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Abstract 

Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious 
diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium 
and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence 
in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have 
revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, 
higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative 
genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since 
the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemi-
nation of these persistent pathogens are urgently needed. These approaches include combinatory administration 
of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through com-
mensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. 
In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic 
advances against VRE infections.
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Background
Vancomycin-resistant enterococci often represent multi-
drug resistance strains and pose a recurring and lethal risk 
to patients in healthcare facilities. Hypermutable entero-
cocci of clinical interest, such as  Enterococcus  faecium, 

often lack CRISPR systems, resulting in the promiscuous 
acquisition of exogenous DNA and the ability to mutate 
and persist in challenging niches, such as the healthcare 
setting. Considered a model of adaptability to its environ-
ment due to genomic plasticity, clinical Enterococcus spp. 
have accumulated resistance genes to aminoglycosides, 
quinupristin/dalfopristin, linezolid, macrolide, phenicols, 
tetracyclines and, most notoriously, vancomycin. Vanco-
mycin is still used as a last-line treatment to treat Clostrid-
ioides difficile infection and cases of vancomycin resistant 
C. difficile (VRCD) are on the rise. Recently enterococci 
have been shown to enhance C. difficile pathogenesis sub-
stantiating their role in poly-microbial infections. As of 
June 2021, a novel mechanism of vancomycin resistance 
was discovered in E. faecium (VREfm). As of October 
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2022, the first case of a plasmid-borne VanD resistance 
operon was identified in E. faecium nested within a trans-
poson. The IS256 family transposase has similarity to 
a transposase of C. difficile origin. Since the turn of the 
century, an increasing incidence of multidrug-resistant 
(MDR) E. faecium has been observed, a trend that con-
tinues to be observed across Europe in recent years 
(2021–2023).

Recent genomic analyses have highlighted the mul-
tifaceted role plasmids, mobile genetic elements, and 
their dissemination play in the advancement of VREfm 
to become a clinical pathogen. A phylogenomic analysis 
accounting for recombination events, a process which 
results in genomic admixture of clones, suggests the most 
clinically significant clade A1 emerged from clade A2, 
both descendent of the community clade B, and that new 
genomic forms arise through genomic exchange between 
these members resulting in novel lineages. Similarly, the 
plasmid population among VREfm is a key driver in the 
distribution of antimicrobial resistance (AMR) genes, 
and specific plasmid profiles can be used to suggest the 
originating source of enterococcal isolates.

Current gold standard treatments to treat VREfm 
require patient-tailored regimens based on the suscep-
tibility pattern of isolates and the degree of infection. 
Cases of daptomycin resistant Enterococcus (DRE) are on 
the rise, cases of DRE transmission within the healthcare 
setting have been identified and DRE have been isolated 
from daptomycin naïve patients. Clinical isolates are also 
able to undergo selective genomic rearrangements to 
confer rapid resistance.

A recent review recommended methods of infection 
control and diagnostics of VRE, such as intensified clean-
ing procedures, antibiotic stewardship, and genomic sur-
veillance. The scope of containment needs to be expanded 
due to the potential for the dissemination of MDR strains 
in the food chain and community spread. García-Solache 
and Rice [1] suggest Enterococcus has become a model of 
adaptability to its environment and summarise the resist-
ance profile of Enterococcus to a wide array of antibiot-
ics. Ahmed and Baptiste [2] explore the mechanisms of 
vancomycin resistance among enterococcal isolates and 
discuss the evidence of the link between VRE and Ente-
rococcal spp. of animal origin.

In this review, we describe the journey of Enterococcus 
spp. to become a nosocomial pathogen from its commen-
sal background, the traits associated with clinical isolates 
and review current genomic and phylogenomic literature 
surrounding clonal epidemiology, discuss novel mecha-
nisms of resistance and the dissemination of resist-
ance genes via plasmids and mobile genetic elements. 
From these genomic insights, we discuss strategies of 
therapeutic intervention based on aetiology, including 

combinations of antibiotics, bacteriocins, probiotics, bac-
teriophage  (phage) therapy and strengthening colonisa-
tion resistance of the gut microbiota against VRE.

Statement
The aim of this review is to highlight the multifaceted 
traits relevant to clinical Enterococcus spp. and their 
community counterparts, then discuss the use of anti-
biotic and non-antibiotic strategies to combat infection 
and dissemination. We also discuss how genomics can 
improve these strategies.

The scope of this review is to assess the current 
genomic literature surrounding resistance, mobile 
genetic elements, and epidemiology and to discuss 
microbiological strategies guided by genomics to prevent 
colonisation by carrier VRE or treat infection.

VRE represent MDR strains routinely capable of 
genomic exchange, as seen with the discovery of novel 
resistance mechanisms and newly vectorised resistance 
operons. Increasing resistance, including treatment naïve 
resistance, is being documented to current gold-standard 
antibiotic treatments.

Recent publications in the field suggest E. faecium por-
tray increased incidence, acquisition of novel resistance 
mechanisms and dissemination. This review is timely 
as it collates the microbiological tools which will be 
required to treat or prevent enterococcal infection in the 
clinical setting and reduce community spread. Strategies 
discussed also include prophylactic colonisation resist-
ance and probiotics.

Main text
Introduction
Enterococci are gram-positive, chain-forming, non-
spore-forming, facultative anaerobic lactic acid bacte-
ria (LAB), commonly isolated from the gastrointestinal 
tract (GIT) of humans and animals [3]. They deline-
ated from Vagococcus ~ 500 million years ago, have 
co-evolved with animal territorialisation and have asso-
ciated heavily with the mammalian GIT [4]. The human 
gut microbiota hosts approximately < 0.1% enterococci 
[4]. Previously classified as part of the group D Strep-
tococcus based on the Lancefield serologic typing sys-
tem, they were acknowledged as a separate genus in 
the 1980s, Enterococcus [5]. This genus currently con-
tains 83 species [6]. Comparative genomic analysis of 
37 Enterococcus strains revealed that this genus repre-
sents a group with variation in GC content (34–45%) 
and genome size (2.31 Mbp to 5.5 Mbp) [4, 7]. Func-
tional analysis of the pan-genome highlights the flux 
of niche-specific genes (NSG) over time, where the 
greatest flux of annotatable genes is associated with 
carbon utilisation, phosphotransferase systems (PTS) 
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and transcriptional regulation [4]. This indicates the 
evolution of Enterococcus coupled with horizontal gene 
transfer (HGT) events, selective pressure, and niche 
transition. Enrichment of genes involved in cell wall 
modification, de novo purine biosynthesis and stress 
response suggests adaptability to niche diversification 
and phenotypic resilience due to genomic plasticity 
resulting in genus diversification [4].

The genus, previously as part of Streptococcus, was 
first described as “hardy” in 1899. An analysis of pheno-
typic growth in the presence of stressors associated with 
the hospital environment found ubiquitous resistance to 
β-lactam antibiotics and common disinfectants. E. fae-
cium and E. faecalis were some of the most desiccant and 
starvation resistant, respectively [4, 8]. The enterococcal 
pangenome contains ~ 29,545 gene families and grows 
continuously, pointing to an open pangenome suggest-
ing gene exchange within and between species [7]. How-
ever, this is not the case for all species within the genus, 
as E. faecium and E. faecalis have open and closed pan-
genomes, respectively [9, 10]. Habitats drive the evolu-
tion of Enterococcus, and genetic relationships are more 
similar in strains that come from the same environment 
[11]. Phylogenetics of the core-genome show that human 
and mammalian isolates are dispersed in branches of E. 
faecium, E. dispar and E. pallens, while plant and bird 
isolates are mainly in the E. casseliflavus branch suggest-
ing dissemination of the genus among mammals [7].

Enterococci are used in the fermentation of certain 
types of cheeses (e.g. traditional European cheeses) and 
meat products (e.g. fermented sausage) [12]. They are 
also causative agents of food spoilage, mainly of cooked 
meats [13]. Enterococci have also been successfully used 
as probiotics but remain controversial for such applica-
tions given their genetic promiscuity and relatedness to 
pathogenic strains [13, 14]. They are part of the com-
mensal microbiota in the gut but can cause infectious 
diseases, such as endocarditis, urinary tract infections 
(UTI) and bacteraemia. The two species most associ-
ated with invasive infection are E. faecium and E. faeca-
lis. Treatment of the resulting diseases is often complex 
due to their resistance to commonly used chemothera-
peutic agents [5]. The first documented use of the term 
“enterococcus” in 1899 highlighted the bacterium’s abil-
ity to become pathogenic; presently, E. faecium repre-
sents a pathobiont currently a threat to global health 
[15]. One of the “hottest” issues regarding pathogenic 
enterococci is the emergence of multidrug resistant 
(MDR) strains, leading to enterococci becoming the  2nd 
most causative agent of hospital-acquired infections 
(HAI) [1]. Enterococci also enhance the pathogenesis 
of Clostridioides  difficile suggesting their role in poly 
microbial infections [16].

On average, E. faecium clinical isolates (CL) harbour 
10 resistance genes, including vancomycin, aminoglyco-
side, macrolide-lincosamide-streptogramin, and tetra-
cycline [17]. Daptomycin, a first-line treatment for VRE, 
was recently shown to select for off-target resistance 
within the human after intravenous treatment [18]. Non-
synonymous mutations conferring resistance to dapto-
mycin are detected globally, indicating the emergence of 
resistant mutants due to local selective pressures. How-
ever, these do not correlate significantly with vancomycin 
resistance genes [17]. Evidence is also emerging of small 
colony variants (SCV) among E. faecium and E. faecalis 
species, a phenomenon usually associated with increased 
robustness, antibiotic resistance and recurrent infections. 
To date, described cases of SCVs among enterococci are 
vancomycin susceptible [19, 20].

This review provides detail on the mechanisms of 
vancomycin resistance in enterococci. We examine the 
evolutionary relationships between hospital-associated 
pathogenic enterococci and their community counter-
parts based on genomics and present the likely routes of 
transmission based on this data. Finally, we look at con-
ventional and novel approaches for treating VRE infec-
tions, including antibiotics and combinations thereof, 
non-antimicrobial-based drugs, bacteriocins, bacterio-
phage therapy, probiotics, vaccines and the commensal 
gut microbiota itself.

Vancomycin resistance in enterococci
Enterococci possess intrinsic resistance to several groups 
of antibiotics, such as tobramycin, kanamycin, β-lactams 
and lincosamides (clindamycin, streptogramin) [21]. Due 
to their genome plasticity, enterococci quickly adapt to 
environmental changes [22]. HGT enables the acquisition 
of genetic elements that provide resistance to antibiot-
ics and enable survival and persistence of enterococci in 
clinical settings (Fig. 1). E. faecium and E. faecalis repre-
sent two of the hardiest enterococcal species with capa-
bilities to withstand multiple antibiotics, antiseptics, salt 
concentrations, organic compounds such as sorbic acid, 
and other stressors such as urea and high pH [4].

Vancomycin inhibits the formation of the cell wall by 
binding to the terminal D-Ala-D-Ala dipeptide of cell 
wall precursors, thus impeding processing into pepti-
doglycan [24]. Vancomycin bacteriostatic activity against 
Enterococcus is slow-acting, increasing the potential for 
the development of resistance [25]. Intrinsically resistant 
microorganisms possess a naturally different pentapep-
tide, such as in the case of Lacticaseiobacillus paracasei. 
Conversely, acquired resistance, as observed in Ente-
rococcus, enables cells to synthesise modified cell wall 
precursors, for example, replacing the terminal D-ala of 
the dipeptide with D-lac or D-ser. This structural change 
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results in up to 1000 times lower affinity for binding van-
comycin [21].

Vancomycin resistance in enterococci was first 
described in 1988 [26]. E. faecalis was the predomi-
nant source of VRE; however, a gradual transition has 
occurred over the previous 20–30  years resulting in a 
species shift of VRE to E. faecium, although resistance 

is also detected in other enterococci [21, 27]. Vancomy-
cin-resistance genes likely originate from un-sequenced 
soil bacterial species such as actinomycetes, the natural 
producers of glycopeptides [28–30]. Extensive genomic 
data from the human gut and skin microbiome suggests 
that the origin of vanA vancomycin resistance genes lay 
elsewhere and have moved by HGT, whereas vanB and 
vanD can be found in gut isolates, notably vanD protein 

Fig. 1 a Enterococcal acquisition of niche specific genes and (b) dissemination routes for VanA genes. a A change of niche resulted in Enterococcus 
spp. acquiring a harder cell wall structure and increased mutatable phenotype. E. faecium acquired various substrate utilisation genes, namely 
glucose, mannose, galactose and fructose. Hospital acquired infection-related E. faecium lack CRISPR-Cas systems, rendering them susceptible 
to receiving ectopic DNA resulting in the acquisition of pathogenicity islands, plasmids and insertion sequences. Hospital-acquired, hypermutable 
clade E. faecium can also have single nucleotide polymorphism (SNP) mediated resistance to antibiotics, such as fosfomycin, an antibiotic used 
to treat acute non-complicated urinary tract infections (UTIs). A hypermu table phenotype due to mutations in the DNA-mismatch repair 
proteins MutS and MutL increases the mutation frequency of strains. Enterococci act as genomic reservoirs for antimicrobial resistance (AMR) 
genes which can then be passed to recipients like S. aureus and S. gordonii. b The possible dissemination of VRE AMR genes due to transposons, 
insertion sequences (IS) and plasmids. Nested mobile genetic elements (MGEs) resemble the Russian doll model similar to carbapenemase 
resistance genes in Enterobacteriaceae, resulting in numerous horizontal dissemination routes including movement of the plasmid, transposition 
of the transposon between plasmids and homologous recombination [23]. Vertical dissemination occurs through daughter progeny containing 
the plasmid; this is confirmed by detecting the same plasmids and MGEs amongst the same clonal background. These are often responsible 
for hospital outbreaks accounting for ~ 30% of dissemination [23]. Horizontal dissemination: (1) Mobilisation of a plasmid to previously susceptible 
strains via conjugation ~ 7%. (2) Transposon-mediated mobilisation of sequences to other plasmids containing target sequences. (3) Mobilisation 
of IS. Most cases are caused by separate events indicating the high frequency that strains become pathogenic post-antibiotic treatment [23]. The 
notation “+” indicates acquisition of DNA, “*” indicates a mutation in DNA, “−“ indicates missing DNA feature
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orthologs in the gut commensals Lachnospiraceae and 
Oscillospiraceae [31, 32].

In total, 12 types of vancomycin resistance mechanisms 
are known, 10 of which are described in enterococci 
(Fig.  2) [33–38]. Two major groups exist, categorised 
according to ligase activity, which is responsible for 
replacing the terminal D-ala with D-lac, referred to as 
D-lac ligases, or D-ser, referred to as D-ser ligases. The 
operons that encode D-lac ligases often result in high-
level resistance with  minimal inhibitory concentra-
tions (MICs) > 256 μg/mL (vanA, vanB, vanD and vanM, 
vanP, vanO, vanI), while operons that encode D-ser 
ligases result in low-level resistance with MICs of 8–16 
μg/mL (vanC, vanE, vanG, vanL, vanN) [21]. Strains of E. 
gallinarum and E. casseliflavus harbour the vanC operon 
on their chromosomes, contributing to low intrinsic 
resistance. E. faecium resistance is conferred by vanA or 
vanB operons, frequently carried on the transposable ele-
ments (TEs) Tn1546 and Tn1549, respectively [39]. HGT 
of vancomycin resistance has been confirmed among 
enterococci and other gram-positive bacteria, such as S. 

aureus, via plasmid transfer. This transfer of resistance is 
a significant problem, as vancomycin is a last-line anti-
biotic to treat the rising number of Methicillin-resistant 
Staphylococcus aureus (MRSA) infections [40].

Genomics and phylogenetics of disease‑related enterococci
Although E. faecalis is the more common causative agent 
of enterococcal infections, E. faecium is more intrinsi-
cally resistant to antibiotics. Today, more than half of 
hospital enterococcal isolates in the US are resistant to 
ampicillin and vancomycin and have high-level resist-
ance to aminoglycosides [22]. The ecological replacement 
of E. faecalis with E. faecium in the hospital environment 
could result from the intense use of antibiotics, the multi-
ple antibiotic resistances of E. faecium, and the increased 
ability to withstand associated stressors [4, 43].

Genomics of pathogenic enterococci has shown char-
acteristics that distinguish them from commensal iso-
lates [44]. A review by Guzman Prieto et  al. (2016) 
highlights the clonality of clinical enterococci [45]. A 
comprehensive study of 1644 E. faecium isolates by 

Fig. 2 Phylogenetic tree of D-Ala-D-(X) ligases. Phylogenetic tree of ligases, those highlighted in blue are present among Enterococcus. The 
following accessions were used to construct the tree VanA [Enterococcus faecium] (AAA65956.1), VanD [Enterococcus faecium] (AAM09849.1), VanM 
[Enterococcus faecium] (ACL82961.1), VanC2 [Enterococcus casseliflavus] (AAA60990.1), VanE [Enterococcus faecalis] (ABA71731.1), VanL [Enterococcus 
faecalis] (ABX54687.1), VanN [Enterococcus faecium] (AEP40500.1), VanF [Paenibacillus popilliae] (WP_006285587.1), D-alanine–D-serine ligase 
VanG [Clostridioides difficile] (WP_021362548.1), D-alanine–D-serine ligase VanG [Clostridioides difficile] (WP_021425673.1), VanG [Enterococcus 
faecalis] (AAQ16273.1), D-alanine–D-alanine ligase [Enterococcus faecalis] (WP_002379157.1), D-alanine–D-alanine ligase [Enterococcus faecium] 
(WP_002293424.1), D-alanyl-alanine synthetase A [Staphylococcus aureus subsp. aureus str. JKD6008] (ADL66141.1), D-alanine–D-alanine ligase 
[Leuconostoc mesenteroides subsp. mesenteroides J18] (AET29676.1), D-ala D-ala ligase [Lactiplantibacillus plantarum subsp. plantarum ATCC 14917] 
(EFK27904.1), VanP [Roseburia sp. 499] (WP_075721811.1), VanP [Enterococcus faecium] (WP_222893641.1), VanI [Desulfitobacterium dichloroeliminans] 
(WP_041219811.1), VanO [Rhodococcus] (WP_209928075.1). The sequences were aligned using muscle [41] and the tree was constructed using 
RAxML-NG v1.2.0 [42] with 200 bootstrap replicates
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Arredondo-Alonso et  al. (2020) identified the role of 
plasmids and their subsequent plasmid subpopulations 
amongst clinical VREfm and non-clinical sources [9]. 
Comparing isolates from hospitalized patients vs other 
sources, hospitalized patients carried a larger number of 
plasmids and plasmids were significantly larger in size. 
The plasmid population is the largest contributing fac-
tor to genome size outside of the core genome, and vast 
heterogeneity was observed among completed plasmid 
sequences with respect to plasmid length and number 
of replication and mobilisation proteins (n = 305). Com-
mensal isolates have smaller genomes, while MDR iso-
lates are promiscuous and have enlarged genomes that 
include plasmids, phages, insertion sequences (IS), and 
pathogenicity islands [44]. Enterococci act as an anchor-
ing vector for these  mobile genetic elements  (MGEs), 
and up to 25% of enterococcal DNA can be accounted 
for by acquiring exogenous DNA through these mecha-
nisms. A 2010 study identified that MDR isolates lack 
functional CRISPR systems [40], which enables MGE 
uptake. However, the largest study to date reported no 
difference between number of CRISPR-Cas systems and 
instead, found a type I restriction modification system 
(RM) enriched in clade A1 of E. faecium [9]. Separate RM 
S-subunits were enriched outside this clade suggesting it 
is the presence of RMs that dictate gene transfer events 
and drive subspecies separation [9, 46].

Fluctuation analysis of enterococcal genes described 
a favourable gain in niche-specific genes. Capturing 
MGEs and acquiring AMR genes in VRE has allowed 
gene-mediated survival within the hospital, where fur-
ther MGEs can be acquired ad-hoc [47]. A recent analy-
sis of the core genome of 973 global clade A1 (hospital 
associated) E. faecium isolates from 31 countries span-
ning 30  years defined 10 clusters. Low granularity was 
observed between groups, highlighted by core-genome 
admixture, which showed substantial ancestry between 
78 isolates found at the boundaries, likely due to recom-
bination events [17]. Similarly, a pan-genome analysis 
identified a significant number of shared genes among 
plasmids (40.9%), indicating plasmid-driven strain diver-
sification among hospital clones. Low-frequency genes 
were also observed among plasmids across the pan-plas-
midome, suggesting the acquisition of ectopic DNA to 
the accessory genome. Within the core genome, homol-
ogous housekeeping genes with > 5% divergence (adk, 
atpA and pstS) were observed, but high overall homology 
indicated clonal expansion of clade A1 [17].

A review by Hendrickx et  al. (2013) summarises the 
role that enterococcal surface proteins play in the patho-
genesis of E. faecium [48]. A large set of these proteins are 
anchored to the cell wall through a LPxTG domain and 
hence are exposed on the outside of the cell wall. These 

proteins can represent a pool of surface antigens for ther-
apeutic exploitation that will be discussed later. Several 
virulence factors exist among enterococci, allowing per-
sistence, evasion and competition among niche co-occu-
pants. Haemolysin (cytolysin), a secreted toxin capable 
of lysing red and white blood cells, is often encoded in 
pheromone-responsive plasmids or pathogenicity islands 
and is associated with increased virulence among VREfs 
[49, 50]. Of note, the genetic capability to produce cytoly-
sin was found in E. faecium via PCR but was determined 
to be a silent gene [51].

Gelatinase (gelE), found in > 90% of  clinically associ-
ated clonal complex 17 (CC17) isolates, and other serine 
proteinases are responsible for degrading host tissues 
comprised of collagen to provide nutrients and can affect 
intestinal epithelial translocation [52, 53]. Gelatinase 
also modulates the host immune response and activates 
autolysin, which leads to the fratricidal release of extra-
cellular DNA, a component in biofilm formation [54, 55]. 
GelE is found in both VREfm and vancomycin-resistant 
Enterococcus faecalis (VREfs) [56]. Hyaluronidase (hyl) 
degrades mucopolysaccharides of host connective tissue 
and extracellular matrix, enabling the spread of the cells 
and their toxins through host tissue whilst simultane-
ously providing a disaccharide carbon source. Although 
hyl genes are present among virulent enterococci, it is 
not a primary mediator of virulence. Aggregation sub-
stance (AS) promotes E. faecalis clumping and facilitates 
adhesion to eukaryotic cells, such as renal epithelial cells. 
It also mediates aggregate formation during conjugation 
and helps in high-frequency plasmid transfer and is not 
found in E. faecium [57]. Esp and Espfm genes are local-
ised on pathogenicity islands within clinically relevant 
enterococcal species, where Espfm is a distinct marker 
for the hospital associated lineage CC17, and plays a 
role in adherence and biofilm formation among abiotic 
surfaces [58–60]. Microbial surface components recog-
nising adhesive matrix molecules (MSCRAMMs) are 
essential in the early stages of infection. The cell wall-
anchored enterococcal adhesins Ace and Acm are also 
present among clinically relevant E. faecalis and E. fae-
cium, respectively. Transcriptionally expressed in the 
presence of urine, serum and collagen, and present as 
pseudogenes in non-clinical (NC) enterococcal spp., 
Ace-deleted mutants show reduced virulence for UTIs 
and endocarditis, highlighting their role in pathogenic-
ity [50, 61]. Gls24, a general stress response protein from 
E. faecalis, is expressed in the presence of serum and 
urine, mediates bile salt resistance, and deletant mutants 
show reduced virulence [62]. Gls homologs are found in 
E. faecium, notably gls33 and gls20 [63]. NADH-perox-
idase (Npr), alkyl hydroperoxide reductases (Ahp) and 
thiol peroxidases (Tpx) are three peroxidases responsible 
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for reducing reactive oxygen species-mediated bacte-
riolytic activity of phagocytes among E. faecalis [50]. 
Interestingly, the roles of Npr, Ahp and gpx (a putative 
glutathione peroxidase) in E. faecium do not have a pro-
tective role against  H2O2 [64]. Pilli also present virulence 
factors involved in biofilm formation, cell–cell aggrega-
tion and gene transfer, contributing to the pathogenesis 
of urinary infections and endocarditis and are present in 
both E. faecium and E. faecalis [50, 65].

Genomics of E. faecium suggest two distinct lineages exist
Initial molecular epidemiological analysis of E. faecium 
in the 1990s used pulsed-field gel electrophoresis (PFGE) 
typing, which revealed that a single clone dominated the 
enterococcal population in the USA [50]. Amplified-
fragment length polymorphism (AFLP) was then used to 
differentiate the genetic relatedness of 255 isolates from 
hospitalised and non-hospitalised patients and animal 
sources [66]. From this host-associated genotypes were 
determined from AFLP fragment clustering, and showed, 
for the first time, host/environment associated ecotypes 
existed amongst strains of E. faecium.

Later, multi-locus sequence typing (MLST) analysis 
based on allelic differences in housekeeping genes defined 
lineages associated with hospital infections. Sequence 
types (ST) were determined and uploaded to an online 
database (https:// pubml st. org/ efaec ium/), which cur-
rently contains 2069 STs from 7593 isolates (18.7.2023). 
Based on ST, clonal complexes (CC) were defined, and in 
2005 the term CC17 was defined representing a prevalent 
hospital adapted lineage of E. faecium present globally 
[67]. CC17 is associated with clinical strains, including 
ST17, ST117, ST78 and ST203 [50, 68]. Strains from the 
CC17 can persist in the nosocomial niche due to MDR, 
and biofilm formation, owing to the pathogenicity islands 
harbouring the enterococcal surface protein (esp) gene. 
This presents significant implications for catheter-medi-
ated enterococcal invasive infection [33].

Several studies [33, 39, 69] have suggested the advan-
tage of whole genome sequencing (WGS) in enterococ-
cal phylogenomics compared to MLST, and have shown 
that recombination events across housekeeping genes 
are critical contributors to diminishing the usefulness 
of MLST applications resulting in a lack of accuracy and 
sensitivity.

The increasing number of enterococcal sequences has 
enabled comparative genome analysis, permitting scien-
tists to elucidate differences between isolates originat-
ing from different sources and thus infer the evolution 
of strains [4, 11, 68]. On the other hand, a limitation of 
WGS lies within the downstream analysis, where analysis 
of the core-genome can overestimate the non-relatedness 
of isolates overlooking HGT events, resulting in missing 

forensic links of clinical relevance and ignoring the sig-
nificance of the mobilome in the dissemination of resist-
ance genes [23].

Comparative genome studies reported a general 
division of E. faecium into two separate clades, most 
often one encompassing community-related isolates 
and the second one including clinical isolates (Fig.  3). 
Core-genome phylogenomic analysis of 30 enterococ-
cal strains belonging to four species (E. faecium, E. fae-
calis, E. gallinarum and E. casseliflavus) showed two 
distinct clades within E. faecium [68]. Based on average 
nucleotide identity (ANI) analysis, it was suggested that 
both  hospital  (A) and community (B)  clades are poten-
tially endogenous to the GIT of different hosts and now 
co-exist among human flora due to antibiotic elimina-
tion of competitors. Another option is that clades A and 
B diverge from each other due to antibiotic use and eco-
logical isolation. Recombination between the two clades 
has been observed in the cases of two strains, represent-
ing a hybrid between clades A and B. A study by Been 
et  al. (2013) identified recombination events between 
these two clades but found clade A to be notably more 
prone to recombination events, with the highest amount 
of recombination as a percentage of the core genome at 
26.9% [70]. The source of recombinant sequences was 
also predicted to be vastly derived from clade B, con-
firmed by a recent study showing genomic admixture 
between clade A1, A2 and B [71].

The genes that contributed to the so-called “mosai-
cism” were acquired in a recombination event from clade 
B. In one strain, it was the occurrence of adk-6 (adeno-
sine-kinase) and ddl-13 (d-Ala–d-Ala ligase) alleles and 
the presence of a CRISPR-Cas system, while in the sec-
ond strain, it was the presence of the gene pbp5 which 
can confer ampicillin resistance. Clade-specific traits 
exist; clade B isolates encode several secreted factors that 
can interact with eukaryotic cell surfaces, suggesting a 
closer association with host tissues in the GIT than clade 
A strains. Clade A strains may be more transient and 
associated with the GIT lumen, contributing to dissemi-
nation [68].

Another comparative genome analysis of E. faecium 
confirmed the existence of two phylogenetic groups 
[43]. The first group, community-associated strains (CA 
clade), did not carry AMR genes, certain genomic islands 
(GIs), or IS elements. The second group comprises hos-
pital-associated isolates (HA clade) characterised by 
AMR genes and several unique IS elements, transposons, 
phages, plasmids, GIs, and polysaccharide synthesis loci 
3 and 4. Genes encoding initiating transferase for poly-
saccharide biosynthesis and repeat unit polymerases are 
typically clustered in loci involved in polysaccharide 
synthesis within HA clade. Genomic analysis revealed a 

https://pubmlst.org/efaecium/
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predicted polysaccharide-encoding gene cluster down-
stream of the enterococcal polysaccharide antigen (epa) 
region containing loci 1, 2 and 3 in all analysed strains. 
Loci 3 and 4 were primarily present in HA clade strains, 
while locus 2 and locus 1 were found in both clades 
not belonging to CC17. Inside Clade A, there was fur-
ther evolution, and some of the clades share character-
istics with community isolates, probably representing 
transitional lineages that lack IS and do not possess loci 
involved in epa extension. In addition, four of 21 analysed 
genomes in this study had the CRISPR-Cas locus; three 
were associated with the CA clade and lacked all antibi-
otic resistance. Some hybrid strains contained CRISPR 
and 8 antibiotic-resistance genes, representing another 
example of previously reported mosaicism. Clade HA 

specific characteristics most likely contributed to the 
emergence of this organism in the hospital environment 
in the last 30 years [43]. No CA clade isolates harboured 
any antibiotic resistance determinants. In contrast, all 
HA clade isolates have multiple resistance determinants, 
including the penicillin-binding protein 5 (pbp5-R) allele 
that confers ampicillin resistance, except for two strains 
[73]. Strain 1,231,501 in the HA-clade lacks all antibiotic 
resistance genes, including pbp5-R, but instead carries 
the replacement (hybrid) region, including pbp5-S which 
has an 8-fold decreased resistance. Strain E1039 has the 
pbp5-R allele but none of the other resistance genes and 
was genetically defined as an HA-clade isolate but came 
from a healthy volunteer, which explains the lack of anti-
biotic resistance determinants. Neither of these strains 

Fig. 3 Separation of two distinct clades of E. faecium. This figure depicts concatenated genes of the cgMLST of 3308 isolates in a visual minimum 
spanning tree by GrapeTree on PubMLST.org [72]. The size of each node represents the number of isolates in a cluster, and each node is coloured 
with the epidemiological source of isolation using a pie chart. Only isolates with an epidemiological source were used to construct the tree. A 
represents clade A E. faecium and (B) represents clade B E. faecium / E. lactis 



Page 9 of 33Hourigan et al. BMC Microbiology          (2024) 24:103  

has IS16, which is considered an indicator of HA strains 
[73]. In the attempt to determine the evolution of E. fae-
cium, this study suggested the existence of a primordial 
type of E. faecium, which split and evolved into two early 
community groups, with homologous pbp5-S or pbp5-
R alleles, the latter representing community sources of 
ampicillin-resistant E. faecium [43]. These lineages could 
recombine with each other resulting in hybrid strains. 
The divergence between the two community groups 
reached core genomic differences creating two clades., 
HA and CA, which can be distinguished by pbp5-R (HA) 
and pbp5-S (CA) genotype. However, ampicillin resistant 
community derived isolates such as those from compan-
ion animals lie within this clade, suggesting it is also pos-
sible that ampicillin-resistant E. faecium clones evolved 
from animal reservoirs, or that animal ampicillin-resist-
ant isolates represent evolutionary descendants of HA 
strains transferred to pets, a finding in accordance with a 
Dutch study of companion animals [9, 43, 74].

Analysis of differences among the two clades at the core 
genome level showed > 90% separated into two distinct 
groups, demonstrating that apart from the resistance 
genes and virulence factors (VF), essential differences 
in the core genes contributed to the differentiation of 
the two clades. The two clades separated between 1 and 
3 million years ago, or approximately 300,000  years ago 
if accounting for a faster mutational rate. The proposed 
divergence occurred long before the modern antibiotic 
era [75]. These results contrast with a study by Lebreton 
et  al. [11], which also determined the existence of two 
clades, A and B. Clade B comprised commensal strains. 
In contrast, clade A contains two sub-groups: clade A1 
(epidemic hospital strains) and clade A2 (mixed animal 
and sporadic human infection isolates). The divergence 
of E. faecium occurred approximately 3000  years ago, 
coinciding with the development of housing, domestica-
tion of animals and specialised diets. The second event 
was the division of clade A ~ 75 years ago, which concurs 
with the introduction of antibiotics from a population 
dominated by animal strains. Hypermutable Clade A1 
can acquire mobile elements and utilise carbohydrates of 
non-dietary origin. This study also identified hybrid clade 
A1 and B strains, confirming that human-infecting hospi-
tal and commensal strains occasionally overlap.

A study by Raven et  al. (2016) showed that only two 
major lineages exist and did not support the existence 
of clade A2, which it found to be ancestral to clade A1, 
and whose phylogeny was consistent with a rapid clonal 
expansion of clade A from a single progenitor [76]. A 
recent genomic analysis of A and B clones encompass-
ing 1128 genomes shows that clade A1 likely emerged 
as a clone from within A2, and due to ectopic genomic 
exchange that clade A2 HAI represents a continuum 

between clade B and clade A1, substantiating evidence 
for hybrid clones among the population in a direction 
towards clade A1 [71]. This is substantiated by the epide-
miological origins of E. faecium strains in Fig. 3.

Further genomic analysis of 8,430 Enterococcus strains 
isolated from various sources, including abattoirs, retail 
meat facilities, animal sources, water sources and clini-
cal isolates, revealed distinct clustering of enterococcal 
isolates to source, further suggesting specific adapta-
tions to respective niches [77]. An analysis of ST between 
isolated sources showed ST117 was the most prevalent 
among VRE (76%) and non-VRE E. faecium (35%), sug-
gesting clonal acquisition of vancomycin resistance ele-
ments. The frequency of AMR genes correlated to the 
isolation source. Vancomycin resistance genes (vanA, 
vanB, vanC,-type) were found solely in a clinical setting 
among E. faecium. Among the same strains from clini-
cal sources, multiple other resistance genes were present 
(dfrG, dfrE, msr(C), eat(A), aac(6’), tet(LSM), erm(B), 
aph(6)-la). Genes aac(6’), eat(A), and msr(C) were found 
ubiquitously in the clinical setting, bovine faeces, feedlot 
catch basin, beef processing environment, natural water 
sources and urban wastewater. No vancomycin-resistant 
E. faecium was detected outside the clinical setting in 
this paper, which is contradictory to previous findings by 
other studies [11, 45, 78]. This highlights that VRE selec-
tion occurs within the clinical setting, driven by antibiotic 
exposure [77]. This data is backed up by a recent genomic 
analysis of Irish E. faecium, which does not cluster with 
isolates from the UK, its closest geographical neighbour, 
further suggesting independent events of acquisition and 
clonal expansion rather than dissemination of established 
VRE strains [79]. MDR E. faecium isolates were resistant 
to 4–7 drugs. The teicoplanin resistance gene VanZ, often 
co-localises with the VanA gene cluster and Tn1546, 
was detected in 46% of isolates [77]. Numerous VF were 
detected solely among clinical isolates and absent from 
other natural sources. Most virulence genes detected 
were thought to be ubiquitous among the species, involv-
ing traits which aid in colonising the GIT. These include 
capsular polysaccharide synthesis, biofilm formation and 
adherence, which are traits involved in the resistance 
to phagocytosis and bacteriophage infection. Cytoly-
sin, a quorum-regulated cytotoxin, genes were detected 
among clinical isolates and rarely in natural water and 
animal sources, suggesting a lower-than-expected risk in 
the transmission of virulent E. faecium between animals 
and humans [77]. Clinical E. faecium isolates have an 
increased association with lysogenic phages, AMR genes, 
VF and MGEs. On average, genomes of clinical isolates 
contained 182 more genes than their NC counterpart, 
suggesting increased ectopic genomic exchange likely 
triggered by selective pressure [80].
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Non-clinical (NC) isolates were enriched for genes 
associated with metal homeostasis and cadmium and 
copper resistance, likely linked to their addition to feed 
additives in the agricultural industry. Arredondo-Alonso 
et al. (2020) also found localisation of copper resistance 
operons to the plasmidome of E. faecium of porcine ori-
gin [9]. Cadmium and copper resistance were frequently 
observed within transposons of clinical isolates with 
vanA-type resistance in Ireland [79]. Within the former 
study, the localisation of virulence factors was enriched 
and localised to MGEs [80]. Copper resistance in Ente-
rococcus spp. is attributed to the tcrB gene. High con-
centrations of copper sulfate in feed can co-select for 
glycopeptide resistance. Metal cation resistance genes 
can co-occur with AMR genes indicating a genetic link-
age suggesting the potential for metals to drive AMR in 
human pathogens [81].

A recent suggestion has been made to re-classify the 
clade B E. faecium with E. lactis based on WGS data and 
an overall genome related index (OGRI) [82]. A pan-
genome analysis of 181 genomes placed clade B strains 
amongst E. lactis using ANI where they were grouped 
with above 96%—the same species threshold. Subse-
quently, digital DNA-DNA hybridisation was used to 
discriminate between clade A1, clade B and E. lactis 
calculating genomic distances on a genome-to-genome 
basis which separated E. lactis and clade B from clade 
A using E. lactis type strain LMG  25958 T as a reference 
[82]. Interestingly, this analysis highlights that multiple 
heterogeneous copies of the 16s rRNA gene can be pre-
sent within the clade A with varying degrees of percent-
age identity to the E. lactis reference. A similar ANI value 
was determined amongst clade B and clade A E. faecium 
and high rates of recombination and IS elements were 
suggested to be responsible for bifurcation of the clade in 
2007 [68, 83].

Gene associations of NC and CL isolates show a clade 
specific gene content, these are supported by gene flux 
studies, where CL isolates show adaptation to the hospi-
tal. In contrast, commensal or NC contain genes associ-
ated with glycerol fermentation to the biosynthesis of 
1,3-propanediol, among others [4]. Global dissemination 
of clade A1 E. faecium contains blurred edges within the 
clade partly due to mobilised elements such as plasmids 
and phages, but also due to recombination events within 
the core genome, indicating evidence of clonal expansion 
and dissemination may be distorted due to these events 
complicating genomic analysis due to enterococcal 
genome plasticity [11, 17, 76]. Not all aetiological con-
cerns remain within clade A1. The discovery of an active 
botulinum neurotoxin-like toxin within a commensal E. 
faecium on a conjugative plasmid (pBoNT/En) may pre-
sent a significant risk to public health if recombination 

events occur between MDR pathogenic and a toxin-con-
taining commensal strain, highlighting the need to moni-
tor the NC clade [84].

Genomics of E. faecalis reveals lower diversity among strains
E. faecalis was previously responsible for over 50% of 
hospital-associated enterococcal infections [1]. Simi-
lar to E. faecium, STs exist for E. faecalis. Currently, the 
MLST database contains 2942 isolates consisting of 1470 
STs (https:// pubml st. org/ efaec alis/ accessed on 21/7/23), 
with strains from ST6, ST9, ST21 and ST40 often linked 
with hospital infections [68].

Among 18 analysed E. faecalis genomes, low phyloge-
netic diversity was observed, and most diversity can be 
linked to the increase of MGEs, mainly prophages, conju-
gative plasmids and transposons, while the core genome 
seems highly conserved. The bigger genome sizes were 
characteristic of strains lacking CRISPR-Cas systems 
[68]. In contrast to E. faecium, a multiclade structure was 
not mirrored in E. faecalis, for which the acquisition of 
mobile elements also drives diversity. Antibiotic resist-
ance and pathogenicity island traits have converged in E. 
faecalis lineages. Despite the convergence of similar fea-
tures in those lineages, substantial differences in genome 
sizes (2.74 – 3.36 Mb) and gene content exist where some 
E. faecalis strains only share > 70% of gene content. Still, 
high homology exists within similar genes (> 99% ANI) 
[68]. Where genome size differed, increased size was 
related to compromised genome defence due to a char-
acteristic lack of CRISPR-Cas systems. Increased distri-
bution of MGEs domains, plasmid mobilisation MobC 
(PF05713), anti-restriction protein ArdA (PF07275) and 
transposase domains (PF01526) exist more frequently 
among genomes > 3 Mb [68]. Ecotypes defined by specific 
MGE may be identified within high-risk lineages or in 
lineages with variable CRISPR-Cas status (e.g., ST40 and 
ST21) [68].

A second comparative analysis of 38 NC and CL  E. 
faecalis isolates showed little differences in genome size 
(~ 3  Mb), number of coding sequences (CDS), pres-
ence of MGEs, VF and AMR genes [80]. Hierarchical 
clustering of 8032 E. faecalis orthologs identified for 38 
genomes showed no evidence of distinct lineages. The 
genomes of NC and CL E. faecalis isolates lacked specific 
structural and functional features, and clade separation 
based on ortholog presence/absence between NC and 
CL strains did not apply. These differences indicate that 
E. faecalis strains examined to date constitute a single 
lineage specifically adapted to the GIT and subjected to 
genome expansion. Such distinctions may be the cause of 
the earlier appearance of antibiotic-resistant strains of E. 
faecalis than of E. faecium [80].

https://pubmlst.org/efaecalis/
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A more recent comparative genome study on 78 strains 
of E. faecalis from the GIT, faeces, blood, urine, water 
and dairy products was conducted. Still, no direct link 
between isolation niche and phylogenetics was con-
firmed. However, some environment-specific genes were 
found, and blood isolates harboured the highest number 
of antibiotic-resistance genes where vanA and vanB gene 
clusters were found [85]. Analysed isolates harboured 
116 intact prophages and no correlation of source to the 
number of prophages was observed.

Another study that compared 168 genomes isolated 
from the UK and Ireland, including 58 VREfs strains 
and 110 VSEfs strains, to the core genome of E. faecalis 
V583 revealed 124,194 single nucleotide polymorphisms 
(SNPs) over 2,886,189 nucleotides. The SNP-based phy-
logenetic tree showed that 53% of strains clustered into 
three distinct lineages (L1, L2 and L3). Isolates in L1 
belonged to ST6, ST384 and ST642, all part of CC2, and 
L2 isolates were ST28 and ST640, belonging to CC87. 
Both of these clonal complexes are associated with hos-
pital isolates. Isolates in L3 were identified as ST103 
(CC388), previously reported in a limited number of clin-
ical isolates. Comparing these isolates with 347 globally 
isolated E. faecalis strains, the phylogenetic tree based 
on 1293 genes showed that isolates belonging to L1 and 
L3 isolated in the UK and USA were genetically distinct, 
suggesting independent clonal expansion of the lineages 
with limited international dissemination [76].

An analysis of 2027 E. faecalis isolates using both long 
and short read sequencing from sources including clini-
cal, non-clinical, avian and farm animal isolates by Pön-
tinen et  al. (2021) determined that the emergence of 
hospital associated lineages pre-dated modern-day hos-
pitals [10]. Molecular dating places ST6 in the mid 1800s. 
The adaptation of the generalist E. faecalis to the hospi-
tal setting is a product of its evolution in a broader set 
of niches. This aligns with a previous study by Lebreton 
et al. (2017) [4]. The ability of E. faecalis to persist in dif-
ferent niches is due to its generalist nature in comparison 
to the genomically plastic E. faecium, which is more pro-
miscuous, hence its adaptive evolution through HGT has 
favoured its persistence in the clinical setting.

Genetic insight into vancomycin resistance
Globally, the distribution of resistance mechanisms is 
mixed, and geographical location seems to drive geno-
typic mechanisms of resistance. Countries tend to be 
populated by either of the two mechanisms, rarely both. 
This suggests potential competition between existing 
clones where both mechanisms exist, isolated regions 
of selective pressure or clones arising with both mecha-
nisms [17, 76, 86]. The vanA operon is predominant in 
the US, Ireland, and central Europe. In contrast, vanB 

appears to be dominant in Australia and Germany [17, 
39], but this relationship seems fluid, with vanA starting 
to increase in Australia [87]. In vancomycin-resistant iso-
lates of E. faecium isolated in Australia, vanB was located 
predominantly on the chromosome, but in three isolates, 
Tn1549 carrying plasmids were detected [39]. Transpo-
sons of the same structure tended to insert at the same 
chromosomal location, but it is not a strict rule. Vanco-
mycin-resistant isolates were scattered across branches 
of clonal phylogeny, implying both transposon acquisi-
tion and loss events. All detected transposon gain events 
occurred in isolates related to or identical to vancomycin 
susceptible E. faecium (VSEfm) isolates, consistent with 
the suggestion that VRE emerges from the circulating 
enterococcal population followed by clonal expansion 
and VRE transmission. Patterns of genomic diversity 
from different hospitals did not differ but seem to have 
arisen from a common ancestor [39]. The molecular 
characterisation of VREfm and VREfs isolates from a 
Chinese hospital confirmed that all 76 isolates harboured 
vanA resistance [88]. On the other hand, a study by Chen 
et al. (2015) showed that vanM gene was more dominant 
compared to vanA among 70 isolates from hospitals in 
Shanghai, China. The presence of vancomycin resistance 
genes among NC isolates differs among studies. A study 
of VRE from animal sources in Korea identified 44% and 
17% of isolates from poultry meat and poultry faeces, 
respectively, containing a vanA gene, but the analysis was 
not at WGS resolution [78]. Similarly, vanA positive ente-
rococci were detected among domesticated animals [89].

The majority of 250 VREfm isolates from patients con-
firmed as having bacteraemia carried the vanA resist-
ance gene [76]. All but one VREfm belonged to hospital 
associated clade A. One clade B (community associated) 
isolate was vanA positive, showing that vancomycin 
resistance is not restricted to the hospital associated lin-
eage. The transposon encoding vanA was predomi-
nantly located on plasmids, while vanB transposon was 
predominantly inserted into the chromosome [39, 76]. 
VanB-type transposons were inserted at identical sites 
in the chromosome, suggesting acquisition followed by 
clonal expansion. Eleven VSEfm isolates carried vanA or 
vanB. In the case of vanB, these sensitive isolates lacked 
regulatory genes. Still, the presence of bacteriocin genes 
on the associated transposon may explain their reten-
tion in the genome [76]. Similarly, Howden et al. (2013) 
showed that VSE isolates were genetically indistinguish-
able from vanB-carrying isolates. Another comparison 
of 200 VREfm and 93 VSEfm concluded that they often 
belong to the same cluster in the phylogenetic tree. 
Genetic relatedness of transposons carrying the vanA 
gene revealed that 4 of 6 phylogenetic clusters contained 
more than one transposon type (based on deletions and/



Page 12 of 33Hourigan et al. BMC Microbiology          (2024) 24:103 

or SNPs), suggestive of de novo acquisitions of vanco-
mycin resistance by hospital VSE strains [69]. This cor-
responds to the findings showing the same trend of 
repeatedly introducing vancomycin resistance into the 
VSE hospital population [79, 90].

The genetic basis for vancomycin resistance among 168 
VREfs and VSEfs strains isolated in the UK and Ireland 
was investigated [91]. In total, 99% of VREfs strains car-
ried vanA resistance genes. All three dominant lineages 
reported above (L1, L2 and L3) contained mixtures of 
sensitive and resistant genotypes. However, variation in 
gene content was considerable; transposase, resolvase, 
vanY and vanZ were not detected within some isolates, 
but vancomycin MIC values remained > 256  mg/L sug-
gesting genomic rearrangement but a sustained pheno-
type. Additionally, since the major VREfs lineages were 
also the common lineages for VSEfs, the control of VREfs 
is likely to depend on defining and addressing drivers for 
VSEfs and their transmission [91].

Transference of vancomycin resistance among com-
mensal E. faecium (clade B) is possible [92]. Two E. fae-
cium strains isolated from an immunocompromised 
patient in France, one from blood (UCN71) and one from 
faeces (UCN72) with commensal clade B origin, were 
described as possessing vanN type resistance. Only two 
more examples of strains carrying vanN resistance have 
been reported, and these were isolated from Japan (clade 
B) and Canada (clade A). The vanN determinants were 
almost identical between France and Japan but entirely 
different from Canada, suggesting independent acquisi-
tion events. In all cases, the vanN determinant is local-
ised on a conjugative plasmid. Analysis of SNPs on the 
two isolates from an immunocompromised patient in 
France identified two non-synonymous SNPs within the 
VanS gene, which encodes the regulatory system control-
ling the expression of resistance [92].

Finally, a GI associated with vanD type of resistance in 
six VREfm Dutch isolates was identified [93]. Phyloge-
netic analysis of vanD gene clusters from the six Dutch 
isolates and 13 vanD gene clusters retrieved from Gen-
Bank, showed that Dutch isolates did not form a sin-
gle branch and that vanD gene clusters did not group 
according to the species in which they were present. The 
six Dutch strains harbouring vanD were not epidemio-
logically related. This lack of evidence of clonal spread-
ing suggests that vanD VREs are not transmitted between 
patients, unlike vanA and vanB strains. A considerable 
similarity between GI carrying vanD in anaerobic gut 
bacteria and in six vanD E. faecium in this study sup-
ports the idea anaerobes could be a source of vanD type 
of resistance, but this requires further experimental con-
firmation [93]. Recently, the first plasmid-borne vanD1 
gene cluster was identified in E. faecium (MIC, 16  μg/

mL). The strain is constitutively vancomycin resistant, 
due to deleted vanRS, has a presumed inactive native Ddl 
ligase, due to frameshift mutation and contains the van-
comycin resistance cluster on a highly conjugative plas-
mid of  10−4 to  10−5 per donor cell [94].

Rinse and repeat; transmission, recurrence and epidemiology 
assessed by WGS
The use of vancomycin, cephalosporins and quinolones 
selects for pools of VRE within patients [95, 96]. Ceftri-
axone, a third-generation cephalosporin antibiotic that 
causes extensive perturbation of the gut flora, has been 
associated with VRE proliferation, likely because of the 
collateral damage on the microbiota and has been associ-
ated with increased bloodstream infection incidence [96]. 
Another study identified ceftriaxone use as a risk factor 
for C. difficile infection [97].

The first study that used a WGS approach in a clinical 
application developed a core genome MLST (cgMLST) 
to standardise isolate comparisons [98]. This approach 
identified 1,423 cgMLST target genes. In an analysis 
of 103 outbreak isolates from five different hospitals, 
the cgMLST successfully distinguished epidemiologi-
cally related isolates, even between sequence types (ST). 
WGS found its application in elucidating the transmis-
sion of VREfm [69]. When 293 E. faecium genomes were 
analysed, 291 were hospital associated, while only two 
belonged to clade B, although both were healthcare-
associated. A total of 284 genomes formed a highly 
related clonal expansion within the hospital clade, and 
more than half of the isolates were highly related to at 
least one other isolate. After a maximum likelihood tree 
was constructed based on SNPs, numerous clusters of 
highly related isolates were detected, suggesting multiple 
introductions of E. faecium into the hospital, followed by 
clonal expansion, transmission, and persistence [69].

A WGS study of E. faecium from Ireland, a country 
with high invasive E. faecium prevalence, revealed that 
most Irish isolates cluster outside global isolates, where 
ST80 vanA resistance was the predominant subtype. This 
subtype generally contained < 4 allelic differences sug-
gesting inter-hospital transmission [79]. Dissemination 
of vanA by TEs between linear and circular plasmids 
was highlighted. A hybrid plasmid was sequenced dur-
ing conjugation experiments highlighting the promiscu-
ity of plasmid-plasmid interaction and substantiating 
evidence of mosaicism among the plasmidome of VREfm 
observed in other studies [23]. The paper also reported 
the first evidence of E. faecium with multiple insertions 
of IS1216E. The authors suggest that numerous copies of 
the IS could lead to further genomic instability and aid in 
dissemination, in particular in the absence of transposa-
ble elements TEs, which may be indicative of such a high 
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prevalence of E. faecium among Irish hospitals [79]. This 
paper also highlighted TEs with mutations and deletions 
resulting in truncated TEs, some non-typeable vanA 
resistance isolates had > 50% of TE truncated, indicat-
ing IS mediated dissemination of vanA genes, potentially 
via a “copy-in” mechanism, suggested by the presence of 
multiple IS elements [79].

A recent analysis of the dissemination of vanA-type 
VRE among Dutch hospitals identified clonal spread, 
plasmid dissemination, Tn1546 mobilisation and mixes 
of both for causative genomic dissemination (Fig. 1) [23]. 
Clonal dissemination was responsible for ~ 32% of the 
spread, and ~ 59% of cases were unrelated, suggesting 
repeat independent introduction of resistance to hospi-
tals. Similarly, a multi-jurisdictional outbreak of VREfm 
studied in Japan concluded clonal dissemination facili-
tated spread between hospitals and that current contain-
ment measures were insufficient [99]. WGS analyses of E. 
faecium between UK and Ireland, Denmark and Australia 
further highlighted the potential for clinically relevant 
clones to disseminate between hospitals [76, 90, 100]. 
Dissemination of these clones could partly be due to car-
riers, where it is estimated for every VRE patient, there 
are 2–10 fold more transient carriers [101].

A study quantified acquisition rates among patients for 
E. faecium using a longitudinal, sequence-driven method 
of genomic surveillance. Half of all environmental swabs 
(n = 922) were positive for VREfm, and the majority 
(60%) of clade A1 positive patients had genomic links to 
other patients or environmental swabs such as medical 
devices and communal areas [102]. Polymicrobial coloni-
sation of E. faecium among patients existed, and invasive 
infection due to patients’ gut-colonising strains occurred, 
highlighting the interface for potential HGT events and 
the ability of strains to become pathogenic.

Studies on lower numbers of strains also reveal inter-
esting relations among VRE strains. In the comparative 
genome analysis of four VREfm strains isolated from two 
fatal cases (VRE2 from patient X and VREr5,6 and 7 from 
patient Y), VREr6 and VREr7 were approximately 140 kb 
larger, due to the presence of plasmids and phages. Phy-
logenomic analysis suggested that patient Y was infected 
by VRE strains from more than one lineage. While Qin 
et  al. (2012) showed that clinical isolates of E. faecium 
do not carry CRISPR, in this study, CRISPR-like regions 
were identified in all four isolates, but without active cas 
genes, and thus with no functional significance. In addi-
tion, the majority of common virulence factors were 
encoded in the four genomes and all of these strains 
showed multiple resistance profiles, but were sensitive to 
linezolid [33].

Genomics can also assess relapse and reinfection of E. 
faecium bacteraemia. Recurrent bacteraemia by infection 

with genetically different strains is a driver for relapse 
VRE cases. This is potentially attributed to polyclonal 
populations among patients, carrier events introducing 
new strains or environmental transmission. The time-
frames of infection relapse due to the same or a novel 
strain did not differ (within 108 days), although the sam-
ple size was limited (n = 21). This study also showed that 
mixed infections commonly originate from an intravas-
cular source, suggesting that central venous catheters 
are colonised with multiple E. faecium strains. Asymp-
tomatic carriage and environmental sources contrib-
ute to the circulating pool of VREfm acting as potential 
contamination sources, likely attributed to the ability to 
withstand common disinfectants and handwash alcohols 
[4, 103, 104].

A study of 80 VREfm in Australian hospitals from 
patients with and without clinical symptoms of VREfm 
infection, incorporating the spatio-temporal location 
of patients, also highlighted dissemination routes [87]. 
The intensive care unit was the most likely location of 
VREfm transmission, followed by the acute general 
medicine ward. Most VREfm were isolated from asymp-
tomatic patients, who represent reservoirs of VREfm 
and are the starting point of “silent” dissemination of 
VREfm to high-risk patients, healthcare workers and the 
environment. This study showed the merit of examining 
isolates from asymptomatic colonised patients in under-
standing VREfm transmission routes in hospital envi-
ronments [87]. A recent Danish study suggests routine 
screening of recurrent patients upon re-admission to 
circumvent inter-hospital carrier events could help both 
clonal dissemination and potential HGT events, but only 
employed on a cost–benefit basis among high prevalence 
hospitals [105].

Hospitals also represent a putative source of environ-
mental contamination, as hospital-adapted lineages can 
be found in wastewater plants not restricted to plants 
in geographical proximity to hospitals [87]. The subse-
quent genomic analysis identified genetic intermixing 
between clinical and wastewater isolates of E. faecium 
at sites which did not process hospital wastewater, sug-
gesting the spread of clinically relevant isolates among 
the community affecting the enterococcal gene pool 
[106]. Treatment plants did not knowingly receive farm 
effluent suggesting animal-derived lineages are carried 
among community members. On the contrary, Cana-
dian genomic surveillance of enterococcal spp. on a One 
Health basis did not identify community VREfm beyond 
wastewater reservoirs but did find VREfs among beef 
processing facilities [77]. Natural water and feedlot catch 
basins were free from detectable VRE, but vancomycin-
resistant E. hirae was detected in urban wastewater. Phy-
logenomic relatedness between animal-associated and 
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clinical clades suggests little transmission through these 
routes, i.e. minimal bovine-associated dissemination, 
and urban wastewater contamination is likely a result of 
human carriage [77].

An overview of the routes of dissemination is found in 
Fig. 4. Global dissemination patterns of E. faecium high-
light levels of global dissemination among clusters fol-
lowed by local adaptation and regional dissemination 
[17]. Generally, clonal dissemination patterns can be 
traced by core-genome signatures. However, European 
homogenisation patterns indicated by significant recom-
bination events across clones suggest the co-circulation 
of multiple subclones that augment the European VRE 
gene pool and potentially lead to new lineages.

The role of genomics in epidemiology, detection, prevention 
and treatment
Routine WGS is common practice when processing sam-
ples from hospitalised patients with VRE. This practice 
has been implemented globally to track outbreaks, epi-
demiological routes of transmission and decipher charac-
teristics of clinically relevant sequence types [17, 23, 60, 
79, 86–88, 91, 106–109].

Diagnostics, resistance profiling, outbreak track-
ing, personalised medicine, epidemiological tracking 

of clinical strains, identification of new CC/ST and the 
monitoring of surfaces by sequencing are some applica-
tions in the detection and control of VRE. A review by 
Rogers et al. (2021) explores the role of WGS in surveil-
lance of enterococcal species and concludes that WGS 
and a One-Health surveillance approach play a key part 
in tracking enterococcal species [110]. A recent study 
implemented a surveillance programme with an infection 
prevention and control nurse specialist to use genomic 
insights into the management of AMR spread within the 
healthcare system [111]. The usefulness of WGS is hinged 
on the ability to sequence, interpret, and implement the 
findings in a timely manner. The study had a median 
turn-around time of 33  days from sample sequencing 
to final report – but in some cases reports were gener-
ated within 10 days [111]. Although time consuming and 
likely resource expensive, it has previously been shown 
that real-lime metagenomics is a viable detection tool for 
the identification of bacterial pathogens [112, 113].

Current chemotherapeutic treatment of VRE infections
VRE are causative agents of infective endocarditis, 
catheter-related bloodstream infections, urinary tract 
infections, bacteraemia, abdominal and pelvic infec-
tions, and less often CNS and skin infections [22]. 

Fig. 4 Epidemiological spread of VRE. This depicts the (a) global [17], (b) community [77] and (c) clinical routes of dissemination of VREfm [27, 50]
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Genomic surveillance is not enough to deter expansion 
of VRE in the clinical setting and cleaning practices and 
hygiene remain paramount in preventing dissemination 
[114]. An extensive recent review by Cairns et al. (2023) 
captures the limited array of treatment options availa-
ble for VRE blood stream infections, the complexities of 
dosing regimens and promise of therapeutic drug mon-
itoring (TDM) for improving clinical outcomes [115]. 
In the USA, the only agents approved to treat VRE 
infections are quinupristin-dalfopristin and linezolid 
but both display serious side effects, which limit their 
application in treatment. Quinupristin-dalfopristin is a 
streptogramin antibiotic active only against E. faecium 
[22]. On the other hand, linezolid is a bacteriostatic 
agent and, therefore, not appropriate in cases of severe 
VRE infections, such as endocarditis. A recent review 
by Turner et  al. (2021) highlights the expanding dis-
covery of transferable linezolid resistance among VRE 
and Staphylococcus spp. [116]. A study of 154 linezolid 
resistant isolates from Ireland showed 22.7% of isolates 
had genes capable of transferable linezolid resistance, 
with 8 enterococcal species containing a plasmid bound 
determinate, optrA (oxazolidinone phenicol transfer-
able resistance), 19 isolates harboured poxtA (phenicol 
oxazolidinone and tetracyclines) within an IS element 
[117]. These determinants have also been found in 
Tunisia and China [118–120].

Daptomycin is a cyclic lipopeptide capable of pene-
trating biofilms, that disrupts the integrity of the mem-
brane and has increased potency compared to other 
antibiotics [121]. The peptide is calcium-dependent and 
targets cell wall biosynthesis, acting like a cationic anti-
microbial peptide [122]. Detailed analysis of the activity 
of daptomycin in the treatment of VRE can be found in 
Munita et al. [123]. The optimal dosage prescription var-
ies depending on VRE status, and an updated dosage of 
8–12 mg/kg q24h and 6 mg/kg q24h for E. faecium and 
other enterococcal spp. respectively, with a high-dose 
daptomycin (> = 10  mg/kg) preferential due to improve 
clinical outcome [115, 124]. A recent review by Miller 
et al. (2020) explores the development of resistance to the 
newest anti-VRE compounds [120]. Additionally, there 
have been reports of the development of resistance to 
daptomycin and off-target mutants [18, 125].

A single-centre, retrospective cohort study of 93 adult 
inpatients with VRE bacteraemia treated with either 
linezolid or daptomycin suggested that daptomycin at 
standard doses (6 mg/kg) is associated with a higher rate 
of clinical failure relative to linezolid [126]. In spite of the 
concern of side effects of bone marrow suppression, lin-
ezolid-treated patients had a relatively low mortality rate 
even with a majority of patients possessing an underlying 
immunocompromising condition [126].

Four meta-analysis studies that compared linezolid 
and daptomycin treatments in bacteraemia showed that 
daptomycin was connected with higher mortality lev-
els compared to linezolid. The first observational retro-
spective study, conducted in 2013, showed that there 
may be a difference in favour of linezolid, since it was 
associated with increased survival (p = 0.053). Although 
sample sizes remained small - (n=54–235), no statistical 
significance was observed, majority of studies described 
dosing at 6  mg/kg, and the study was not adjusted for 
confounders [127]. Another retrospective study involved 
13 studies which fulfilled conditions (clinical trials or 
observational studies of the treatment of VRE bacterae-
mia that reported daptomycin and linezolid treatment 
outcomes simultaneously) showed that daptomycin use 
was not associated with better microbiological cure, but 
the mortality levels were significantly higher compared to 
linezolid treated patients, but sample size remained small 
[33–200]. In another analysis of 10 studies providing 
mortality data on patients older than 18  years, patients 
with VRE bacteraemia treated with daptomycin had a 
significantly higher 30-day all-cause mortality and infec-
tion-related mortality. Relapses were also higher, sug-
gesting that daptomycin may be associated with worse 
outcomes in patients for VRE bacteraemia compared to 
linezolid [129]. A fourth study found an overall signifi-
cantly higher rate of treatment failure for daptomycin at 
standard dose (6 mg/kg) compared to linezolid treatment 
[130].

Contrasting results were reported in a larger, more 
methodologically robust study. A national retrospective 
cohort study among patients between 2004–2013 based 
on 30-day all-cause mortality, microbiological failure, 
and VRE recurrence in blood showed that linezolid was 
associated with a significantly higher risk of treatment 
failure and mortality, but no difference in recurrence was 
observed [131]. Daptomycin was better in this cohort 
study even though the dosage was lower, and higher 
dosages are thought to improve clinical outcomes from 
bloodstream infections. This study makes the stronger 
case compared to previous meta-studies as it was per-
formed on carefully selected patients, who were receiving 
a single medicine treatment, and outcome measurements 
were pre-defined for clinical relevance, although some 
limitations are included i.e. 97% of male patients and 
relatively low number of transplantation patients, who 
are often susceptible to VRE infections [125]. A sub-
sequent follow-up study analysed sequential therapy 
vs continuous therapy, as the former cohort had been 
omitted from the initial study and reported that patients 
switching to daptomycin associated with lower mortal-
ity and prolonged time of the switch was correlated with 
increased mortality [132]. A more comprehensive review 
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of daptomycin-linezolid meta-analysis suggests a ran-
domised controlled trial of high dose and low dose dap-
tomycin is required, but current data highlights the value 
of daptomycin as a treatment of VRE bacteraemia which 
aligns with the extensive review by Cairns et  al. (2023) 
[115, 133]. Increased dosage, combinatory therapies and 
TDM offer possible ways to enhance daptomycin efficacy 
[115]. The synergy between daptomycin and ceftriax-
one was assessed in the simulated endocardia vegetation 
model, and the combination was more active compared 
to daptomycin alone, with enhancement associated with 
a reduction in cell surface charge [134]. An in vitro phar-
macokinetic/pharmacodynamics model was used to 
assess whether beta-lactams are able to enhance dapto-
mycin activity against VRE and reported that ceftaroline 
and ertapenem were able to synergise with daptomycin 
against 2 VREfm and a VREfs to prevent the emergence 
of daptomycin non-susceptibility [135]. Similarly, fos-
fomycin-containing regimens delayed the emergence of 
daptomycin non-susceptibility in 2/3 strains tested, while 
an increase in MIC was observed when daptomycin was 
used alone [136]. However, recently it was shown that 
resistance to fosfomycin emerges rapidly. Until now, fosB, 
which catalyses the Mg-dependent addition of L-cysteine 
to the epoxide of fosfomycin, was the only known plas-
mid-borne resistance determinant in Enterococcus spp. 
The plasmid-encoded fosb gene inserted into the vanA 
type transposon is responsible for the high fosfomycin 
resistance in VRE. Recently, the complete sequence of a 
novel E. faecium plasmid containing two copies of fosB 
was obtained. The co-existence of vanA and fosB in the 
same conjugative plasmid was confirmed [137]. Although 
costly, the implementation of real-time metagenomics 
and sequence-based tailored regimens may keep current 
therapeutic interventions viable, amidst the rising cases 
of resistance, if implemented on a case-by-case basis.

Tigecycline is a recently developed glycylcycline anti-
biotic, from the tetracycline family of antibiotics, with 
broad spectrum activity against VRE, MRSA, C. difficile 
and gram-negative pathogens including Acinetobacter 
baumannii, Klebsiella pneumoniae, and Escherichia coli 
[138]. The antibiotic is used as a last resort to treat com-
plicated skin and intra-abdominal infections and has a 
low MIC (0.03–0.5  µg/mL) against VRE but resistance 
to tigecycline has been documented since its first clinical 
application [138, 139]. A recent meta-analysis of the prev-
alence of tigecycline resistance among VRE highlighted a 
1% and 0.3% prevalence of resistance globally among E. 
faecium and E. faecalis, respectively, with a 3.9% resist-
ance for E. faecium in Europe [140]. The authors suggest 
that the prevalence of resistance may be higher globally, 
and more in line with Europe, due to reduced routine 
microbial susceptibility testing programs which are not a 

global standard. A mechanism by which E. faecium and 
E. faecalis can acquire resistance involves the mutation of 
RpsJ, a ribosomal S10 protein of the S30 subunit – which 
is in close proximity to the binding pocket of tigecycline 
resulting in reduced affinity [141]. Transferable tige-
cyline resistance among E. faecium has been observed 
which involves upregulation of plasmid-bound tet(L) 
and tet(M) genes encoding a major facilitator superfam-
ily (MFS) efflux pump and ribosomal protection protein, 
respectively [142]. High-level resistance determinants 
(MIC value of 32-64μg/mL) tet(X3) and tet(X4) encod-
ing proteins which catalyse tetracyclines rendering them 
inactive have been found also on plasmids from Entero-
bacteriaceae and Acinetobacter, but not from clinical 
sources [143]. The detection of these resistance determi-
nants coincides with the use of tetracycline antibiotics as 
growth promoters in animal production or metaphylaxis 
treatment – which mirrors the use of avoparcin and the 
rise of VRE [143]. Notably, these high-level, plasmid-
bound determinants have not been found in VRE to date.

Non‑chemotherapeutic anti‑VRE alternatives

Bacteriocins Bacteriocins are ribosomally-synthesised 
antimicrobial peptides with highly specific or broad anti-
microbial ranges, often against related strains. They are 
produced by both gram-positive and gram-negative bac-
teria, and it has been stated that 99% of bacteria produce 
at least one bacteriocin (Klaenhammer, 1988). They have 
gathered much traction as an alternative to antibiotics 
due to their reduced collateral damage on the microbi-
ome, and can be broadly categorised into two groups, the 
highly diverse modified class I bacteriocins (< 50  kDa) 
and unmodified (< 10  kDa) class II bacteriocins [148–
150]. Recent tools, such as BAGEL4 and Antismash7 
have mined the vast genomic data available to find novel 
bacteriocin gene clusters and expanded the repertoire of 
putative gene clusters [151–153].

Bacteriocins have diverse mechanisms of action, includ-
ing pore formation, subsequent cell leakage and lysis, 
degradation of cell wall peptidoglycan or interference 
with cellular processes such as transcription, translation 
and DNA replication [154, 155]. Due to their safety and 
high specificity, bacteriocins represent promising alter-
natives in the fight against multidrug-resistant patho-
gens, including VRE. However, only a limited number 
of studies have investigated the application of bacterioc-
ins against VRE and multidrug-resistant strains [156]. A 
recent review by Almeida-Santos et  al. (2021) discusses 
the advantages and challenges of using enterococcal 
derived bacteriocins against VRE and the diversity of 
bacteriocins produced by enterococci [157]. The review 
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is an excellent collation of origin and classicisation of the 
enterocins highlighting that bacteriocins of enterococ-
cal origin can be a tool against clinically relevant isolates 
but can also be exploited by clinically relevant entero-
cocci during pathogenesis. Also of note is the number of 
enterocins localised to plasmids, 23 distinct bacteriocins 
[157]. A key tool in the implementation of bacteriocins as 
a therapy will be WGS, to identify novel bacteriocins with 
anti-VRE activity, and select peptides that do not have 
resistance mechanisms in clinical clades of enterococci.

A preliminary study of two bacteriocin-producing LAB, 
Lactococcus lactis MM19 (producing nisin Z) and Pedio-
coccus acidilactici MM33 (producing pediocin PA-1), 
isolated from human feces, were found to be capable 
of reducing VREfm in a C57BL/6 mouse model by 1–2 
logs [158]. Strains from non-pathogenic Bacillus spe-
cies have attracted growing attention due to their safety 
and adaptability to various growing conditions [159]. 
The 1.9  kDa bacteriocin pumicilin isolated from Bacil-
lus pumilis WAPB4, an environmental isolate, was 
active against both VREfs and MRSA and is heat (121 °C 
15  min with 100% activity) and pH stable (pH 3.0 with 
60% activity) supporting applications in the veterinary 
setting [160]. The effect was dose-dependent: at lower 
concentrations (20 AU/mL) the effect was bacteriostatic, 
while at a higher level (80 AU/mL), the effect was bac-
tericidal. Bacillus tequilensis K1R was isolated from fer-
mented dairy product kimchi, and was shown to produce 
a 4.6 kDa antimicrobial peptide active against VRE [159]. 
The 45-residue peptide is stable in a range of tempera-
tures from 30–60ºC and pH 6.5–9 and the purified pep-
tide displayed more potent activity than bacitracin and 
vancomycin of 16–32 μg/ml compared to > 128 μg/ml 
(MIC value).

Bacteriocin expression in commensal bacteria can influ-
ence niche occupation in the GIT, and bacteriocins deliv-
ered by commensals that occupy a precise intestinal 
niche may represent an effective therapeutic approach to 
specifically eliminate intestinal colonisation of VRE with-
out disruption of indigenous microbiota [44, 145, 161]. 
An E. faecalis strain harbouring the sex–pheromone 
responsive plasmid pPD1 that encodes bacteriocin 21 
was able to replace native enterococci in mice by elimina-
tion of bacteriocin-sensitive enterococci and non-pPD1 
carrying strains of E. faecalis without disruption of the 
native microbiota [161]. When a derivative strain lack-
ing the conjugative plasmid but carrying the bacteriocin 
gene was used in mice colonised with rifampicin resistant 
E. faecium V583, the bacteriocin-producing strain was 
able to successfully eliminate V583, suggesting that the 
introduction of a conjugation defective bac-21 producing 

strain can abolish colonisation by multidrug-resistant E. 
faecalis [161]. A recent study reported that a lanthipep-
tide produced by the gut commensal Blautia producta 
prevents VRE colonisation of the GIT in vivo with lower 
collateral damage than nisin-A, a similarly classed pep-
tide [145]. The same study showed enrichment of lanti-
biotic gene expression in patients with reduced E. fae-
cium suggesting a protective effect of lantibiotics on the 
human microbiota against VRE.

Although in  vitro studies suggest that bacteriocins 
against VRE are promising and evidence exists of their 
anti-VRE role within the microbiota, a number of limi-
tations need to be overcome for the implementation of 
bacteriocins in disease treatment (Fig.  5) [44, 145, 156, 
158–161]. Bacteriocins can be highly selective in nature, 
meaning bacteria often have innate resistance i.e. lack 
of bacteriocin binding ligand. Other innate systems are 
encoded among gram-positive bacteria, which can be 
upregulated in response to bacteriocins, these include 
altering the cell surface charge to deter bacteriocins, 
upregulation of two-component systems encoding ABC-
transporters and sequestering proteins, as well as alter-
native expression of sigma factors, ultimately changing 
membrane stability and reducing bacteriocin affinity for 
the cell surface [162]. It is also possible that bacteria can 
harbour orphan immunity genes, which sequester bac-
teriocins, and proteases which  inactivate bacteriocins 
genes suggesting a tailored approach may be needed for 
clinical efficacy which can be guided by WGS. Systemic 
use of bacteriocins could lead to the development of 
resistance via spontaneous non-synonymous mutations 
and varied frequencies have been documented, ranging 
from <  10–9 to  10–2 [162]. Interestingly, nisin resistant 
mutants of S. aureus displayed a 32-fold increase in sus-
ceptibility to gentamicin suggesting a combinatory regi-
men may be effective in returning efficacy to antibiotics 
[163].

The route of administration is another essential consid-
eration, as bigger peptides face difficulties in absorption 
and the peptide nature of bacteriocins makes them sensi-
tive to gut proteases. However, the gene-encoded nature 
of bacteriocins makes these molecules ideal for peptide 
engineering to improve their antimicrobial activity and 
physiochemical properties including their susceptibil-
ity to gut enzymes and target species [164, 165]. Thus, 
in  vivo systems should focus on improving the stabil-
ity and efficacy of these proteins in real environments 
[166]. Potential biomedical applications to overcome 
limitations of bioavailability of bacteriocins are shown 
in Fig.  5. Vaginally administered nisin was detected in 
blood after 1 h post-treatment, but levels declined within 
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12  h, suggesting high removal rates [167]. Comprehen-
sive reviews of toxicity and regulation of bacteriocins and 
methods of targeted delivery exist but are beyond the 
scope of this review [149, 168].

Phage therapy Bacteriophages are self-replicating enti-
ties which infect and can kill bacteria. Phage therapy was 
first described 100 years ago. Although it is still practised 
in countries including Georgia, Poland and Russia, it lost 
favour in Westernised countries with the advent of anti-
biotics [188]. Phages are highly specific for bacteria and 
thus safe for human use with minimal risk of secondary 
infection [189]. They cause negligible off-target changes 
in the host microbiota, are easy to isolate and can be 
effective against biofilms [190]. New phages against 
clinically relevant VRE have recently been isolated [174, 
191, 192], but not many phages have been characterised 
with specific activity against VREfm. The bacteriophage 

IME-EFm5 was isolated from hospital sewage and is a 
rare example of an E. faecium lytic phage [177].

In terms of phage treatment of VRE infections, several 
studies have confirmed their potential. One of the first 
studies was conducted on a minimum lethal dose VRE 
bacteraemia mouse model, inoculated with 3 ×  109  col-
ony forming 9 units (CFU) of E. faecium CRMEN44 
[193]. A single intraperitoneal injection of phage ENB6, 
previously isolated from raw sewage, containing 9 ×  109 
plaque forming units (PFU) rescued all VREfm-infected 
mice, even in the case of delayed treatment. Heat-treated 
phages did not help the survival of infected mice; hence it 
was concluded that the mechanism of action was phage 
function and not a consequence of a nonspecific immune 
response [193]. Similarly, another murine bacteraemia 
model study used a lytic phage, EF-P29, with broad host 
range against E. faecalis strains. A single intraperitoneal 
injection of 4 ×  106 PFU 1 h after VREfs infection rescued 

Fig. 5 Summary of therapeutic options to combat VRE in the clinical setting. a Potential types of therapeutic interventions based on the stage 
and location of VRE infection. Bacteriocins can be applied topically and encapsulated to reach the gut [149, 156, 169–171]. Phage therapy can be 
used, with a phage cocktail being preferential, in combination with continued bacterial monitoring [172–175]. Phage derived lytic proteins are 
a therapeutic option against VRE for oral, wound, gut and bloodstream infections [176, 177]. Evidence for the effectiveness of probiotics are found 
in references 198–194 [178–184]. b Biomedical applications of anti-VRE molecules, which can increase the specificity and half-life and broaden 
the application range. Advances in therapeutic delivery strategies can overcome limitations of stability and specificity through controlled release 
of effecter molecules and impregnation of medical devices or fibrous dressings for wound care [168, 176, 185, 186]. c Novel molecular mechanisms 
to remove AMR genes from the microbiota are being investigated, and a promising avenue is using CRISPR-Cas systems to target critical AMR genes 
in mixed microbial communities [187]
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mice, and VREfs bacterial counts were 4 logs lower after 
24  h in treated mice compared to the control group. 
The phage-treated group also saw a restoration of the 
microbiota towards the non-challenged control [194]. 
Compared with other studies, the dose of EF-P29 was 
much lower but could protect all mice in the treatment 
group. In another study, 1 ×  1010 PFU of phage ΦVPE25 
orally gavaged gave a three-fold reduction of E. faecalis 
in a gnotobiotic mouse model 24 h after administration 
[195]. A similar effect was confirmed when a high dose 
 (109 PFU) of phage EF-P29 was used [194]. A rebound 
of E. faecalis was observed after 24 h due to mutational 
resistance to ΦVPE25 with 80% of isolated clones resist-
ant at 24 h, reaching 100% after day 9 [195]. Overcoming 
this hurdle involves the use of phage cocktails. Adminis-
tration of a two-phage cocktail rescued septic mice with 
multiple organ invasive infection with a 5-log reduction, 
and phage administration to healthy controls did not sig-
nificantly alter the murine microbiome alpha and beta 
diversities. A phage and ampicillin combination led to 
the most significant decrease in bacterial titre in distal 
and proximal tissues of the mice and rescued TNF-alpha 
levels towards healthy controls [196].

Enterococci are known to form biofilms, which prevent 
antimicrobial compounds from penetrating the cells 
and eradicating the bacteria. However, phages can tar-
get bacteria within biofilms [197]. The phage EFDG1 
was isolated from sewage and proven to be active against 
E. faecalis V583 biofilms in in  vitro and ex  vivo experi-
ments. Additionally, EFDG1 could infect both E. faeca-
lis and E. faecium strains tested in the study [198]. In a 
subsequent publication, the authors described resistance 
to EFDG1 and a second phage, EFLK1, was isolated, that 
could eradicate EFDG1 resistant mutants [173]. Both 
phages shared 60 core genes, approximately 28% shared 
genomically, but EFDG1 killed bacteria in the logarith-
mic stage of growth and phage EFLK1 was more effective 
when cells were in the stationary phase. The authors sug-
gest that phages differ in affinity or have different recep-
tors altogether. Notably, a two-phage cocktail proved 
efficient in killing both parent V583 and EFDG1-resistant 
mutants separately, as well as in mixed culture, and it 
also proved effective at killing the biofilm of V583 [173]. 
When these two phages were combined with ampicillin, 
additional benefits were observed, such as the highest 
decrease in the number of bacteria in organs, including 
the liver and heart, in VREfs V583 infected mice, and the 
phage cocktail alone was capable of completely revers-
ing a 100% mortality trend in the infected mice [199]. 
A separate study identified phage-resistant mutants 
containing SNPs in cell wall synthesis proteins result-
ing in reduced phage absorption, but the mutants had 

enhanced susceptibility to ampicillin (2–5 fold reduc-
tion in MIC) and, notably, daptomycin, highlighting the 
potential for combination approaches [200]. The authors 
also describe synergy between phage and daptomycin 
against E. faecium. Recently, a personalised phage cock-
tail was clinically used to cure a 1-year-old child of recur-
rent invasive abdominal E. faecium infection post liver 
transplant [201]. 5.2 ×  108 PFU/mL was intravenously 
administered at 2 mL/kg body weight (BW) twice daily – 
C-related protein levels dropped within 24 h along with 
improved clinical status, and routine swab screening 
could not detect patient VREfm for the rest of the hospi-
tal duration.

Unlike antibiotic resistance, phage therapy offers several 
solutions for the treatment of emerging phage-resist-
ant strains, including the isolation of alternative phages 
which is a relatively easy and straightforward process, the 
use of phage cocktails, and phage training which enables 
the improvement of existing phages in terms of infectiv-
ity and host range as discussed by Hill et al. (2018). The 
prospect of phage engineering is discussed by Mahler 
et  al. (2023), and has been applied to engineer a lytic 
phage from a lysogenic background to eliminate E. fae-
calis [202, 203]. WGS can drive the development of 
“designer-phage” to eradicate MDR bacteria by identify-
ing phage virulence determinants which can be subject 
to phage rebooting without the virion genes [204]. As 
touched on earlier, patient-specific pathogen sequenc-
ing can be expanded to phage therapy in a sequencing-
based tailored phage therapy workflow moving phage 
therapy into the 21st century [205]. An in-depth review 
of the infrastructure and framework required to translate 
phage-therapy into a more readily available therapeutic 
option touches upon the effect genomics can have on 
this pathway [206]. These include having a database of 
sequenced phages with data on pathogens and phages, 
with in-depth functional characterisation of virulence, 
phage-host determinants (receptors), prediction of phage 
defence systems and algorithms using phage features 
mapped to pharmacokinetics and pharmacodynamics or 
immunogenicity to develop effective phage formulations 
based on sequencing data [206].

Phages have numerous roles within the microbiota other 
than infective elimination of hosts, such as HGT, hence 
recent research is investigating isolated phage-derived 
endolysins as a therapeutic alternative to the phage itself. 
A zinc dependant amidase endolysin, LysEFm5, has been 
described with activity against VREfm, although activity 
was not quantified at a range of pH inclusive of condi-
tions similar to urine [177]. These enzymes are suscep-
tible to genomic engineering, plug-and-play between 
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cell-wall binding domains and activity domains, and a 
comprehensive review of their benefits and limitations 
has been previously published [176]. With the expan-
sion of metagenomic datasets, it is possible to synthe-
sise endolysin DNA for heterologous expression, for 
which 1000s have been discovered in uncultured phage 
genomes [207].

Commensals Although VRE can be isolated from skin, 
urinary tract or oral cavity, most enterococci, includ-
ing VRE, primarily colonise the GIT. These species pre-
sent only a minor part of the gut microbiota in healthy 
individuals. Increasing enterococcal populations beyond 
sub-dominant threshold levels in the gut leads to infec-
tion [208, 209]. This occurs when antibiotics deplete the 
host microbiota, and MDR VRE flourishes in the vacated 
niche (Fig.  6). One such mechanism of microbiota 

Fig. 6 Aetiology of VRE invasive infection. a Enterococci typically represent ~ 0.1% of the human gut microbiota. Invasive infections can occur 
at various body sites, but one of the main routes in infection other than the GIT is through UTIs. Environmental Enterococcus spp. can migrate 
and form robust biofilms on urinary catheters incorporating fibrinogen into a matrix where persistence can result in invasive infection and urethral 
migration to infect the kidney. b Invasive infection can occur through a weakened GIT lining, where translocation can lead to systemic disease 
of the blood or lymph systems. The presence of commensals prevents VRE colonisation through multiple modes (1) production of REglllY 
by enterocytes stimulated by commensal gram-negative bacteria in the GIT [144]. (2) Direct inhibition by the production of bactericidal peptides, 
eg. lanthipeptide production by Blautia producta and pheromone production by commensal enterococci [44, 145]. (3) Preoccupation of shared 
niche. (4) Cooperating commensals allow a microbiota-wide reduced sensitivity to ampicillin, allowing peptide producing strains to confer 
colonisation resistance to VRE [146]. c The administration of cephalosporin antibiotics significantly reduce the microbiota and alter the host 
physiology decreasing the thickness of the colon wall, reducing the mucus layer and MUC2 (Mucin-2) and damaging the integrity of tight junctions 
via elevated  Ca2+ [147]. Host factors such as E-cadherin, sIgA and pIgR also cause agglutination of E. faecium after an antibiotic induced “bloom” 
to protect the host and shed clustered VRE into the lumen [147]
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protection involves the production of lipopolysaccharide 
and flagellin by gram-negative bacteria, including anaer-
obes, stimulating the production of REGIIIγ, a C-type 
lectin with antimicrobial activity against VRE. The intro-
duction of antibiotics causes a decrease in the gram-neg-
ative fraction of the microbiota, followed by decreased 
production of REGIIIγ and the subsequent dominance 
of VRE in the GIT [210]. Additional factors contribut-
ing to the development of enterococcal infection include 
other severe diseases, including cancer and subsequent 
treatment where prophylactic antibiotic administration 
decreases bacterial counts but selects for enterococcal 
species or the potential risk for vascular catheter-asso-
ciated infection due to long-term use, neutropenia, and 
urinary catheters [211–213]. Invasive VRE entry to the 
bloodstream occurs by translocation from the GIT to the 
blood or lymph system or through invasive medical pro-
cedures [214]. As mentioned, reducing VRE colonisation 
overgrowth and carriage has become necessary in reduc-
ing the risks of infection and invasion [22].

Colonisation resistance is a dynamic phenomenon 
whereby the native non-antibiotic treated commensal gut 
flora serves as a natural barrier against pathogen coloni-
sation resulting from competition for nutrients, physical 
occupation of niches, production of antimicrobial com-
pounds (e.g. bacteriocins), secondary metabolites, and 
modulation of the host immune response against patho-
genic bacteria. However, this barrier becomes imbal-
anced due to antibiotic treatment, and as early as the 
mid-1950s, the loss of the majority of obligate anaerobes 
was attributed to susceptibility to infection. The appli-
cation of vancomycin in mice caused a decrease in Bac-
teroidetes and the dominance of VRE in the small and 
large intestines even after the termination of antibiotic 
treatment [215]. In a murine model, the administration 
of vancomycin promoted VRE colonisation by disrupt-
ing the barrier formed by the intestinal microbiota and 
provided a selective advantage for resistant bacteria 
such as VRE to the detriment of the normal flora [183]. 
Intestinal domination by VRE precedes bloodstream 
infection [216]. Administration of antibiotics leads to 
selective survival of resistant species, and increases the 
susceptibility to further infection, caused by the removal 
of bacterial species that provide colonisation resistance. 
Indeed, the density of colonisation reached by VRE can 
lead to high transmission rates within a hospital setting 
[216]. Since colonisation and proliferation are critical 
steps in infection development and transmission, preven-
tion of overgrowth and persistence provided by the gut 
microbiota is an attractive non-antibiotic alternative to 
minimise the colonisation and persistence of VRE [217]. 
As mentioned, the obligate anaerobe B. producta has 

lantibiotic-mediated anti-VRE effects on the microbiota 
[145]. Interestingly, the presence of Blautia spp. also cor-
related with reduced enterococcal abundance in a case–
control study of hospitalized VRE patients compared to 
control [218].

Faecal microbiota transplantation (FMT) represents 
the transfer of gut microbiota from a healthy donor to 
a compromised recipient to remedy the imbalance in 
the microbial community, a characteristic of several gut 
disorders. Although variable success rates are reported 
in the literature, this approach is promising, albeit with 
some concerns, such as protocol, donor evaluation and 
standardisation [219]. FMT for the treatment of C. diffi-
cile and ulcerative colitis exists, but there is also evidence 
of the efficiency of this treatment for the prevention and 
clearance of VRE [220]. The introduction of a donor 
microbiota to VRE colonised mice showed that obligate 
anaerobes from the genus Barnesiella were significantly 
correlated with the elimination of the pathogen, suggest-
ing that recovery of critical components of the micro-
biota is a crucial factor for successful VRE elimination. 
After 15  days, VRE CFUs/10  mg of faeces were below 
the detection limit compared to the phosphate buffered 
saline (PBS) control of 7–8 log CFUs/10 mg [221]. Also, 
transplant patients who did not develop VRE contained 
higher levels of Barnesiella, suggesting a protective effect 
[221]. FMT was also influential in eliminating concurrent 
Klebsiella pneumoniae and VRE infection in mice, where 
VRE was cleared in 60% of mice and reduced by 3 logs in 
the remaining 40% of infected animals [222]. It is possible 
to predict the recurrence of C. difficile infection based on 
genus-level relative abundances of operational taxonomic 
units (OTUs) using 16s rRNA sequencing, a method that 
could be used to reduce the percentage of non-responder 
FMT recipients for VRE [223]. This suggests WGS may 
be critical in matching donor to recipient to improve 
clinical outcome by reducing exclusion effects on incom-
ing strains from the host microbiota [224].

The presence of specific species and their cooperation in 
the microbiota is essential for maintaining colonisation 
resistance [146]. The authors firstly determined a mix of 
7 strains that could prevent VRE colonisation in ampicil-
lin-treated mice (Blautia spp., B. producta, Clostridium 
bolteae, Eubacterium dolichum, Akkermansia muciniph-
ila, Bacteroides sartorii and Parabacteroides distasonis). 
Loss of colonisation resistance occurred in mice treated 
with bacterial mixtures deficient in either C. bolteae or 
B. producta, suggesting their role was essential in estab-
lishing colonisation resistance. The whole consortium 
was needed to re-establish colonisation resistance in 
ampicillin-treated mice: B. sarotrii and P. distasonis are 
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highly ampicillin-resistant and they inactivate ampicillin 
enabling successful engraftment of C. bolteae, which sub-
sequently supports the colonisation of B. producta [146].

E. faecalis V583 showed limited growth ability in a con-
sortium of GI flora that included commensal entero-
cocci. This incompatibility was traced to a pheromone 
produced by commensal enterococci, cOB1, which is 
efficient in killing VREfs V583. The pheromone cOB1, a 
resulting product of lipoprotein EF2496’s cleaved leader 
sequence, is pumped extracellularly by plasmid free 
commensal enterococci. This 8-residue peptide phero-
mone increases transcription of the plasmid pTEF2 
in E. faecalis V583 100-fold, resulting in cell lysis. Cell 
lysis occurred through an unknown mechanism but was 
dependent on a plasmid-bound IS, for which spontane-
ously resistant mutants of V583 to cOB1 had lost the IS 
element. This suggests plasmid proteins acting in trans 
coupled with imprecise excision of IS resulted in cell 
lysis [44]. It has been hypothesised that induction of 
conjugative functions on pTEF2, induced by cOB1 leads 
to lethal cross-talk between mobile elements on the 
plasmid and IS elements on the chromosome, facilitat-
ing an imprecise excision and a double strand break in 
the chromosome, causing cell death [225]. The suscep-
tibility of V583 to killing by commensal strains provides 
strong evidence that they rarely occur in the same niche 
and that V583 has proliferated in habitats in which com-
mensal strains are excluded. This provides clear evidence 
supporting the hypothesis that MDR hospital strains and 
commensal enterococci cannot occupy the same habitat 
and reveals differences in the colonisation properties of 
hospital and commensal lineages. This brings new hope 
for therapies that can preserve the native enterococcal 
flora and serve as a barrier to colonisation by hospital-
adapted lineages [225].

A recent study uncovered that fructose depletion restricts 
VRE colonisation using a commensal bacterial consor-
tium [226]. Subsequent downstream analysis using RNA-
seq identified an Olsenella sp. that could reproduce the 
effect of the consortium and protect from vancomycin 
induced susceptibility to VRE in a mouse model [226]. 
Olsenella treated mice saw a 2-log reduction in VRE from 
CFU counts of faeces [226]. Identifying anti-pathogenic 
microbes in a microbiota through 16s rRNA sequencing 
with a computational workflow is an emerging field of 
study but has yet to be applied at WGS resolution [227].

Probiotics Probiotics are “live microorganisms which 
when administered in adequate amounts confer a health 
benefit on the host” [228]. The era of probiotic expan-
sion began in the early 2000s, with a growing number of 

studies reporting health benefits from the intake of live 
microorganisms in the prevention or therapy of vari-
ous conditions. The most widely explored application of 
probiotics is in treating gut malfunctions. However, the 
efficacy of probiotics for other conditions, such as allergy, 
obesity, and diabetes, exists [229]. It has been shown 
that probiotic administration can enhance resistance to 
pathogenic bacteria [230]. Since the gut represents a VRE 
reservoir, from where translocation can occur, the appli-
cation of probiotics finds its validity in controlling VRE 
proliferation in the GIT and its subsequent dissemina-
tion throughout the body. Enhancing intestinal resist-
ance against VRE by probiotics could be a prophylactic 
means of decreasing the risk of VRE invasive infection. 
In a murine model,  109 CFU of the probiotic L. paraca-
sei CNCM I-3689 significantly reduced VRE by up to 6 
logs below the limit of detection, even though the strain 
does not directly inhibit VREfs V583 in  vitro, instead it 
modulates the host intestinal response by increasing pro-
duction of cathelicidin, an AMP, and decreasing levels of 
the pro-inflammatory cytokine IL-12 [217]. Lacticaseiba-
cillus rhamnosus did not significantly reduce VRE counts 
compared to the control. Additionally, the administration 
of the L. paracasei strain improved microbiota recovery 
after clindamycin-induced dysbiosis, helping to main-
tain Bacteroidetes levels [217]. A study performed on 
mice showed that  107 CFU of orally administered Bacil-
lus coagulans strain for four days decreased the density 
of one VanB-resistance carrying VRE strain in stools, but 
not the second VanB or VanA resistance-carrying strain 
highlighting the strain-dependant nature of both effector 
and effected bacteria [231]. A cell-wall preparation of E. 
faecalis EC-12 decreased the numbers of inoculated VRE 
in chickens 3  days after the pathogen challenge [232]. 
This preparation also increased the production of total 
and VRE-specific IgA and IgG, respectively. Additionally, 
a selected undefined Lactobacillus spp. showed a protec-
tive effect based on a potential competitive exclusion in 
the gut of chickens [232]. A similar study showed that the 
administration of E. coli Nissle to VREfm-colonized mice 
failed to decrease VREfm density in the gut. In contrast, 
administration of L. rhamnosus Lcr35 lowered VREfm 
density, albeit not to a level of significance. Additionally, 
5 weeks of oral intake of  109 CFU Lcr35 in 9 VRE patients 
had no significant effect on VRE levels [183].

A limited number of studies have investigated the effi-
cacy of probiotic strains in combating VRE colonisation 
in the gut. Some positive effects of probiotic administra-
tion in VRE colonised humans and animals have been 
documented, but these effects remain strain-specific 
[184]. A double-blind, randomised, placebo-controlled 
study found L. rhamnosus GG (LGG) increased VRE 
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clearance among all patients from the stool after four 
weeks, while in the control group who received standard 
pasteurised yoghurt, only one out of 12 subjects cleared 
VRE. Patients in this group who subsequently received 
yoghurt with the probiotic strain shed the VRE [181]. 
LGG, was assessed for its ability to eradicate VRE in a 
randomised clinical study among colonised children and 
a temporary significant reduction was observed after 
3 weeks of 3 ×  109 CFU consumption daily, where 20/32 
carriers lost VRE (P = 0.002), which was assessed by rec-
tal swabbing [233].

A more recent study assessed the same probiotic cul-
ture in preventing VRE colonisation in adults with 
comorbidities [234]. Up to 2–5 ×  1010  CFU/g LGG was 
administrated in a gelatine capsule for 14  days, and 
stool samples were analysed for 56  days. In contrast to 
the previous study, this one reported no difference in 
VRE colony counts between the control and treatment 
groups, although the probiotic strain exhibited bacte-
ricidal effects in in  vitro studies performed against four 
strains of VRE. Also, no decline in VRE colony counts 
were observed over time in subjects who received LGG. 
Several factors could have contributed to these contrast-
ing results, including the shorter administration period 
in the case of the capsule, the presence of comorbidi-
ties, different formulations of the LGG preparation, and 
administration of antibiotics in the treatment group. 
Concomitant administration of antibiotics within the 
trial group resulted in the inability to recover viable LGG, 
although DNA was detected [234].

Another study in 2010 found similar results where a mul-
tispecies probiotic powder, consisting of 10 distinct spe-
cies, administered twice daily failed to prevent colonisa-
tion of ampicillin-resistant enterococci [235]. Although 
there are some limitations to this study, including the 
administration of antibiotics that persist in the body may 
have reduced the efficacy. There was also a low frequency 
of probiotic intake, with patients taking the probiotic 58% 
of days of duration of stay [235]. A 2016 meta-analysis 
of probiotic and synbiotic therapy encompassing 30 tri-
als, identified a reduction in infectious complications 
but the authors acknowledge that more large-scale and 
adequately powered clinical trials are required to con-
firm observations made from the study [236]. Exploiting 
probiotic bacteria beyond use for the patient is possible, 
where a 2023 cluster-randomized crossover study found 
routine surface cleaning in 18 non-ICU wards with a pro-
biotic, consisting of multiple Bacillus species, was similar 
in efficacy to soap-based and disinfectant-based cleaning 
strategies in preventing HAI [108].

Utilising metagenomics for the advancement of pro-
biotics was discussed in a review by Suez et  al.  (2020). 
Beyond measuring the effects on the microbiota through 
functional and compositional genomics, strain-level 
functional genomics could be a tool to predict probi-
otic engraftment resulting in patient tailored probiotic 
regimens [237, 238]. Engraftment of Bifidobacterium 
longum AH1206 was studied by Maldonado et al. (2016) 
and they found the microbiota was deterministic for 
strain persistence in the gut [239]. An underrepresen-
tation of carbohydrate utilising genes in the microbiota 
of participants favoured colonisation, whereas estab-
lishment was prevented through competitive exclusion 
by phylogenetically related resident microbes, suggest-
ing colonisation was determined by niche and resource 
availability [239]. Interestingly, these findings align with 
competitive exclusion of VRE mentioned previously 
[226]. These findings suggest WGS could be a tool for 
predicting engraftment of probiotics based on the car-
rier state of the subject’s microbiota and if a functional 
niche is vacant.

A recent tool has also been described to predict probi-
otic properties in WGS data for the rapid identification of 
putative probiotic candidates [240].

Vaccine A detailed account by Micoli et  al. (2021) for 
the role vaccinology could play in combating AMR, but 
also the limitations, has recently been published [241]. 
As mentioned previously, there is a distinct genomic fin-
gerprint between CL and NC clades of E. faecium but 
admixture between the clades arises.

The advancement of new technologies in reverse vac-
cinology (RV), structural vaccinology and the design of 
outer membrane vesicles as state-of-the-art vaccine tech-
nology are emerging. RV is driven by genomics, to find 
novel antigenic proteins to specifically target E. faecium. 
Bioinformatic algorithms such as New Enhanced Reverse 
Vaccinology Environment (NERVE) are accelerating 
RV [242, 243]. The ability to predict cellular localisation 
of proteins, solubility, immunogenicity and compute 
homology to known antigens can be done on a desk-
top [243]. A pan-genome approach has previously been 
used by Maoine et al. to develop the concept of a group 
B Streptococcus vaccine, where 3 of the 4 tested anti-
genic proteins were part of the accessory genome [244, 
245]. This is a plausible method for tackling enterococ-
cal clinical transmission and infection due to clade spe-
cific markers among clinical isolates. Kalfopoulou and 
Huebner (2020) describe the recent advances of entero-
coccal vaccine developments and highlight the capsular 
polysaccharide and protein targets amongst the virulent 
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strains. These proteinaceous vaccine candidates include 
virulence associated traits such as GelE, PBP5, SagA and 
Ace [246–250]. In an infective endocarditis rat model, 
an anti-Ace immunotherapy against E. faecalis showed 
a significant reduction in  Log10 CFU/gm (3.8 ± 1.4) and 
resulted in a 20% overall invasive endocarditis compared 
to 83% for the control group in a passive immunisa-
tion experiment [246]. A similar result was observed for 
active immunisation against the virulence factor, where 
65% of the test group did not develop infective endocar-
ditis and all immunized mice had high anti-Ace antibody 
titers (1: > 50,000) [246]. LysM, a peptidoglycan-binding 
protein found on 90% of plasmids among clinical isolates 
represents a targeted, plasmid specific antigenic protein 
for which anti-LysM antibodies raised against recombi-
nant LysM resulted in a significant reduction of CFU/
mg in a bacteraemia mouse model [9, 247]. The genomic 
plasticity of enterococci may lead to complications on the 
road for an effective vaccine against MDR VRE – which 
could be further complicated by the selective pressure 
of the immune system. In this instance, a vaccine that 
encompasses multiple clade specific antigens to reduce 
the likelihood of escape mutants could suffice [245].

Repurposing of drugs Repurposed non-antimicrobial 
drugs were tested to show their ability to prevent GIT 
colonisation by VRE. The ability to produce biofilms is 
one of the key factors enabling efficient VRE colonisa-
tion. Ebselen, a drug usually used in the treatment of a 
range of diseases, such as cancer, stroke, atherosclero-
sis, neuropathy and bipolar disorders, showed activity 
in decreasing biofilm formation and contributed to the 
in vivo reduction of VRE in the cecum and ileum of mice 
[251]. The same molecule was shown to have anti-C. diffi-
cile activity by disrupting redox homeostasis, preventing 
recurrent infection and promoted microbiome recovery 
after antibiotic treatment in mice [252, 253]. The same 
research group showed that the anti-inflammatory rheu-
matoid arthritis drug auranofin portrayed remarkable 
activity against VRE, most effective at low doses, with no 
detectable resistance developed and prevented VRE col-
onisation in an in vivo challenge study [251, 254]. Simi-
larly, the group showed that at clinically achievable doses, 
the drug can prevent C. difficile recurrence but was inef-
fective at higher doses. The authors suggest this may be 
due to off-target effects of auranofin on the microbiota or 
the drug’s anti-inflammatory properties highlighting the 
complexity associated with repurposing drugs as antibi-
otic alternatives [255, 256]. These novel approaches pre-
sent a radically different direction for treatment of GIT 
colonisation with VRE, and could become financially 
viable options to prevent spreading and complications of 
VRE if used correctly.

Artificial intelligence Advances towards the applica-
tion of artificial intelligence in drug development and 
discovery have been made since the turn of the decade 
and are hard to ignore. These tools include the accurate 
prediction of protein structure from a protein sequence, 
generative AI models producing never-before seen pro-
tein sequences with structural homology to functional 
proteins, and the discovery of antimicrobial peptides by 
mining the 3D space of proteins [257–263]. The first evi-
dence of a machine learning guided therapeutic peptide 
in silico screen identified peptides with activity against 
VRE in 2008 [264]. In this study, a neural network trained 
on existing MIC values and protein structures predicted 
antimicrobial activity. A validated model was used to 
screen 100,000 putative cationic antimicrobial peptides. 
MIC values were determined against multiple VRE 
strains with varying values for E. faecalis (3.1 – 241 μM) 
and E. faecium (1 – 226 μM). Strikingly, 94% of the top 
50 candidates had antimicrobial activity [264]. A more 
in-depth study mining the 3D space of proteins identified 
hexameric peptides with efficacy against MDR patho-
gens, comparable to penicillin, with minimal toxicity, and 
low frequency of resistance [262]. Although VRE were 
not tested, the peptides were able to reduce S. aureus by 3 
logs in an acute pneumoniae model in mice, which shows 
a positive direction for AI guided therapeutic interven-
tions against gram positive infections [262].

Concluding remarks
As reported by the World Health Organisation, van-
comycin-resistant enterococci, are recognised as high-
priority pathogens for which new efficient therapeutics 
are urgently needed. As pathogens, VRE represent MDR 
strains which have a fascinating ability to withstand 
environmental stressors, adapt rapidly and disseminate 
globally. To better understand the occurrence, distribu-
tion and dissemination of vancomycin resistance, WGS 
and comparison of genomic information has been suc-
cessfully employed. It has also facilitated an understand-
ing of the routes of pathogen transfer among patients, 
healthcare workers and non-hospital environments, 
as well as the role of the mobilome among VRE. Addi-
tionally, genomic information has provided insight into 
differences in genomic content between hospital and 
communal strains and the presence of specific genetic 
determinants that confer the ability of strains to survive 
in these very different environments successfully. On the 
other hand, the prevention of GIT colonisation and inhi-
bition of VRE proliferation in the gut is a crucial step in 
controlling its transfer to the bloodstream and the sub-
sequent development of VRE infections. For this reason, 
a promising approach is to enhance the gut microbial 
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shield through the use of selected strains of probiotics 
or consortia of commensal microorganisms with proven 
inhibitory activities against VRE colonisation. In treat-
ing systemic infections, combinatorial treatments involv-
ing conventional antibiotics may result in synergistic 
antimicrobial effects, but studies investigating antibiotic 
alternatives have also shown promise. In particular, bac-
tericidal molecules, such as bacteriocins, phage therapy 
or their endolysins, provide hope in overcoming the 
decreasing efficacies of antibiotics. Future studies should 
focus on developing these therapies by employing a tai-
lored approach for use in clinical settings to circumvent 
future HGT events among clinically relevant isolates and 
the ever-expanding pool of AMR genes.
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