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to thrive in cities, rural villages, agricultural areas, as 
well as in sylvatic habitats. Anthropogenic changes in 
these environments, including increasing urbanization, 
agriculture, and related changes in land use, increase 
the frequency of contact between rodents and human 
populations leading to more opportunities for spillover 
transmission of familiar and novel zoonotic pathogens 
[2–4]. This risk is exemplified by the mammarenaviruses 
(Arenaviridae family), which naturally persist in wildlife 
hosts and cause numerous hemorrhagic fever diseases 
globally. Mammarenaviruses are categorized into two 
major groups based on geography and phylogenetic rela-
tionships [5]. The New World mammarenaviruses cause 
wild rodent-borne hemorrhagic fevers throughout South 
America and have been reported in the region since 1950 

Introduction
Rodents are the most speciose group of mammals, with 
a global distribution spanning a wide array of ecological 
niches [1]. Rodents are therefore a perennial consider-
ation for zoonotic disease risk because of the pervasive 
synanthropy in this group, with many species appearing 
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Abstract
Despite repeated spillover transmission and their potential to cause significant morbidity and mortality in human 
hosts, the New World mammarenaviruses remain largely understudied. These viruses are endemic to South 
America, with animal reservoir hosts covering large geographic areas and whose transmission ecology and spillover 
potential are driven in part by land use change and agriculture that put humans in regular contact with zoonotic 
hosts.

We compiled published studies about Guanarito virus, Junin virus, Machupo virus, Chapare virus, Sabia virus, 
and Lymphocytic Choriomeningitis virus to review the state of knowledge about the viral hemorrhagic fevers 
caused by New World mammarenaviruses. We summarize what is known about rodent reservoirs, the conditions of 
spillover transmission for each of these pathogens, and the characteristics of human populations at greatest risk for 
hemorrhagic fever diseases. We also review the implications of repeated outbreaks and biosecurity concerns where 
these diseases are endemic, and steps that countries can take to strengthen surveillance and increase capacity 
of local healthcare systems. While there are unique risks posed by each of these six viruses, their ecological and 
epidemiological similarities suggest common steps to mitigate spillover transmission and better contain future 
outbreaks.
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[6, 7]. This group includes Junin virus (JUNV), Chapare 
virus (CHPV), Machupo virus (MACV), Sabia virus 
(SABV), Guanarito virus (GTOV), and Tacaribe virus 
(TCRV). The Old World mammarenaviruses are found 
in Africa and include Lassa virus and Lujo virus, which 
are distributed across southern Africa [8]. Although clas-
sified as an Old World mammarenavirus, Lymphocytic 
Choriomeningitis virus (LCMV) is found globally, mak-
ing it a health concern in every continent except Antarc-
tica [9].

Specific rodent hosts are thought to perpetuate the 
transmission of these mammarenaviruses by shedding 
virus through urine, feces, and saliva [10]. Typically, 
humans become infected either by inhalation of this 
excreta or secreta, or via direct contact with infected 
rodents [11]. New World mammarenaviruses are capable 
of causing severe disease in humans, with fatality rates 
as high as 30% seen in Chapare virus infections [12]. 
Patients initially present with flu-like symptoms, such as 
fever, nausea, vomiting, and diarrhea within 6–12 days 
[13]. Nearly 25–30% of patients develop severe hemor-
rhagic symptoms and neurological disorders [7], with 
symptoms ranging from tongue tremors in mild cases, 
to mental confusion, seizures, and coma in severe cases. 
In fatal cases, patients exhibit terminal shock syndrome 
[14]. Non-fatal outcomes depend on early diagnosis and 
treatment, which is mainly supportive [15]. Other meth-
ods of treatment, such as antivirals, have mainly been 
assessed in animal models [16], but reports on the effi-
cacy of intravenous plasma and ribavirin exist for Argen-
tine hemorrhagic fever and Bolivian hemorrhagic fever, 
respectively [16–18]. Preventative treatment is restricted 
to one available vaccine for Junin virus [19].

Agriculture workers are at the highest risk for exposure 
and transmission of New World mammarenaviruses [20]. 
As with many rodent-borne pathogens, ecological, socio-
economic, and occupation factors are all interrelated 
[21], as the distribution of rodents, corn, and rice crops 
follow in tandem [20]. In fact, many of the rodents of 
the subfamily Sigmodontinae that are speciose in South 
America are often intensely associated with agroecosys-
tems and the stable food sources found there [22, 23]. 
Widespread human-to-human community transmission 
has not been reported [24]; however, nosocomial trans-
mission resulting in fatal cases has been documented, 
thus suggesting a risk to healthcare workers through 
person-to-person transmission via direct contact with 
infectious blood and bodily fluids [25]. Their transmissi-
bility and high mortality rates classify viral hemorrhagic 
fevers of the Arenaviridae family as category A patho-
gens, requiring biosafety level (BSL) 4 precautions [26]. 
The absence of documented fatal human infections asso-
ciated with Tacaribe virus (TCRV) permits its handling 
at reduced biosafety levels. This characteristic renders 

TCRV a valuable comparative model, both molecularly 
and serologically, for the study of the broader group of 
New World mammarenaviruses [27]. Initially isolated 
from dead Artibeus bats and mosquitoes in Trinidad, and 
subsequently from Amblyomma americanum ticks in 
Florida [28], TCRV is distinguished by its isolation from 
a diverse range of vertebrate and invertebrate species, 
notably without any identified rodent host to date [27].

Despite substantial documented fatality rates and the 
passage of several decades since their identification, New 
World mammarenaviruses remain relatively understud-
ied compared to other rodent viruses, and compared 
to the Old World mammarenaviruses (e.g., Lassa fever 
virus). Yet, they continue to spill over and cause disease 
annually, often in lower and middle-income countries. 
Considering the high genetic diversity within numerous 
New World mammarenaviruses [5, 29], the high biodi-
versity of potential rodent reservoir species [30], and the 
tendency to neglect these and similar tropical diseases 
in research and public health discourse, it is likely that 
New World mammarenaviruses represent an underap-
preciated public health challenge. Here, we review the 
New World mammarenaviruses. We emphasize common 
research gaps among these viruses including identifica-
tion of their wildlife reservoirs, their current and future 
risk to humans, and implications for public health (see 
Supplementary File 1). Our review extends beyond heu-
ristic analysis to identify particular activities that will 
enhance epidemiological intelligence and public health 
preparedness, and delineating areas where foundational 
knowledge about these pathogens remains elusive.

Endemicity and reservoirs
Guanarito virus (GTOV)
Infection with Guanarito virus causes Venezuelan hem-
orrhagic fever (VHF), which is found in western Ven-
ezuela [31]. The first cases were reported in 1989 during 
an outbreak of hemorrhagic fever in Guanarito in the 
state of Portuguesa [32]. Seropositivity and virus isola-
tion from VHF’s primary rodent reservoir host, Zygo-
dontomys brevicauda (Short-tailed Cane Mouse), points 
to an endemic area of 9,000 km2 located in the southern 
and southwestern areas of Venezuela (Fig. 1; [33]). Both 
GTOV in rodents and human cases of VHF have been 
reported in the states of Portuguesa and Barinas [33]. 
Isolates of GTOV have also been found in Oligoryzomys 
delicatus (Delicate Pygmy Rice Rat) and Sigmodon alstoni 
(Groove-toothed Cotton Rat) within these states [34].

Given Z. brevicauda’s limited range, GTOV infection 
is thought to be limited to the rural plains area of west-
ern Venezuela [33]. Between 1989 and 2006, there have 
been 618 reported cases of VHF in Portuguesa, with a 
reported case-fatality rate of 23.1%. Owing to a lack of 
surveillance and epidemiological studies in Venezuela, 
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case numbers of VHF were not reported between 2006 
and 2021 [33]. However, in 2021, in Barinas and Potu-
guesa, 36 cases of VHF were confirmed out of 118 sus-
pected cases [24]. Agricultural workers (especially males) 
are at the highest risk given their occupational proximity 
to Z. brevicauda in rural areas, with the highest number 
of cases occurring during the height of the agricultural 
season between November and January [33]. Cases were 
also reported in seasonal workers from Colombia visit-
ing the endemic region, pointing to exposure to endemic 
areas as an important risk factor for GTOV [33]. While 
transmissibility is highest between infected rodents to 
humans, one probable secondary case of VHF has been 
reported, indicating the possibility of human-to-human 
transmission [33].

Junin virus (JUNV)
Junin virus is the causal agent of Argentine hemorrhagic 
fever (AHF), which was first isolated in the 1950s among 
agricultural workers and those raising cattle in the Pampa 
region of Argentina [35]. Cases of AHF in agricultural 
areas tend to increase in late autumn in tandem with the 
corn harvest [36]. The main natural reservoir, Calomys 
musculinus (Drylands Vesper Mouse) is synanthropic, 
commonly found in areas in close proximity to farm 
workers and other at-risk populations [37]. Male farm 
workers between the ages of 20 and 50 consistently show 
the highest seroprevalence of exposure to JUNV. While 
infection is 90% more common in rural areas [35], JUNV 
has also been found in cities such as Santa Fe and Cor-
doba [36]. In a study by Vitullo et al. [37], Calomys mus-
culinus individuals infected with JUNV at birth exhibited 
increased mortality and reduced fertility in adulthood. 
Conversely, when C. musculinus are infected with JUNV 
during adulthood, they maintain a continuous infection 

and virus shedding without exhibiting alterations in 
reproductive behavior or survival. Notably, their off-
spring are also infected. Therefore, it appears that both 
horizontal (between individuals) and vertical (from par-
ent to offspring) transmission pathways play significant 
roles in maintaining persistent infections in wild reser-
voir populations [37]. Another member of this genus, 
Calomys laucha (Small Vesper Mouse), is an additional 
confirmed reservoir for JUNV, and seropositivity has 
been found in Akodon azarae (Azara’s Grass Mouse), 
Necromys lasiurus (Hairy-tailed Akodont), and Galictis 
cuja (Lesser Grison) (Fig. 1; [35, 38, 39]). The geographic 
range of C. musculinus suggests that the endemic area for 
this virus covers ∼ 150,000 km2, putting nearly 5,000,000 
individuals at potential risk in the endemic region [35], 
although this historical assessment doesn’t take into 
account an increased range caused by C. laucha as a res-
ervoir. We note that this and other such estimates of at-
risk populations assume equivalent disease risk across 
the entire range where the reservoir is present, which 
is an oversimplification [40] as many other factors are 
known to restrict pathogen distributions. Within this 
endemic area, there is co-circulation of multiple mam-
marenaviruses with JUNV, LCMV, and non-zoonotic 
Latino virus found in rodents captured in the Río Cuarto 
department [41].

Changes in crop operations, increased rodent popula-
tions, and greater exposure of humans to rodents have 
all contributed to disease incidence [35]. Between 1958 
and 1987, there were 21,000 cases among male work-
ers in rural areas, with a mean annual increase of 360 
cases per year between 1983 and 1987 [35]. Government 
authorities have not released consistent AHF case counts 
in recent years, although suspected incidence appears to 
be low. There were only 13 reported cases in 2018 and 2 

Fig. 1 Maps of South America showing the ranges of mammal species associated with New World mammarenaviruses. These species have either been 
identified as potential hosts from serosurveillance, or have been confirmed as hosts through virus isolation. Outbreaks for each of these hemorrhagic 
fevers are depicted as white filled circles. Mammal range distributions are from Marsh et al. [91] with a color palette by CARTOcolors from the rcartocolor 
package in R [92]. Individual maps for each species range can be found in Supplementary File 2
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cases in 2022 [35]. The drop in reported cases over time 
could be explained by vaccination against JUNV; the vac-
cine (Candid 1) is a live attenuated vaccine developed via 
an Argentina-United States partnership in the 1980s [35]. 
Candid 1 efficacy is 95.5% [42]. Originally developed to 
protect agricultural workers, the Junin virus vaccine has 
significantly reduced the incidence of Argentine Hem-
orrhagic Fever since its introduction in the 1980s [43]. 
Argentina’s vaccination policy for JUNV was established 
in 1991; given that this was an orphan drug with finite 
quantities, the vaccine campaign was restricted to geo-
graphic locations and human populations likely to have 
the highest incidence of disease [42]. It is unclear whether 
JUNV spillover infections will rebound given that vacci-
nations are no longer being developed or administered. 
Using monoclonal antibodies potentially offers an addi-
tional treatment approach to Junin virus [16].

Sabia virus (SABV)
Sabia virus (Brazilian mammarenavirus) is the causal 
agent of Brazilian hemorrhagic fever [16]. SABV was first 
reported with two human cases in São Paulo (Cotia in 
1990 and Espirito Santo de Pinhal in 1999) [7]. Both cases 
involved farm workers working in rural areas, and both 
cases were fatal [7]. While attempting characterization of 
SABV, a laboratory technician was infected in 1992, most 
likely through aerosols. Similarly, in 1994, a researcher 
was accidentally infected with SABV through aerosol 
exposure stemming from a broken centrifuge, pointing 
to another occupational risk associated with New World 
mammarenaviruses. Both cases were non-fatal, as the 
individuals knew to seek immediate medical attention 
[44]. Until 2019, these were the only four known cases of 
SABV [7]. Recently, a hiker and a farm worker indepen-
dently presented with symptoms similar to yellow fever. 
They had both been in São Paulo, an area that recently 
experienced a yellow fever outbreak [7]. Metagenomic 
assays confirmed the presence of Brazilian mammarena-
virus in both patients following their deaths [7]. The res-
ervoir for SABV is unknown, but it is suspected to be a 
rodent species [45].

Machupo virus (MACV)
Machupo virus is one of two recognized etiologic agents 
of Bolivian hemorrhagic fever [46]. MACV was first dis-
covered in 1963 in San Joaquin in the Beni department 
of Bolivia; 637 confirmed cases of Bolivian hemorrhagic 
fever occurred with a 25–30% mortality rate between 
1963 and 1964. Disease incidence of Bolivian hemor-
rhagic fever is unknown due to weak epidemiologic sur-
veillance infrastructure in Bolivia [46]. The reservoir for 
MACV is Calomys callosus [46], and the virus circulates 
in these rodent populations via horizontal, vertical, and 
sexual transmission [6]. Risk for Bolivian hemorrhagic 

fever is particularly high for farmers, especially during 
rainy agricultural harvest seasons, for males, given their 
likelihood of working in agriculture, researchers who 
may potentially be exposed to aerosols in the lab, and 
healthcare workers who are likely to be in close contact 
with infected patients [46].

Chapare virus (CHPV)
Chapare virus is the other recognized etiologic agent of 
Bolivian hemorrhagic fever. It was discovered via RT-
PCR (real-time polymerase chain reaction) between 2003 
and 2004 in Cochabamba, Bolivia, during a hemorrhagic 
fever outbreak [46]. Co-circulation of MACV and CHPV 
may be possible, as their probable rodent reservoirs have 
overlapping distributions (Fig.  1). CHPV has also been 
detected in Beni, where MACV was first discovered, and 
may serve as an additional cause of hemorrhagic fever 
there [46]. In 2019, viral hemorrhagic fever was reported 
in Caranavi and the etiologic agent was later confirmed 
as CHPV marking these as the first cases in the 16 years 
after the virus was first identified [47]. Phylogenetic anal-
ysis determined that the cases in this outbreak of Bolivian 
hemorrhagic fever came from multiple strains and likely 
represented multiple spillover events in North La Paz 
associated with agriculture [47]. During this outbreak, 
Oligoryzomys microtis (Small-eared Pygmy Rice Rat) was 
identified as the probable reservoir responsible for zoo-
notic spillover transmission. Both nosocomial transmis-
sion and human-to-human transmission outside of the 
hospital setting was also confirmed [47]. Eight confirmed 
cases and one probable case of Bolivian hemorrhagic 
fever caused by CHPV were reported in this outbreak, 
and four of those cases were fatal. The initial diagnosis 
for the primary patient was dengue fever, thus delaying 
appropriate supportive care and infection control strat-
egies for Bolivian hemorrhagic fever, which are vital for 
patient outcomes [47].

Lymphocytic choriomeningitis virus (LCMV)
LCMV is classified as an Old World mammarenavirus 
but is found throughout the Americas, Europe, Aus-
tralia, and Japan [48]. The primary rodent reservoir is 
the house mouse, Mus musculus, which is a ubiquitous 
species. An estimated 5% of house mice throughout the 
United States are thought to be infected. Infected house 
mice are capable of transmitting LCMV throughout their 
lives without overt signs of illness [48]. M. musculus 
was recently identified in the Caribbean island of Bar-
bados with serological evidence of an mammarenavirus 
infection that is suspected to be LCMV given its wide-
spread distribution [49]. Infection to humans occurs 
through bites [48] and inhalation of excreta and saliva 
[9]. The majority of LCMV infections in humans are 
asymptomatic or cause mild fever; however, initial mild 
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presentation of LCMV infection can be followed by a sec-
ond phase marked by neurological disease, and meningi-
tis, encephalitis, or meningoencephalitis [48]. Compared 
to the New World mammarenaviruses, LCMV mortality 
is relatively low (less than 1%) [48]. Vertical transmission 
has been observed in pregnant women who may trans-
mit the infection in utero leading to congenital malfor-
mations. LCMV infection has been implicated in several 
fatal results in recipients of organ transplants [50–52].

Contextual factors
These viruses pose significant mitigation challenges that 
warrant consideration of several contextual factors that 
are present throughout the endemic areas in varying 
degrees.

Public Health Infrastructure & Healthcare Capacity
The COVID-19 pandemic accentuated numerous chal-
lenges confronting public health infrastructure across 
the endemic region [53]. These include limited finan-
cial investment in public health, a decline in healthcare 
resources—especially acute in rural areas—and frag-
mented health systems. Such fragmentation results in 
disease mitigation strategies being determined at vary-
ing state and local levels, impeding a unified and coor-
dinated public health response to the pandemic [53]. 
Health inequities also persist throughout South America, 
even in Brazil, which has a universal right to health for 
all citizens as a constitutional mandate [54]. Inequalities 
in access, adherence to, and quality of care are consistent 
with socioeconomic differences, with wealthier individu-
als possessing greater access to quality care and increased 
agency over their healthcare decisions than individuals 
of lower socioeconomic status [54]. Rural populations, 
particularly indigenous populations, share a dispropor-
tionate amount of the disease burden throughout South 
America due to a lack of healthcare workers, poor epi-
demiological disease surveillance, and low health literacy 
[55]. These issues of healthcare inequity and faltering 
infrastructure hamper preparedness for spillovers of New 
World mammarenaviruses.

The situation in Venezuela highlights a common set 
of challenges to disease surveillance, prevention, and 
mitigation. Despite some recent reports of 36 confirmed 
cases of VHF, regular data updates on VHF stopped 
in 2006 [33]. The country has also been in political and 
economic crisis since 2014, causing the country’s health 
system to collapse [56], which presents a situation of 
uncertainty with respect to incidence of diseases such 
as VHF, which become further neglected compared to 
diseases such as measles, diphtheria, and tuberculo-
sis that have resurfaced at unsustainable rates [57], and 
reemergence of vector-borne diseases such as malaria 
[58]. The societal and political unrest, external economic 

sanctions, and migration are not unique to Venezuela. 
Other countries experience similar barriers to disease 
surveillance and epidemiological studies [59, 60], against 
a backdrop of weakened public health infrastructure [61].

As was the case globally, COVID-19 justifiably 
demanded the full attention of surveillance and mitiga-
tion efforts in South America and further strained the 
public healthcare system responsible for caring for South 
America’s poorest citizens [62]. Surveillance of other dis-
eases, including those caused by New World mammare-
naviruses, became a lower priority for Venezuela and 
other South American countries [63]. The government 
in Argentina has not reported case counts of Argentine 
hemorrhagic fever since the onset of the COVID-19 pan-
demic, except for two cases of AHF reported in July 2022 
[35]. The last cases of Bolivian hemorrhagic fever, caused 
by the Machupo virus, were reported in 2008, and the 
last cases of Sabia hemorrhagic fever were reported in 
Brazil in 2017 [15]. Underreporting due to lack of surveil-
lance may be one reason for a paucity of data throughout 
the endemic region; however, New World mammarenavi-
ruses coexist with other hemorrhagic fevers and under-
surveilled pathogens that are likely to be contributing 
to syndromes whose etiologies remain persistent but ill-
defined and therefore difficult to treat [64].

Diagnostic capacity
Viral culture, immunohistochemistry, or RT-PCR are 
often used for diagnosis [16]. Historically, there have 
been no biosafety level 4 (BSL 4) facilities in South Amer-
ica, limiting access to laboratories that can safely test 
for these pathogens [65]. Specimens were often sent to 
the Centers for Disease Control and Prevention (CDC) 
in the United States for testing [16], which significantly 
slowed investigations into rapidly developing outbreaks, 
and risked the removal of important disease investiga-
tion assets from the outbreak area [66]. In 2026, Brazil 
is scheduled to open South America’s first BSL 4 facility 
[65] designed to safely support basic research on New 
World mammarenaviruses in the endemic region.

Human and animal ecology
The relationship between humans and the environ-
ment plays a significant role in infectious disease emer-
gence, especially in South America where the diversity 
of animal reservoirs is substantial [63]. Except for Sabia 
virus, whose animal hosts are currently unknown, the 
primary reservoirs for the other zoonotic New World 
mammarenaviruses in South America are sigmodontine 
rodents [67]. This group of rodents entered South Amer-
ica from North America as part of the Great American 
Biotic Interchange and subsequently dispersed across 
the continent, initially colonizing and diversifying in 
eastern South America [68, 69]. The Andes mountains 
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subsequently played an essential role in the high diver-
sity in this group, with repeated invasions and vicariant 
events acting as a “species pump” over different periods, 
creating new species at a faster rate in the Andean groups 
of sigmodontine rodents [70]. Their high diversity and 
the often cryptic nature has led to an ever changing taxo-
nomic understanding of Sigmodontinae, both in their 
species descriptions (due to molecular tools) and the 
shuffling of higher order relationships with increasingly 
large genomic datasets [71, 72]. Given the rapid changes 
in species descriptions, species identification can be dif-
ficult for surveillance, requiring additional resources to 
precisely identify rodents to the species-level, and com-
plicating our understanding of species ranges to better 
define the endemic areas for the viruses they harbor [73]. 
Notably, although New World mammarenaviruses were 
thought to have codiverged with their hosts, recent phy-
logenetic analyses suggest that host-virus relationships 
are instead caused by the tendency of these viruses to 
switch to new hosts that are geographically overlapping 
[74]. This implies that the rodent-virus relationships in 
this group may have been fluid historically, and may be 
capable of switching in the future.

It is clear that land use changes are the main driver in 
the emergence of New World mammarenaviruses [36]. 
The destruction of habitats for agricultural purposes and 
other development [75] brings humans into closer con-
tact with animals, particularly rodents who exhibit syn-
anthropic behavior and carry more zoonotic diseases 
than any other mammal group, thus increasing the risk 
for zoonotic spillover [21]. Calomys musculinus, a res-
ervoir of JUNV, shows differing patterns of genetic and 
population structure between urban and agricultural 
habitats, with higher winter survival in urban areas pos-
sibly driving part of this differentiation [76]. Additionally, 
more generalist species such as C. musculinus may reach 
greater abundances, benefitting from intense agriculture 
and displacing or outcompeting specialist species that are 
not known to be reservoirs of these hemorrhagic fevers 
[77, 78].

Conclusions
Our review reveals that there remain many important 
fundamental unknowns about zoonotic New World 
mammarenaviruses, but also emphasizes concurrent 
advantages to investing resources to address the risks of 
viral hemorrhagic fevers. Expanding our basic under-
standing of these viruses will reveal how to bolster pub-
lic health systems that will build the infectious disease 
intelligence needed to enhance outbreak preparedness 
for multiple diseases [79, 80]. Mitigating the risks of 
mammarenavirus outbreaks will serve to enhance the 
overall infectious disease resilience in these countries. 
Many of these diseases similarly share sylvatic reservoirs 

or vectors that support repeated spillover transmission 
of zoonotic pathogens that are projected to increase in 
incidence with land use change, a trend that continues 
unabated and poses ongoing threats [81–83].

Enhanced disease surveillance, informed by a deeper 
understanding of mammarenavirus seasonality and 
transmission patterns, is crucial. Rather than placing the 
onus solely on resource-constrained countries, collective 
efforts leverage the strengths of international organiza-
tions, neighboring countries, and global health networks. 
Programs like PAHO’s successful campaigns against 
other infectious diseases serve as a model for how collab-
oration and resource-sharing can yield substantial public 
health dividends [63, 84, 85]. Sustained collaborations 
across disciplines and across countries, like those sup-
ported by the NIH NIAID CREID network or virtually 
organized efforts like Museums and Emerging Pathogens 
in the Americas (MEPA), have shored up interdisciplin-
ary collaborations to better understand complex inter-
actions between agriculture and land use change, host 
ecology, and virology, and their change over time [86, 87].

It is evident that while New World mammarenavi-
ruses possess distinct characteristics, their effective 
mitigation aligns with broader principles applicable to 
zoonotic pathogens. Crucial to this effort is the adoption 
of collaborative, multi-sectoral strategies that encompass 
research, response, and preparedness activities, as these 
approaches have shown substantial promise in address-
ing similar health threats [88, 89]. The cornerstone of 
such strategies lies in nurturing within-country research 
capabilities and providing consistent, targeted sup-
port to local scientists across relevant disciplines. This 
support is essential to avoid pitfalls of reactive funding 
reallocation, which can disrupt the continuity of interdis-
ciplinary research and hinder the development of com-
prehensive mitigation solutions [90]. Addressing these 
challenges will bridge vital knowledge gaps concerning 
mammarenaviruses and also fortify long-term research 
infrastructure in endemic regions. Such fortification 
is a strategic investment, yielding significant returns 
in enhancing global health security and equipping us 
to effectively tackle both current and future zoonotic 
challenges.
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