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Abstract
Background Severe burns may alter the stability of the intestinal flora and affect the patient’s recovery process. 
Understanding the characteristics of the gut microbiota in the acute phase of burns and their association with 
phenotype can help to accurately assess the progression of the disease and identify potential microbiota markers.

Methods We established mouse models of partial thickness deep III degree burns and collected faecal samples for 
16 S rRNA amplification and high throughput sequencing at two time points in the acute phase for independent 
bioinformatic analysis.

Results We analysed the sequencing results using alpha diversity, beta diversity and machine learning methods. 
At both time points, 4 and 6 h after burning, the Firmicutes phylum content decreased and the content of the 
Bacteroidetes phylum content increased, showing a significant decrease in the Firmicutes/Bacteroidetes ratio 
compared to the control group. Nine bacterial genera changed significantly during the acute phase and occupied 
the top six positions in the Random Forest significance ranking. Clustering results also clearly showed that there was 
a clear boundary between the communities of burned and control mice. Functional analyses showed that during 
the acute phase of burn, gut bacteria increased lipoic acid metabolism, seleno-compound metabolism, TCA cycling, 
and carbon fixation, while decreasing galactose metabolism and triglyceride metabolism. Based on the abundance 
characteristics of the six significantly different bacterial genera, both the XGboost and Random Forest models were 
able to discriminate between the burn and control groups with 100% accuracy, while both the Random Forest and 
Support Vector Machine models were able to classify samples from the 4-hour and 6-hour burn groups with 86.7% 
accuracy.

Conclusions Our study shows an increase in gut microbiota diversity in the acute phase of deep burn injury, rather 
than a decrease as is commonly believed. Severe burns result in a severe imbalance of the gut flora, with a decrease in 

In silico analysis of intestinal microbial 
instability and symptomatic markers in mice 
during the acute phase of severe burns
Bochen Hou1,2,3†, Honglan Zhang1†, Lina Zhou2†, Biao Hu4, Wenyi Tang2, Bo Ye2, Cui Wang1, Yongmei Xu1, 
Lingyun Zou2* and Jun Hu1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-024-03266-9&domain=pdf&date_stamp=2024-4-8


Page 2 of 12Hou et al. BMC Microbiology          (2024) 24:124 

Introduction
A severe burn is a serious trauma that can pose a serious 
risk to personal safety. Scalding can lead to the destruc-
tion of skin tissue, which can cause infection, blood loss, 
shock and other complications. In addition, burns can 
cause scarring, deformity, and dysfunction, all of which 
may have long-term effects on the patient’s physical and 
mental health [1]. Burns also cause neurological cogni-
tive dysfunction, including memory deficits, amnesia, 
dementia, depression, anxiety, post-traumatic stress dis-
order (PTSD), hallucinations and delirium [2].

The human gut microbiome is a complex community 
system of over 100 trillion bacteria that defends against 
pathogenic microorganisms and helps to maintain the 
intestinal epithelial barrier [3]. Metabolites of the intesti-
nal microbiota, including some components from bacte-
rial cells, are mainly produced in the vicinity of intestinal 
epithelial cells. They are deeply involved in a small group 
of shared pathways that control intestinal barrier func-
tion, including maintenance of energy homeostasis, 
regulation of osmotic homeostasis, regulation of biofilm 
formation, and others. Dysbiosis affects the homeostasis 
of metabolites, which impairs the function of the intesti-
nal barrier [4, 5]. Recently, the gastrointestinal bacterial 
microbiome has been shown to be a key component in 
regulating the immune response and recovery from burn 
injury, and may also contribute to significant adverse 
sequelae after injury, such as sepsis and multiple organ 
failure [6]. There is clear evidence that microbial commu-
nities are significantly altered after severe burn injury, but 
these changes are difficult to observe directly from the 
body or to correlate with changes in disease state. There-
fore, mice have been used to model severe burn injury 
to study the changing characteristics of the gut flora 
and their potential effects. Studies in the CF-1 mouse 
model of full-thickness burn confirmed differences in gut 
microbiology after burn injury and identified 38 path-
ways that were differentially expressed between sham-
burned and burned mice, including bacterial invasion of 
epithelial cells and gap and adherens junction pathways 
[7]. Another study using the C57BL/6 mouse model 
found an increase in intestinal permeability after severe 
burns, which peaked at 6 h post-burn and was approxi-
mately 20-fold higher than that of controls, in addition to 
a significant alteration in the expression of tight junction 
proteins, a significant decrease in the content of short-
chain fatty acids, and the presence of up-regulation of 
inflammatory factors, suggesting that the disruption of 

the intestinal barrier is associated with an alteration in 
the intestinal microbial community [8]. Notably, analy-
sis of sequencing data from gut microbiota samples at 
different time points after burn injury revealed that the 
abundance of the gut microbiota began to decrease from 
day 7 after burn injury, and its major components and 
microbial community structure also changed over time. 
A study from mice showed that by the day 28 after burn 
injury, the composition of the microbiome had essen-
tially returned to the pre-burn levels [9]. Similar bacterial 
diversity was also found between the pre- and post-burn 
groups in the rat model, but the composition of the gas-
trointestinal microbiota changed after burns [10].

The current situation is that less progress has been 
made in studying the relationship between severe burns 
and gut microbes in the mouse model, particularly in 
the acute phase within 1  day of the burn. Not only do 
we know little about the changing characteristics of gut 
microbes during the acute phase, but there is an even 
greater lack of in-depth exploration of which are the key 
microbes associated with acute phase symptoms and 
what role they may play in disease progression. Accurate 
answers to these questions, which can be corroborated 
by studies in humans [11], may help to explain the ori-
gin and subsequent development of infections, as well as 
to infer the prognosis of burn patients [12, 13]. Once the 
differences between the different samples are known, it 
means that their characteristics can be extracted. How-
ever, the mechanisms of association between traits and 
phenotypes or outcomes are often unexplained and 
involve a great deal of experimental evidence. Machine 
learning models are independent of this evidence. They 
can be used well to distinguish phenotypes or predict 
outcomes by simply calculate features from training 
data to train the model, and a variety of algorithms are 
included that can be adapted to datasets of varying sizes. 
As a result, machine learning models are widely used in 
predictive tasks related to the gut microbiota [14].

In this study, we established a mouse model of deep 
III degree burns, collected intestinal contents for micro-
biome sequencing, and analysed the characteristics of 
microbial community changes in the absence of burns 
and at 4 and 6  h after burns using in silico methods to 
search for key microbial species that can indicate the 
acute phase of burns. The potential value of microbial 
applications to diagnose the extent of burn injury was 
explored by building machine learning models.

probiotics and an increase in microorganisms that trigger inflammation and cognitive deficits, and multiple pathways 
of metabolism and substance synthesis are affected. Simple machine learning model testing suggests several 
bacterial genera as potential biomarkers of severe burn phenotypes.

Keywords Severe burn, Acute phase, Gut microbiome, Machine learning, Inflammatory
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Materials and methods
Animals
Twenty-four healthy adult female C57BL/6 mice were 
purchased and randomly divided into a burn group (16 
mice) and a control group (8 mice), and experiments 
were performed after 1 week of acclimation in a room 
with constant temperature (25 ± 2 °C) and 12-hour light/
dark cycles. One day before the establishment of the 
burn model, the mice were anaesthetised by intraperi-
toneal injection of 1% sodium pentobarbital (7–8 ul/g), 
and the hairs on the back were plucked and washed off 
after uniform application of depilatory cream, and then 
housed in separate cages. On the following day, mice 
were anaesthetised and then burned on the exposed skin 
(95 °C, 9 S) using a heat-stable scalding apparatus to pro-
duce a full-thickness burn with 30–50% total body sur-
face area. Burn-wounded mice were randomly divided 
into two groups, supplemented with 0.9% normal saline 
and placed on a thermostatic pad to keep warm, and then 
the intestinal contents were collected at 4 and 6 h for 16s 
rRNA sequencing, respectively.

This animal study was approved by the Animal Protec-
tion and Use Committee of the Third Military Medical 
University (Army Medical University), and all protocols 
were approved by the Medical and Ethics Committee 
of the Southwest Hospital of the Third Military Medi-
cal University (Army Medical University), Chongqing, 
China.

Sample collection
Mice were killed by decapitation, and the whole intestine 
was excised with a sterile scalpel under aseptic condi-
tions, and the required intestinal segments were cut out, 
and the intestinal contents were scooped out and imme-
diately placed on ice for division and labelling, and then 
loaded into sterilised centrifuge tubes according to the 
concentration of 0.2-0.5  g/tube and stored at 4℃, and 
DNA was extracted immediately on the same day.

16s rRNA sequencing
Fresh samples were immediately extracted for bacterial 
genomic DNA using a faecal DNA extraction kit (MP 
Biomedicals, USA) and stored at -80 °C according to the 
manufacturer’s protocol. The V3-V4 region of the bacte-
rial 16 S rRNA gene was then amplified using the forward 
primer 338 F (5’- A C T C C T A C G G G A G G C A G C A-3’) and 
the reverse primer 806R (5’-GGACTACHVGGTWTC-
TAAT-3’). PCR amplicons were purified using Agencourt 
AMPure beads (Beckman Coulter, Indianapolis, IN) and 
quantified using the PicoGreen dsDNA detection kit 
(Invitrogen). PCR products were then subjected to high-
throughput pyrosequencing on an Illumina MiSeq plat-
form at Shanghai Personal Biotechnology Co.

Bioinformatic analysis
Analysis of microbial composition
Raw sequencing data were quality controlled, denoised, 
merged and chimeras removed using the QIIME2 soft-
ware package. Amplicon sequence variation (ASV) sig-
nature sequences and ASV tables were then merged. The 
merged ASV table was diluted to calculate the specific 
microbial community composition at different taxo-
nomic levels for each sample.

Analysis of microbial diversity
Diversity analyses were performed for H4 (4  h burn 
group), H6 (6 h burn group) and C (control group) using 
the QIIME2 and R software packages. For alpha diver-
sity analysis, species richness was characterised using 
Chao-1 and observed species indices, and species diver-
sity was characterised using Shannon and Simpson indi-
ces. For beta diversity analysis, Bray-Curtis distance was 
used to calculate the distance matrix, principal concor-
dance analysis (PCoA) and non-metric multidimensional 
scaling analysis (NMDS) were used to assess differences 
between groups, Anosim was used to test the results, and 
the UPGMA algorithm was used for clustering.

Analysis of microbial variance
PCA analysis, Linear discriminant analysis Effect Size 
(LEFSe) analysis and Random Forest analysis were 
used to identify species that were significantly differ-
ent between groups and to identify species that were 
discriminant. PCA was used to reduce the dimensional-
ity of the data characteristics. In the LEfSe analysis, the 
Kruskal-Wallis rank sum test was used to determine the 
significance of differences between groups, followed by 
the Wilcoxon rank sum test to assess the differences of 
different features between subgroups, and finally linear 
discriminant analysis (LDA) was calculated. The Random 
Forest algorithm was used to build classifiers to deter-
mine the indicators and their significance in three data 
sets.

Microbial functional analysis
Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States (PICRUSt2) was used to 
predict the gene functions of significantly different spe-
cies between groups. MetagenomeSeq was used to cal-
culate significantly different pathways. STAMP (version 
2.1.3) was used to identify differentially enriched KO 
modules between groups.

Machine learning
Machine learning approaches were used to identify 
microbial species capable of differentiating acute burn 
phenotypes. Firstly, a random forest algorithm was used 
to calculate the contribution of microbial abundance to 
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grouping and subfeatures were selected using a forward 
strategy. Secondly, four different machine learning algo-
rithms including Random Forest, XGBoost, Naive Bayes 
and Support Vector Machine (SVM) were built for pre-
diction. The performance was examined using leave-one-
out (LOO) tests, and area under the curve (AUC) and 
confusion matrix were used to determine the best model.

Statistical analysis
All differences between the means of the 3 groups were 
calculated using R software (version 4.2.2). Differences 
were considered statistically significant when p < 0.05.

Results
Successful establishment of deep burn models
Deep burns result in damage to the entire epidermal 
and dermal skin structure, which is highly susceptible 
to infection and can lead to shock and immune system 
problems. Mice are in the acute phase on day 1 post-burn 
and are physiologically hypermetabolised, so we per-
formed rapid rewarming to prevent death of the mice. 
We observed the burned area compared to normal skin 
under the microscope (Olympus bx51T) by HE staining 
and found full thickness necrosis, collagen fibre disorgan-
isation and vacuoles in the epidermis and dermis of the 
burned area. We also observed vasodilation and cogni-
tive behavioural deficits in the burned group. These phe-
nomena indicate that we have successfully established a 
mouse model of deep dermal burn and that sampling at 4 
and 6 h ensured that samples were obtained in the acute 
phase.

Statistics of microbiome sequencing results
Intestinal content samples were collected from 16 burned 
mice (H4 and H6) and 8 normal mice, and DNA was 
extracted for library construction, which was successful 
except for one sample in the H4 group. High-through-
put 16s rRNA pyrosequencing was then performed on 
the 23 libraries, yielding a total of 30,281 ASV signature 
sequences. In terms of family, genus and species, an aver-
age of 1,654, 577 and 112 sequences were identified in 
the H4 group, an average of 1,991, 528 and 97 sequences 
were identified in the H6 group and an average of 1,088, 
264 and 63 sequences were identified in the control group 
(Table S1 and Figure S1 A and B). These results were 
used for further analyses. The 23 microbiome datasets 
were counted at the phylum level, and it was found that 
the microbial composition of the first sample in the H4 
group was significantly different from the other samples, 
and the number of ASVs was significantly lower than that 
of the other samples (Figure S1 C and D), which may be 
caused by insufficient DNA extraction. Therefore, we 
excluded data from this sample from the control analysis, 

but included it in the functional analysis and machine 
learning classification study.

Deep burns lead to dysbiosis of the microbial community 
in the acute phase
At the phylum level, the major bacterial phyla showed 
clear trends at 4 and 6  h post-burn. The abundance of 
the phylum Firmicutes and Actinobacteria declined rap-
idly at 4  h post-burn, and then further at 6  h (p < 0.05). 
The opposite trend was observed for Bacteroidetes, Ver-
rucomicrobia and TM7, whose relative abundance con-
tinued to increase at both 4 and 6  h (p < 0.05, Fig.  1A). 
The Firmicutes/Bacteroidetes (F/B) ratio was 1.71 in the 
control group, while it decreased to 1.05 and 0.95 in the 
H4 and H6 groups, respectively (Figure S1B). The abun-
dance of another major bacterial phylum, Proteobacte-
ria, showed little fluctuation. At the genus level, the H4 
and H6 groups had similar compositions, with no sig-
nificant differences observed except for Akkermansia 
(p < 0.05). Compared with the control group, the relative 
abundances of Oscillospira, Bacteroidaceae_Bacteroides, 
Akkermansia, Odoribacter, and Mucispirillum were sig-
nificantly up-regulated after the burn injury, while the 
abundances of Lactobacillus, Allobaculum and Bifido-
bacterium were significantly down-regulated (p < 0.05). 
The abundance of Akkermansia continued to increase 
after the burn injury, with the H6 group showing a sig-
nificant increase compared to both the H4 group and the 
control group; while the Desulfovibrio remained essen-
tially unchanged across the three groups (Fig.  1B). The 
ASV/OTU Venn diagram clearly illustrates the different 
numbers of ASVs/OTUs between the control group, the 
4 h post-burn group, and the 6 h post-burn group.

We compared the α-diversity indices of the gut micro-
biota among the 23 groups. As shown in Fig.  1C, sig-
nificant differences (p < 0.05) were observed in chao1, 
Simpson, observed-species, and Shannon indices 
between the pre-burn and post-burn samples. However, 
the differences in these indices between the 4-hour and 
6-hour post-burn samples were relatively small. The 
microbial abundance curves suggested that higher num-
ber of ASVs were detected in the burn group than in 
the control group(Fig.  1D). In the rarefaction curve, we 
observed a significant increase in the diversity of the gut 
microbiota after the burn injury, with a slight increase 
in diversity as the acute burn phase progressed. The 
results reached a stable state when the sequencing depth 
reached around 30,000 (Fig. 1E).

For β diversity, we performed a PCOA analysis, which 
revealed a clustering tendency between samples in the 
distance matrix (Fig.  2A and D). Hierarchical cluster 
analysis showed clear separability between the control 
and burn groups (Fig. 2A), indicating significant changes 
in gut microbiota species richness before and after burn 
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injury. The largest difference was observed between the 
6 h post-burn group and the control group, indicating an 
acute response of the mice to the burn injury. ANOWA 
analysis showed no significant difference between H4 
and H6 (p = 0.143) (Fig.  2B), but both were significantly 

different from the control group (p < 0.05). We also per-
formed NMDS analysis (Fig. 2C) and found that the dif-
ferences in microbial community clustering between 
pre- and post-burn samples were more significant than 
those observed in PCoA, with a stress value much lower 

Fig. 1 Analysis of the composition and alpha diversity of the intestinal flora of mice in the acute phase of severe burns. (A) Comparison of microbial 
composition at the phylum level (C: control, H4: 4-hours post-burn; H6:6 h post-burns); (B) Comparison of composition at the genus level; (C) Comparison 
of α diversity indices between groups ; (D) microbial abundance curves ;E) microbial rarefaction curve
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than 0.2, indicating the reliability of the analysis results. 
These results indicate an increase in species richness and 
diversity of gut microorganisms during the acute phase 
of burns, in contrast to other reports that indicate a 
decrease in diversity.

Characterisation of microbial changes in the acute phase 
after burns
The LEfSe analyses (Fig. 3A and B) revealed several sig-
nificantly different bacteria between the burn and con-
trol groups. Taxonomically, bacteria from several genera 
of the phylum Campylobacterota, the phylum Defer-
ribacterales, the phylum Verrucomicrobiota, the order 
Bacteroidales, and the order Eubacteriales were signifi-
cantly increased after burn injury, including four genera 
from group H4: Oscillospira Ruminococcus, Bilophila, 
Mucispirillum and Helicobacter, and five genera from 
group H6: Akkermansia, Bacteroides, Anaerotruncus, 
Odoribacter and Parabacteroides. Multiple groups of 
bacteria from phylum Actinobacteria, phylum TM7, and 

class Bacilli are more abundant in normal mice, partic-
ularly at the genus level including Lactobacillus, Allo-
baculum, and Bifidobacterium. Species crossover Venn 
diagrams also show differences in the sequences detected 
on the three sets of samples, with the sequences shared 
between the two burn groups far exceeding those shared 
between them and the control group (Fig. 3C).

The samples and groups were clustered using the 20 
most distinct bacteria at the genus level, and the result-
ing heat maps are shown in Fig. 3D and E. They clearly 
distinguish burned mice from normal mice and define 
the three groups. These results are consistent with the 
results of the LEfSe analysis and can be divided into three 
cases. The first are those with a significant decrease in 
abundance after burns, such as Ruminococcus, Lacto-
bacillus, Sutterella, Dehalobacterium, Bifidobacterium, 
Allobaculum, Adlercreutzia; the second are those with 
a significant increase in abundance after burns, such as 
Akkermansia, Parabacteroides, Mucispirillum, Rumino-
coccus, Alistipes, Bilophila, Bacteroides, Odoribacter, 

Fig. 2 Analysis of differences in the gut microbiome between the burn and control groups. (A) Heuristic clustering of 22 mice gut microbiome samples 
(group C: C1-C8, group H4: H4_2-H4_7; group H6: H6_1-H6_8); (B) Boxplots of microbial abundance in burn and control groups; (C)NMDS analysis of the 
gut microbiome between the burn and control groups; (D) PCoA analysis of the gut microbiome between the burn and control groups
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Oscillospira, Helicobacter; and the third are those with 
a sharp increase at 4 h after burns followed by a recov-
ery starting from 6  h onwards, such as Desulfovibrio 
and AF12. We used a random forest model to determine 
the importance of different bacteria in distinguishing 
between the three groups of samples, and the top bacteria 
included Bilophila, Parabacteroides, Lactobacillus, Blau-
tia, Odoribacter, Anaerotruncus, and others (Fig. 3F).

Response of microbial functions after burn injury
We extrapolated the functions of differential bacteria to 
determine which functional adjustments were primarily 
involved in the changes in gut microbiology after burn 
injury. We found that the bacteria that changed after 
burn injury were mainly enriched in several classes of 
metabolic processes and also involved in functions such 
as repair, transcription, cell growth and death; in terms 
of diseases, they were mainly involved in infection, 
immunity and neurological damage (Fig.  4A). Specifi-
cally, lipoic acid metabolism, citrate cycle, seleno-com-
pound metabolism and carbon fixation pathway were 
enhanced, whereas galactose metabolism, glycerolipid 
metabolism were weakened in the acute period after 
burns (Fig. 4B and C). In the 6-hour burn group, amino 

acid degradation, folate biosynthesis, lipopolysaccharide 
biosynthesis, vitamin B6 metabolism, and glycosamino-
glycan degradation were also enhanced, and the pentose 
phosphate pathway was weakened (Fig. 4C). In contrast, 
only lysosome and drug metabolism differed between the 
H4 and H6 groups (Fig. 4D).

Machine learning models accurately discriminated burn 
phenotypes
In the model building process, the top twenty biomark-
ers were first obtained, and then classification was per-
formed. Both XGBoost and Random Forest achieved 
100% accuracy in classifying the control and burn groups 
(Fig.  5A-D). SVM achieved 86.7% accuracy in classify-
ing the 4 and 6 H groups (Fig. 5E-H). These results dem-
onstrate that it is possible to predict the symptoms and 
severity of burn injury in mice by using specific microbial 
abundances as feature values. The slightly lower predic-
tion accuracy for Burn 4  H and Burn 6  H is due to the 
fact that both time points are in the acute phase of burn 
when changes in the microbial community are minimal. 
However, these trends can still be observed.

Fig. 3 Analysis and screening of differential microorganisms between burn and control groups. (A) Phylogenetic trees of significantly different species 
obtained by LEfSe(LDA Effect Size) analysis (LDA ≥ 3.0); (B) Histogram of significantly different species obtained from LEfSe analysis; (C) Venn diagram of 
average microbial population obtained by sequencing of three groups; (D) Heatmap of the intestinal flora of 22 samples at the genus level (wards.D2 
algorithm was used for both species clustering and sample clustering); (E) Heatmap of the intestinal flora of the burn and control groups at the genus 
level (wards.D2 algorithm was used for both species clustering and sample clustering); (F) Ranking of importance of bacterial genus for classifying three 
groups (Random Forest algorithm)
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Discussion
Severe burns are horrific acute traumatic injuries that 
can lead to serious complications such as sepsis, multi-
organ failure and high mortality rates worldwide. The gut 
flora plays an important role in this pathogenic process. 
Dysbiosis of the gut flora after burns leads to impaired 
nutritional and metabolic functions of the microorgan-
isms. In addition, bacteria are transferred to the blood-
stream and other organs of the body, which is associated 
with many of the serious complications. However, there 
is currently a lack of understanding of the changing char-
acteristics of gut microbes in the early stages of severe 
burns and potential markers. Therefore, we undertook 
this study to establish mouse models of deep burn injury, 
to investigate how the gut flora of mice is altered during 
the acute phase of the first day of burn injury, and to try 
to uncover markers that are closely associated with burn 
phenotypes.

Several published studies have shown a significant 
reduction in the diversity of the gut flora and a decrease 

in the number of species after severe burns. However, 
our study contradicts this conclusion. Both Venn dia-
grams, sparse curves, and various alpha diversity indices 
strongly suggest that the diversity of gut microorganisms 
is increased and significant within 24 h of severe burns, 
while the major bacterial species are relatively simi-
lar. The results of Caldwell et al. are consistent with our 
conclusions [7]. The results of the beta diversity analyses 
further demonstrated that the gut microbial community 
of mice was significantly altered after burn injury. Heu-
ristic cluster analysis, PcoA analysis and NMDS analysis 
all clearly separated the burned group samples from the 
unburned group samples, with the NMSD stress value 
reaching a very low 0.0591. ANOVA analysis based on 
Bray-Curtis distance further revealed that the differ-
ence in flora between the burned and control groups was 
highly significant, but not significant between the two 
groups of burned samples.

Similar to previous reports [7, 15], we observed an 
overgrowth with normally low- abundant gram-negative 

Fig. 4 Function and pathway analysis of differential bacteria in burn and control groups. (A) Metabolic pathways of differential bacterial enrichment 
between three groups (by number of species); (B) Significantly different metabolic pathways and 95% confidence intervals between the 4-hour post-
burn group and the control group; (C) Significantly different metabolic pathways and 95% confidence intervals between the 6-hour post-burn group 
and the control group; (D) Significantly different metabolic pathways and 95% confidence intervals between the 4-hour post-burn group and the 6-hour 
post-burn group
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bacteria of the Proteobacteria, Deferribacteres, Verru-
comicrobia and Bacteroidetes phyla, compared to the 
normal predominance of gram-positive Firmicutes. In 
conclusion, the available findings suggest that this trend 
occurs within the first day after the burn injury and is the 
main contributor to the increase in the diversity index. 
Over time, the diversity will decrease and then return to 
normal. We have seen the growth of the genera Oscili-
bacter, Escherichia, Mucispirillum, Bacteroides, and 
Akkermansia, which comprise a wide range of opportu-
nistic pathogens and are important causes of nosocomial 
bloodstream infections. For example, Mucispirillum may 
migrate from the mucus layer to the intestinal luminal 
compartment as a result of post-burn intestinal per-
meability, completing the critical transition that trig-
gers colitis [16]. We also noted a decrease in potentially 
protective bacteria. Most butyrate-producing bacteria 
belong to the phylum Firmicutes and were significantly 
lower in burned mice. In particular, at the genus level, 
bacteria involved in digestion and metabolism in vivo, 
such as Lactobacillus, Allobaculum, and Bifidobacterium, 
were reduced.

The phylum Firmicutes and Bacteroidetes are the two 
most dominant groups of bacteria in the intestinal micro-
biome. It is widely accepted that the Firmicutes/Bacte-
roidetes (F/B) ratio has an important influence on the 
maintenance of normal intestinal homeostasis [17]. An 
increased or decreased F/B ratio is considered dysbio-
sis, with the former commonly observed in obesity, and 

the latter in inflammatory bowel disease (IBD) [18]. We 
observed a sustained decrease in F/B at 4 and 6 h post-
burn (Table S2 and Figure S1B), suggesting that the burn 
may have initiated an inflammatory response that pro-
gressively intensified.

In addition to elucidating the bacteria that differed 
between groups at the phylum and genus level, we also 
examined differences at the species level to further define 
the functions of these bacteria (Figure S2 A and B). The 
results of the principal component analysis also sup-
ported the previous conclusion of a significant difference 
between the burn and control groups, further demon-
strating the validity of the groupings (Figure S2 C). Bac-
teria of the genus Lactobacillus are a class of probiotics 
in the gut flora that promote digestion, inhibit inflam-
matory mediators, and enhance immunity. At least four 
species of Lactobacillus showed a significant decrease 
in abundance at 4 and 6 h post-burn, further confirming 
that both digestive and anti-inflammatory functions are 
compromised after burn injury. Additionally, a number 
of well known probiotics such as Selenomonas_lacticifex, 
Bifidobacterium, Prevotella_copri, Clostridium_celatum, 
Butyricicoccus_pullicaecorum, Faecalibacterium_praus-
nitzii, etc. were found to be reduced in the burn group. 
These bacteria are important participants in the diges-
tion of sugars, proteins, and plant fibres, or are essential 
for maintaining the integrity of the intestinal mucosa to 
prevent invasion by pathogens, or have immune-boosting 
and antioxidant effects.

Fig. 5 Results of machine learning classification of three groups of samples. (A) Confusion matrix for the classification of burn and control groups using 
the XGBoost algorithm; (B) Confusion matrix for the classification of burn and control groups using the Randomforest algorithm; (C) Confusion matrix 
for the classification of burn and control groups using the Gaussian Naive Bayes algorithm;  (D) ROC curves for classification of burn and control groups; 
(E) Confusion matrix for the classification of 4-hour post-burn group and the 6-hour post-burn group using the Randomforest algorithm; (F) Confusion 
matrix for the classification of 4-hour post-burn group and the 6-hour post-burn group using the SVM algorithm; (G) Confusion matrix for the classifica-
tion of 4-hour post-burn group and the 6-hour post-burn group using the NaiveBayes algorithm; (H) ROC curves for classification of two burn groups
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Bacteria with increased abundance in the burn 
group played a more complex role. There was a signifi-
cant increase in the relative abundance of Ruminococ-
cus_gnavus and Bacteroides_acidifaciens, which have 
been found to be associated with reduced immunity 
and tumour growth [19]. Some opportunistic patho-
genic or rare bacteria such as Mucispirillum_schaedleri, 
Alistipes_massiliensis, Streptococcus_alactolyticus, 
Desulfovibrio_alaskensis, Staphylococcus_sciuri, and 
Clostridium_methylpentosum, which are consistently 
increased after burns, are responsible for driving the 
development of IBD [20–22]. The increase in Bacte-
roides_uniformis, Staphylococcus_sciuri, and Rumi-
nococcus_flavefaciens is thought to potentially lead to 
psychosis, depression, and cognitive decline, suggesting 
that burns may perhaps be detrimental to cognitive abili-
ties [23, 24]. We also observed a gradual increase in the 
levels of Akkermansia_muciniphila and Parabacteroi-
des_distasonis from group H4 to H6, which have been 
reported to be associated with intestinal metabolism, 
controlling metabolic levels to prevent the onset of obe-
sity and may also contribute to gastrointestinal disorders 
[25, 26].

Metabolic pathway analysis has shown that after burn 
injury in mice, there is a significant decrease in lac-
tose metabolism, leading to lactose metabolism disor-
ders. This can lead to the accumulation of lactose in the 
body, potentially causing lactosemia, which can lead to 
liver and brain damage, resulting in neural impairment 
and cognitive deficits. There is also an increase in the 
TCA (tricarboxylic acid) cycle and sulphur amino acid 
metabolism, while glycerol metabolism decreases. This 
indicates an increased energy requirement and acceler-
ated metabolism leading to a state of hypothermia. The 
increased levels of redox carriers and enhanced seleno-
compound metabolism result in a greater ability to regu-
late inflammation. In addition, the presence of post-burn 
infection promotes microbial growth and enhances car-
bon fixation by anaerobic organisms, leading to reduced 
glycerol metabolism. Comparing the 6-hour (6 H) group 
to the 4-hour (4 H) group, there is a further decrease in 
the ability of the mice to metabolise glucose-6-phosphate, 
indicating a more profound effect on TCA metabolism. 
There is also a reduction in 5-phospho-ribose, which can 
affect RNA. The synthesis of folate is increased, which 
is linked to the regulation of neuronal cell development. 
Lipopolysaccharide(LPS) synthesis increases, indicat-
ing the activation of the body’s immune system to con-
trol inflammation. The main difference between the 4 
and 6 H groups is an increase in lysosome content and a 
decrease in enzymes, which can lead to microbial growth 
and disruption of intestinal homeostasis. In conclusion, 
changes in the microbiota following burns affect lactose 
and glucosaminoglycan metabolism, and in combination 

with associated changes in harmful bacteria, this is likely 
to indirectly affect brain cognition.

The machine learning results showed that the screened 
characteristic bacteria are potential biomarkers for dis-
tinguishing early severe burns. XGBoost and Random 
Forest are worthwhile algorithms when using these bac-
teria to predict phenotypes. Specifically, the increased 
abundances of Bilophila, Parabacteroides, Odoribacter, 
Oscillospira, Anaerotruncus, Bacteroides may indi-
cate a rapid progression during the acute inflammatory 
phase of burns. On the other hand, the abundances of 
probiotics such as Lactobacillus, Dehalobacterium, Bifi-
dobacterium, Allobaculum, Sutterella, Ochrobactrum, 
and Butyricicoccus continues to decline after burns and 
are potential biomarkers of impaired metabolic capacity. 
Besides, to infer the time periods in early severe burns, 
the abundance of Desulfovibrio, Clostridium, Campylo-
bacter could be considered as predictors.

Limitations of this study include a limited sample size 
and a limited number of selected time points, so the 
microbial changes revealed in the serve burn injuries may 
not fully capture the comprehensive features. Besides, 
the machine learning results can only be informative and 
cannot demonstrate the generalisability of the model to 
large datasets. A further limitation is the lack of studies 
on burn outcome parameters.

Conclusions
Our study revealed trends in the gut microbiota dur-
ing the acute phase of severe burns and showed that the 
main alterations in gut flora during this phase are char-
acterised by a decrease in probiotics and an increase in 
bacteria associated with inflammation and cognitive 
impairment. Additionally, the development of a machine 
learning model to differentiate burn status using signa-
ture microbes provides a new perspective on understand-
ing dysbiosis in the gut microbiota associated with burns. 
This offers a potential avenue for adjunctive detection 
and diagnosis of burn severity.
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