timepoint. 
Dotted lines show the quartile range. Descriptive statistics can be found in Additional File 1, Table S2. (b) Each median of cell length (left axis) is plotted as 
a function of OD450nm (right axis) is plotted as a function of time for each strain
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nor homogeneous process; it does not occur uniformly 
across all cells in a similar way. Some cells replicate more 
actively than the rest of the population. Cells under the 
microscope showed periods of replicative burst and peri-
ods of relative quiescence. These periods were not simi-
lar for all cells observed, and we noted that bacteria tend 
to cluster closely and approach each other. To illustrate 
this we present a representative video of the many mov-
ies performed. (Video S1). Meanwhile, the division of the 
cells clearly differs from binary fission [44–46] since we 
observed an heterogenous behavior and a large asymme-
try with long mother cells producing somewhat smaller 
daughter cells.

To determine the differences in cell cycle and divi-
sion in more detail, we cultured Bd110 and Bj109 in the 
presence of the fluorescent D-amino acid sBADA [47]. 
D-amino acids only incorporate into the cell wall of 
actively replicating cells; therefore, sBADA specifically 
labels actively replicating sites of cells [47]. For com-
parative purposes we employed Escherichia coli and 
Agrobacterium fabrum C58 (formerly known as A. tume-
faciens). E. coli is a well-known Gram-negative bacteria 
that divides by binary fission. Meanwhile, A. fabrum, 
like other α-Proteobacteria, displays a polar growth that 
has been well characterized by other laboratories [42]. 
Figure  5 shows a confocal laser scanning microscopy 
(CLSM) images of cells in exponential phase stained with 
sBADA. E. coli shows a homogeneous stain along the 
cell. In A. fabrum C58 the fluorescence signal is present 
throughout the entire cell. However, as expected due to 
its asymmetrical growth, an increase in the sBADA signal 
can be observed at the growing (new) pole. Bradyrhizo-
bium isolates displayed a particular signal pattern. Cells 

are longer and an increasing gradient of fluorescence sig-
nal along the longitudinal axis of the cell is observed from 
old to the new pole. The maximum sBADA signal is very 
strong at the new pole. Therefore, we find that the stain 
differs between Agrobacterium and Bradyrhizobium with 
a more pronounced asymmetry in the latter. This is bet-
ter observed when cells are incubated constantly with the 
fluorescent D-amino acid (Additional File 1: Figure S5).

To better assess these differences, we analyzed the 
images taken and quantified the sBADA signal using 
MicrobeJ [48]. This allowed us to quantify differences 
in the signal between bradyrhizobia and Agrobacterium 
fabrum C58. The sBADA signal maxima are located next 
to the new pole both in the case of Bj109 (Fig.  6a) and 
Bd110 (Fig.  6b). A. fabrum C58 displays an asymmetric 
signal that is more disperse and not as close to the new 
pole (Fig.  6c). When the three strains are compared by 
normalizing their length (Fig. 6d), it becomes clear thar 
signal maxima of Bj109 and Bd110 occur around the new 
pole, denoted by 1, whereas in the case of A. fabrum it is 
found at 0.6. This shows that the Bradyrhizobium strains 
display a stronger asymmetry than Agrobacterium.

This strong asymmetric cell growth pattern is similar in 
both bradyrhizobia studied (Figs. 5 and 6) strongly sug-
gesting that this is a common behavior of the genus.

Discussion
Bacterial growth and cell cycle has been widely studied 
in specific models such as E. coli, Salmonella enterica, 
Bacillus subtilis and Caulobacter vibrioides [5, 49–51]. 
Information for other bacterial species has also been col-
lected but their study remains much more limited [52, 
53]. In particular, studies on Bradyrhizobium physiology, 

Fig. 4 B. japonicum tend to display a fitness advantage over B. diazoefficiens during lag to early-exponential phase. Pairwise competition experiments 
between Bd110::gfp + and Bd122 (purple), Bd110 (green), Bj6 (red) and, Bj109 (blue) was performed as described in material and methods. For each time 
point OD450nm was determined. (a) Relative fitness at early (3 days), late exponential (7 days) and stationary phase (10 days) of growth in co-culture. The 
Bd110 against the same strain expressing gfp was taken as reference for relativizing fitness (green dotted line). Points represent mean with SEM (n = 4). 
Statistical differences were computed using Two-way ANOVA and Holm-Sidak for multiple comparisons. * and ** mean p < 0.05 and p < 0.01 respectively. 
(b) A representative dataset where Wrel (left axis, filled dots, dotted connecting lines) and OD450nm (right axis, solid connecting lines, empty dots) at each 
time point were plotted as a function of elapsed time since the beginning of the experiment
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Fig. 5 Bradyrhizobium present an extreme asymmetry. Cells were stained with sBADA and photographed using CLSM as indicates un material and meth-
ods. A. fabrum C58 an asymmetric α-Proteobacterium was used as a control of an asymmetric cell and E.coli as a regular bacterium dividing by binary 
fission. The white bar at the central panel corresponds to 5 μm for all panels
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particularly those quantitative, remain scarce and mostly 
limited to Bd110 [21, 53]. Also, reports on Bradyrhizo-
bium physiological parameters, particularly generation 
time, remain highly variable across the literature.

Here, we conducted a comparative study of the gen-
eral physiology of 4 strains that display the representative 
genomic profiles [29] and thrive in temperate environ-
ments. We devoted particular attention to Bd110 since 
is the best studied strain and to BjE109 due to its great 
agronomical importance [17, 28, 54]. While it is tempt-
ing to generalize our conclusions to the whole genus, 
our study is limited to two closely related species, B. 
japonicum and B. diazoefficiens, belonging to the same 
superclade (japonicum, superclade I). To achieve a 
more comprehensive understanding, it would be neces-
sary to extend our study to include other groups of the 
genus, such as Bradyrhizobium elkanii (elkanii, super-
clade II), Bradyrhizobium oligotrophicum (the photosyn-
thetic, superclade III), and Bradyrhizobium lablabi (the 
extra-slow growers, superclade IV) [14]. However, this is 
beyond of the scope of our current work, which primar-
ily focuses on temperate strains commonly employed as 
soybean inoculants.

We employed 4 different approaches to quantify the 
general physiology of these species. Overall, a consis-
tent trend emerged, with B. japonicum displaying a faster 
growth than B. diazoefficiens isolates: they exhibited a 
lower doubling time both in manual and in automated 
growth curves (Figs. 1 and 2; Table 1); in line with bac-
terial “growth laws” that correlate growth to cell size [5], 
they displayed larger cell size in exponential phase (Fig. 3 
an d Additional File 1: Figure S3); they tolerated higher 
nutrient loads (Fig. 2 and Additional File 1: Figures S1 and 
S2); and, outperformed in pairwise competition (Fig.  4 
and Additional File 1: Table S2). While each individual 
approach did not display drastic differences a consistent 
trend was observed across all experiments. Genomic 
studies have previously linked growth rate to the ribo-
somal RNA operon (rrn) ploidy [7]. Indeed, experimental 
work has shown this in several bacterial models, although 
some controversy remains regarding whether rrn ploidy 
affects doubling time or lag phase duration [55–58]. In 
either case, B. japonicum displays 2 rrn while B. diazoef-
ficiens harbors a single rrn copy (Additional File 1: Fig-
ure S6). This genomic difference aligns with the observed 
faster growth of B. japonicum (Figs. 1 and 2), cell size in 
exponential phase (Fig.  3) and superior competitiveness 

Fig. 6 Bradyrhizobium displays stronger growth asymmetry than Agrobacterium fabrum C58. Using FIJI plugin MicrobeJ [48], we built an sBADA local 
maxima density heatmap in B. japonicum E109 (a) (n = 162), B. diazoefficiens USDA110 (b) (n = 86) and (A) fabrum C58 (c) (n = 90) cells. Grey dots represent 
events of local maxima detected within the cell. (d) Proportion histogram of local maxima events shown in (a), (b) and (c), along (B) japonicum E109, B. 
diazoefficiens USDA110 and A. fabrum C58 cells. Cell poles 1 and − 1 were defined by intensity of sBADA channel, being cell pole 1 the one with higher 
intensity. The vertical grey line denotes the cell center. We used the same threshold settings of intensity and Z-score for sBADA maxima detection in every 
experiment
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(Fig.  4). In this latter experiment, we observed that the 
other Bradyrhizobium strains outcompete BdUSDA110. 
The slow growth of Bradyrhizobium allowed us to assess 
fitness differences at different stages of the growth curve. 
We noticed that the most fit strains gained an advantage 
at the beginning of the experiment with the majority of 
fitness gain for strains Bd122, BjE109 and Bj6 occurring 
during lag phase (Fig. 4b). This is consistent with previ-
ous studies showing that rrn ploidy impacts lag phase 
rather than doubling time [57].

B. japonicum strains displayed more tolerance to high 
concentration of nutrients. In this regard, we found a 
peculiarity in bradyrhizobia. It is normally assumed that 
higher nutrient concentrations lead to faster growth, 
as reflected in Monod curves [1]. Unexpectedly, we 
observed that increasing concentrations of gluconate or 
yeast extract above the optimal level reduce the growth 
rate of Bradyrhizobium (Fig. 2 and Additional File 1: Fig-
ure S1). Such behavior could explained by the ecological 
role of bradyrhizobia if we think on them as exclusive 
oligotrophic bacteria that competes with copiotroph for 
the same resources [41, 59]. Bradyrhizobium would be 
more efficient at low concentrations that their copiotroph 
counterparts at low nutrient concentration. However, 
higher nutrient concentration might be toxic for brady-
rhizobia due to exacerbated transporters that would 
allow the entry of certain nutrients beyond the levels tol-
erable by cell metabolism.

Another anomaly in Bradyrhizobium growth was 
the formation of cellular aggregates at the beginning of 
the exponential phase (Fig.  1c and d). This phenotype 
deserves further exploration beyond the present study. 
Cell aggregation could contribute to growth. Indeed, 
it is observed during cell plating that denser bacte-
rial suspensions take 3–4 days to develop while in most 
diluted bradyrhizobial suspensions can take 1–2 weeks 
to develop colonies in the plate. Therefore, bradyrhizo-
bial replication could be density-dependent. It could be 
driven either by quorum sensing (QS) and/or cell-cell 
contact. The N-acyl homoserine lactones, the QS sig-
naling molecules, have been shown to alter swimming, 
aggregation or biofilm formation but not growth of 
Bradyrhizobium [60, 61]. Meanwhile, a mild cell cycle 
acceleration due to cell contact with surfaces has been 
observed in other α-Protobacteria [62].

Overall, we have better characterized Bradyrhizobium 
growth and successfully described its particular cell cycle 
with an asymmetric division that is more pronounced 
than in other α-Proteobacteria such as Agrobacterium 
fabrum C58 (Figures, 5 and 6). To fully characterize 
Bradyrhizobium cell cycle, it remains to mark other cell 
components such as DNA and to describe chromosome 
choreography and spatial structure (63–65).

Our experiments suggest that rrn ploidy may shape the 
physiology of brayrhizobia. Using 4 different approaches 
(cell size, growth rate, nutrient concentration tolerance, 
and pairwise) we observe the same trend: B. japonicum 
(2 rrn) displays faster growth than B. diazoefficiens (1 
rrn). While the differences are not always statistically 
significant, we find it suggestive that all these different 
approaches provide similar results. We plan to investigate 
this phenomenon in further works by deleting or adding 
rrn copies within the same genetic background. We do 
not mean that rrn ploidy is the main factor driving cell 
physiology. For instance, Bj6 displayed the fastest growth 
among the strains in our working conditions, although 
it displays the same rrn structure than BjE109. Mean-
while, rrn, among other factors such as codon usage, 
tRNA ploidy, and genomic location of transcription and 
translation genes strongly condition cell physiology [3, 4, 
35, 55, 66] and evolution [67]. There very are few studies 
linking the chromosome structure and gene order to cell 
physiology. Most of the insight comes from well-known 
model organisms such as E. coli and B. subtilis. The pres-
ent work initiates the physiological characterization of an 
extremely-slow growing culturable organism represent-
ing a first step towards exploring this subject in such eco-
nomically relevant microorganism. Indeed, finding ways 
to engineer these microorganisms to grow faster could 
have great biotechnological potential by improving inoc-
ulant production.
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