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Abstract 

Background The soil biota consists of a complex assembly of microbial communities and other organisms that vary 
significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there 
has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this 
study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroeco-
logical cereal-legume companion cropping system known as push–pull technology (PPT). This system has been used 
in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-
Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system.

Results The PPT cropping system changed the composition and diversity of soil and maize-root microbial communi-
ties, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping 
system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity 
within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria 
and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are 
associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecti-
cides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Con-
versely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, 
the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Asper-
gillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative 
abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine 
biosynthesis I, and inosine 5’-phosphate degradation.

Conclusion Push–pull cropping system positively influences soil and maize-root microbiomes and enhances 
soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. 
These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system 
where it is practiced regarding the system’s resilience and functional redundancy. Future research should focus 
on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites 
from the intercrop root exudates or through the alteration of the soil’s nutritional status, which affects microbial enzy-
matic activities.
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Introduction
To feed the growing world population, agricultural inten-
sification in staple food crop production such as maize, 
wheat, and rice has been increasing, leading to increased 
food security [1, 2]. However, this intensification has also 
had negative environmental consequences, including 
increased greenhouse gas emissions, nutrient leaching, 
soil erosion, and a decline in biodiversity [3, 4]. Ecologi-
cal diversification that prioritizes environmental quality 
and preserves beneficial organisms is needed to mitigate 
these impacts [5–8]. Diversification involves agronomic 
practices that improve productivity while maintaining 
long-term stability and resilience and supporting eco-
system services [9]. Intercropping, where farmers grow 
two or more crops together in an agricultural field, is 
one such diversification strategy that has been shown 
to restore ecosystem services and revitalize soil and its 
associated biodiversity while improving crop yields [2, 
10–13].

One such intercropping system that has gained traction 
in sub-Saharan Africa (SSA) is the push–pull technology 
(PPT), that has been adopted by thousands of smallholder 
farmers in East and Southern Africa [14, 15]. Push–pull 
is an agroecological companion cropping system where 
the main crop (maize or sorghum) is intercropped with 
a leguminous plant (Desmodium spp.) which serves as an 
insect-repellent (push), while a grass (Napier or Briachi-
aria) is planted as a border crop to attract stemborers 
and other herbivores away from the main crop (pull) [16–
18]. The push–pull cropping system being a perennial 
legume-maize intercrop is likely to impact the soil and 
maize-root microbial communities strongly. The PPT 
cropping system utilizes volatile chemical mediated tri-
trophic interactions where volatile signals emitted by the 
leguminous plant create an unfavorable environment for 
oviposition by insect-pests such as Busseola fusca, Chilo 
partellus, and more recently Spodoptera frugiperda [18–
20]. Desmodium spp. volatiles are also known to recruit 
the pests’ natural enemies into the cropping system [14, 
20]. The trap crop suppresses the larval development of 
the insect pest upon hatching from the oviposited eggs 
[13, 14, 16]. Additional ecological benefits of using PPT 
include reducing the use of synthetic chemical pesticides 
and controlling the parasitic weed (Striga hermonthica) 
through the allelopathic effects of the root exudates of the 
Desmodium spp. [19]. Moreover, the leguminous Desmo-
dium spp. improves soil health by fixing nitrogen, facili-
tating carbon sequestration, solubilizing phosphorus, 

organic matter deposition, and reduction of mycotoxins 
and other plant pathogens in both soil and maize [3, 21–
24]. These changes in soil properties have had positive 
plant-soil feedback, contributing to increased crop yield 
on farms practicing the PPT. Thus, this cropping system 
has been shown to provide diverse ecosystem services, 
some of which are immediate and well-pronounced, such 
as insect-pest reduction and crop yield improvement, 
and long-term effects like the positive plant-soil feed-
backs [7, 24].

Soil microbial communities contribute to plant health 
and yield through root-mediated mechanisms [25]. 
Plant-associated microbial communities improve pro-
ductivity and overall plant health by ensuring nutrient 
availability, stress tolerance, disease resistance, and bio-
diversity enhancement [25, 26]. The genotype of a plant 
determines its root-associated microbiota, and the plant, 
in turn, can shape the belowground microbiome by sup-
porting or suppressing local microbial populations [2, 5]. 
Plants use root exudates to actively modify soil micro-
bial populations favoring beneficial microbes [6, 27]. 
Legume-based intercropping can improve soil health and 
optimize the soil’s physicochemical properties by increas-
ing relative microbial abundance and organic matter, 
controlling soil erosion, and improvement of soil struc-
ture [26, 28, 29]. In addition, intercropping with legumes 
positively affects soil’s chemical properties, including 
soil organic carbon (OC) concentration, nutrient con-
tent, and cation exchange capacity (CEC) [2, 22]. Leg-
umes can also change the soil pH, thereby affecting soil 
microbial activity [26]. Previous studies have shown that 
cereal-legume intercropping systems result in increased 
soil microbial biomass and enhanced nutrient avail-
ability, particularly nitrogen, phosphorus, and carbon [2, 
28]. Wheat (Triticum aestivum) or maize (Zea mays L.)-
faba bean (Vicia faba), [30] and durum wheat (Triticum 
turgidum durum)-chickpea (Cicer arietinum) or lentil 
(Lens culinaris), [5] maize-peanut (Arachis hypogaea), 
[31] intercropping has been shown to increase overall 
microbial diversity. The presence of pathogenic microbial 
communities of genera Aspergillus, Gibberalla, and Bryo-
bacter in higher abundances in monoculture cropping 
systems, further supports the hypothesis that diversified 
cropping systems harbor more beneficial microorgan-
isms. This, in turn, enhances soil nutrients, plant devel-
opment, and disease management [32–34].

In this study, we assessed the impact of the PPT crop-
ping system on the soil and maize-root microbiome and 
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soil physicochemical properties in smallholder farm-
ers’ fields (SHFF) where there are variable climatic and 
edaphic factors. We hypothesized that the PPT crop-
ping system influences soil physicochemical parameters 
and shifts soil and maize-root microbiome in favor 
of ecologically essential groups, as compared to the 
maize-monoculture (Mono) cropping system. While 
the components and aboveground multitrophic inter-
actions of the PPT cropping system and the underlying 
mechanisms, have been studied to a greater extent, the 
belowground multitrophic interactions, including their 
impact and interactions with soil and root microbiome, 
have not yet received similar attention. Therefore, it is 
crucial to investigate the impact of this functional crop-
ping system on the soil and maize-root microbiome and 
the subsequent cascading effects on the aboveground 
tri-trophic interactions.

Materials and methods
Description of sampling site
Soil and maize-root samples were collected from three 
Counties in western Kenya– Vihiga (S 0° 1′ 53.06’’ E 34° 
34′ 0.05’’; N 0° 0′ 42.85’’ E 34° 35′ 29.6’’), Siaya (N 0° 
2′ 26.8’’ E 34° 18′ 19.5’’; S 0° 0′ 0.23’’ E 34° 16′ 13.23’’), 
and Bungoma (N 0° 37′ 12.8’’ E 34° 33′ 55.2’’; N 0° 35′ 
01.3’’ E 34° 36′ 14.4’’) (Additional file 1: Fig. S1). Different 
maize cropping systems, including push–pull and Mono 
farm fields, are already established in these areas for over 
6 to 20  years [14, 24]. The samples were collected from 
18 SHFF (9 each with PPT and Mono cropping systems) 
which shared comparable agronomic management prac-
tices without the use of pesticides or synthetic chemical 
fertilizers and had minimal cultivation for weed manage-
ment. The Mono and PPT farms had a similar ground 
cover, except that Desmodium spp. dominated the PPT 
farms. The three counties in the study area experience 
bimodal rainfall, with a long rainy season from March to 
August and a short rainy season from October to Decem-
ber. The western Kenya region has a hot and humid cli-
mate, abundant sunshine throughout the year, and an 
average daily temperature of around 25 ± 2 °C. There were 
altitudinal and rainfall variations among the selected 
counties: Vihiga at 1594.28 m above sea level (masl), with 
a rainfall range of 1800–2000 mm per annum (p.a); Siaya 
at 1140 masl, with a rainfall range of 1200–1800 mm p.a; 
and Bungoma at 1385 masl, with a rainfall range of 1102–
1800 mm p.a. [13, 17].

Sample collection
Soil and maize-root samples were collected from 9 farms 
each of PPT and Mono cropping systems in different 
SHFF when the maize plants were in the late vegetative 
development stage (V5-6), about five to six weeks old. 

Soil sampling was done randomly (10 sampling points) 
between rows and pooled. Ten samples were collected 
per SHFF (about 5–20 cm depth) using a soil auger after 
cleaning the surface organic matter around the rows 
of the plants. The collection was halfway between the 
Desmodium spp. and maize rows on PPT farms and the 
same distance between maize rows in Mono farms. The 
pooled soil samples were placed in a 20  mL centrifuge 
tube (Thermo Fisher Scientific Inc., California, USA), 
put in a cool box with ice packs, and immediately trans-
ported to the laboratory at the International Centre of 
Insect Physiology and Ecology (icipe), Nairobi, Kenya 
where they were stored at -80  °C until needed for DNA 
extraction. A subset of soil samples was kept in brown 
Khaki paper bags (Paper Bags Ltd., Nairobi, Kenya) for 
48  h under room temperature, and used later for soil 
physicochemical parameters analysis. Maize-root sam-
ples from ten plants located next to the soil cores were 
collected from the root systems to a depth of approxi-
mately 10  cm in each sampled plot, and then pooled. 
The maize-roots were rinsed to remove soil debris, sur-
face sterilized by immersing them in 70% ethanol and 1% 
sodium hypochlorite for 1  min each, followed by wash-
ing six times in sterilized distilled water. To confirm ste-
rility, 0.1 mL of the final rinsing water was spread plate 
on yeast extract mannitol agar (YEMA) with Congo red 
(0.025% w/v) and lysogeny broth (LB) and incubated at 
33 ± 2 ºC for 48 h for bacteria growth. Similarly, for fungi, 
0.1  mL of the final rinsing water was spread plate on 
potato dextrose agar (PDA) and sabouraud dextrose agar 
(SDA), and incubated at 25 ± 2 ºC for 72 h. After sterili-
zation, the maize-root samples were air-dried on sterile 
blotting paper in a sterilized laminar flow cabinet (Class 
II Type A/B3, Biological Safety Cabinet, The Bakey Com-
pany, Sanford, Maine, USA), and then stored at -80  °C 
until DNA extraction commenced. Soil physicochemical 
parameters were determined following standard proto-
cols detailed by Chen et al. [35] and Okalebo et al. [36].

Genomic DNA extraction
Based on a method used by Howard et  al. [37], high-
throughput amplicon sequencing of the V1-V4 region 
of the 16S rDNA gene regions and internal transcribed 
spacer (ITS; ITS1-ITS2) gene regions were used for bac-
terial and fungal metagenomics sequencing. PureLink™ 
Microbiome DNA purification kit (Thermo Fisher Sci-
entific Inc., California, USA) was utilized for the extrac-
tion of soil total genomic deoxyribonucleic acid (gDNA), 
following the manufacturer’s instructions. Each sample 
was extracted twice, and the supernatants were mixed 
to obtain more DNA. Power Bead Tubes were filled with 
0.25 g of soil and vortexed for 10 s. The lysis buffer was 
mixed using a vortex mixer, and the bead tube was then 
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heated for 10 min at 65 °C, followed by homogenization 
through vortexing at 14,000 rpm for 5 min. The superna-
tant was processed using spin columns, and the DNA was 
extracted using Tris–HCL. The quality of the extracted 
DNA was analyzed using a Thermo Scientific Nanodrop 
2000 (UV–Vis spectrophotometer) and gel electrophore-
sis. The DNA samples were stored at -80 °C until further 
processing [7].

For maize-root samples, lyophilization was carried out 
for 48 h, and the maize-root were ball-milled into a fine 
powder for gDNA extraction. After that, a plant DNA 
extraction kit ((Isolate II) Thermo Fisher Scientific Inc., 
California, USA) was used to extract DNA from 0.25  g 
of maize-root (dry weight). Briefly, 0.25  g of powdered 
maize-root sample was put into lysis buffer-filled bead 
tubes and vortexed for 10 s. The mixture was centrifuged 
for two minutes at 14,000 rpm. After discarding the pel-
let, the supernatant was centrifuged on a spin column to 
extract DNA following the manufacturer’s instructions. 
A Thermo Scientific NanoDrop™ 2000 (UV–Vis spectro-
photometer) and gel electrophoresis were used to assess 
the quality and size of the extracted DNA. The DNA sam-
ples were stored at -80 °C until further processing [38].

PCR, library preparation, and sequencing
Amplicon sequencing targeting V1-V4 regions of 16S 
rDNA gene and ITS1-ITS2 regions of ITS gene was car-
ried out at Macrogen Europe in the Netherlands using 
the MiSeq (Illumina) instrument, following the manu-
facturers instructions. For the 16S rRNA (bacterial) 
gene amplicon library, PCR primers were used to target 
both the V1-V2 regions (27F` GAG TTT GATCMTGG 
CTC AG, 338R` GCT GCC TCC CGT AGG AGT ) and the 
V3-V4 regions (341F` CCT ACG GGNGGW GCA G and 
805R` -GAC TAC HVGGG TAT CTA ATC C). For the ITS 
gene (fungal), PCR primer pairs targeted the ITS1 and 
ITS2 regions (ITS1F` CTT GGT CAT TTA GAG GAA 
GTAA, ITS2R` -GCT GCG TTC TTC ATC GAT GC) and 
the ITS3-ITS4 regions (ITS3F` GCA TCG ATG AAG AAC 
GCA GC ITS4R` -TCC TCC GCT TAT TGA TAG C) [6, 
8, 12]. The libraries were sequenced using a sequenc-
ing mode which was set to paired-end two 300-cycle 
sequencings, and a 600-cycle v3 sequencing kit was used.

Statistical analyses
The data for soil physicochemical characteristics were 
tested for normality using the Shapiro–Wilk test. Because 
the data was normally distributed, parametric statistical 
tests were used. One-way analysis of variance (ANOVA) 
was used to examine the soil characteristics based on 
cropping systems. Where differences existed, a Tukey 
HSD test was used to analyze the differences in soil char-
acteristics [35]. A Pearson correlation coefficient analysis 

was used to detect the relationships between soil condi-
tions and different cropping systems. The profile of soil 
physicochemical properties was visualized using non-
metric multidimensional scaling (NMDS) for both crop-
ping systems, PPT and Mono. To compare differences 
between these cropping systems, a one-way ANOSIM 
test was conducted using the Bray–Curtis dissimilarity 
matrix. All statistical analyses were carried out using R 
software (v4.1.2) [39].

Bioinformatics
Raw reads were processed using nf-core/ampliseq 
(v2.4.0) (https:// github. com/ nf- core/ ampli seq) metagen-
omic amplicon pipeline deployed using nextflow 
(v21.10.3) and singularity (v3.6.3) [40]. Sequence quality 
control was assessed using FastQC (v0.11.6). Poor reads 
and primers were trimmed using Cutadapt (v.4.1) [6]. 
The Divisive Amplicon Denoising Algorithm 2 (DADA2) 
analysis workflow option of the nf-core/ampliseq pipe-
line was used to assess soil and maize-root prokaryotic 
and mycobiome communities. The DADA2 (v1.26.0) 
analysis workflow was used to denoise, preprocess, infer 
amplicon sequence variants (ASVs), and assign taxonomy 
of the clean 16S rRNA and ITS sequence reads [41]. The 
DADA2 functions parameters used to perform further 
trimming included truncLen = 180, trunc_qmin = 25, 
trunc_rmin = 0.75, max_ee = 2, min_len = 50, and 
maxN = 0. After preprocessing, the reads were derep-
licated using the “derepFastq” and “dada” functions, 
inferring amplicon sequence variants (ASVs) and their 
counts. The “concatenate_reads,” “sample_inference,” 
and “removeChimeraDenovo” functions were applied to 
remove spurious and chimeric ASVs. The “dada_ref_tax-
onomy” function utilized the “silva = 138” database to 
assign taxonomy to 16S bacterial ASV [42] and “unite-
fungi = 8.3” to assign taxonomy to ITS fungal ASVs [43]. 
The ASV relative abundance tables and ASV taxonomic 
classification output files obtained from the DADA2 
pipeline were used for downstream data exploration, 
statistical analysis, and visualization in R (v4.2.1). The 
Basic Rapid Ribosomal RNA Predictor (Barrnap) (v0.9) 
[44] utilized the ASV nucleotide base sequences to clas-
sify them into various categories, which include eukary-
otes, archaea, bacteria, chloroplast, and mitochondria 
[45]. The ASV filtering for bacteria was done to exclude 
all archaea, eukaryotic, chloroplast and mitochondria, 
while for fungi, we excluded only archaea, chloroplast, 
and mitochondria. The soil and maize-root microbial 
communities were determined by merging the ASV rela-
tive abundance matrix and taxonomy table generated 
by the DADA2 analysis workflow with the metadata file 
containing descriptions, treatments, and conditions for 
each sample collected, forming a phyloseq object. The 

https://github.com/nf-core/ampliseq
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phyloseq (v1.41) package was used to determine the dif-
ferential abundance of microbes under different condi-
tions of alpha and beta diversity [40]. The metagMisc 
(v0.0.4) [46] package was utilized to manipulate the phy-
loseq object for visualization of the microbiome relative 
abundances and percentages in the sample types (soil 
and maize-root), cropping systems (PPT and Mono), and 
sampling locations (Bungoma, Siaya and Vihiga).

Alpha and beta diversity
The Microbiota Process (v1.9.3) function was used to 
analyze the species richness and diversity of soil and 
maize-root prokaryotic and mycobiome communi-
ties by performing rarefaction analysis on the ASV read 
counts [47]. The analysis employed alpha diversity met-
rics, including Chao1, Evenness, and Shannon indices. A 
Principal Coordinate Analysis (PCoA) was used to iden-
tify the microbial contributors and their variation in beta 
diversity [48]. Venn diagrams were generated using Venn 
Counts function from the LIMMA (linear models for 
microarray data) package to display the shared microbial 
communities among the sample types, cropping systems, 
and sampling locations [49]. Before conducting Permuta-
tional Multivariate Analysis of Variance (PERMANOVA), 
we utilized betadisper (using Vegan package) with each 
farm treated as stratum to compare microbial popula-
tions across the different sample types, cropping systems, 
and locations [48, 50]. The diff_analysis and ggdiffclade 
functions of the Microbiota Process utilized the phy-
loseq object to determine biomarkers and visualize the 
microbes (fungal and bacterial) at the genus level.

Differential expression of soil and maize‑root bacterial 
protein functions in push–pull and maize‑monoculture 
cropping systems
The BIOM (biological observation matrix) file was uti-
lized for the phylogenetic investigation of communities 
by reconstructing unobserved states (PICRUSt2) (v2.5.0) 
tool to predict microbial functions in the soil and maize-
root. The PICRUSt2 pipeline (v2.4.1) was utilized to pre-
dict functional abundances based on ASV marker gene 
sequences. The resulting bacterial abundances were clas-
sified using the enzyme commission classification and 
statistically compared across cropping systems, sample 
types, and sampling locations. Phylogenetic heat maps 
of pathways were visualized using the STAMP software 
(v2.1.3) for further analysis [51, 52].

Results
Soil physicochemical properties from push–pull 
and maize‑monoculture cropping systems
Soil pH, organic carbon, nitrogen, and potassium from 
PPT soil were significantly different compared to that 

of Mono cropping system soil (ANOVA; P < 0.001; 
Table  1). However, there was no significant difference 
between PPT and Mono cropping systems among the 
other soil parameters. The PPT soil texture ranged 
from sandy loam to sandy clay loam, with characteris-
tics including sand (21.77–74.19%), silt (10.92–34.38%), 
and clay (14.89–43.85%). In contrast, soil texture for 
the Mono cropping system was loamy sand, sandy 
loam to clay loam, with soil characteristics includ-
ing sand (36.78–86.53%), silt (8.48–39.23%), and clay 
(3.99–38.43%).

Within the PPT field, several soil properties such as 
sulphur, nitrogen, organic carbon, exchangeable acid-
ity, pH, electrical conductivity, potassium, and iron 
revealed positive association, showcasing distinct char-
acteristics within this cropping system. In contrast, the 
Mono cropping system exhibited no discernible impact 
on these soil properties. However, soil properties 
such as boron, molybdenum, calcium, and exchange-
able sodium percentage were more abundant in Mono 

Table 1 Comparison of soil physicochemical properties 
between push–pull and maize-monoculture cropping systems in 
smallholder farmer fields

PPT Push–pull technology, Mono Maize-monoculture cropping system, pH 
Potential of hydrogen, EC Electrical conductivity, P Phosphorus, K Potassium, 
Na Sodium, Ca Calcium, Mg Magnesium, Fe Iron, Mn Manganese, Cu Copper, 
Zn Zinc, B Boron, Mo Molybdenum, S Sulphur, N Nitrogen, OC Organic carbon, 
EA Exchangeable acidity, ESP Exchangeable sodium percentage, mmhos/
cm Millimhos per centimeter, mg/kg Milligrams per kilogram, % Percentage, 
meq/100 g Millequivalents per 100 g of soil

The different letter indicates a significant difference between the two cropping 
systems (Significant effects at P < 0.05 are shown in bold, Tukeys honest 
significance test (HSD)

Soil properties Cropping systems F value P value

PPT Mono (1,18)

pH  (H2O) 5.673 ± 0.071a 4.938 ± 0.099b 36.580 < 0.001

EC (mmhos/cm) 0.081 ± 0.016a 0.051 ± 0.011a 2.329 > 0.144

P (mg/kg) 22.999 ± 5.024a 16.647 ± 2.233b 1.335 < 0.001

K (mg/kg) 91.981 ± 7.631a 83.324 ± 11.124a 0.412 > 0.412

Na (mg/kg) 9.699 ± 0.187a 9.691 ± 0.253546a 0.001 > 0.980

Ca (mg/kg) 808.180 ± 123.026a 802.239 ± 130.529a 0.001 > 0.974

Mg (mg/kg) 137.299 ± 18.709a 136.470 ± 19.357a 0.001 > 0.976

Fe (mg/kg) 110.892 ± 8.929a 104.926 ± 13.713a 0.133 > 0.721

Mn (mg/kg) 208.095 ± 33.248a 180.074 ± 29.832a 0.393 > 0.538

Cu (mg/kg) 2.552 ± 0.429a 1.978 ± 0.253a 1.330 > 1.332

Mo (mg/kg) 0.020 ± 0.001a 0.020 ± 0.001a 2.250 > 0.151

Zn (mg/kg) 3.585 ± 0.649a 3.665 ± 1.121a 0.004 > 0.954

B (mg/kg) 1.425 ± 0.012b 1.458 ± 0.010a 4.453 < 0.010

S (mg/kg) 11.325 ± 1.376a 8.810 ± 1.069a 2.083 > 0.166

N (%) 0.146 ± 0.009a 0.068 ± 0.013b 23.400 < 0.001

OC (%) 1.319 ± 0.132a 0.693 ± 0.146b 10.170 < 0.001

EA (meq/100 g) 1.180 ± 0.131a 1.060 ± 0.109a 0.498 > 0.489

ESP (%) 0.972 ± 0.166a 0.927 ± 0.126a 0.046 > 0.832
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cropping system (Fig.  1A). Notably, PC1 and PC2, 
which accounted for 34% and 17.6% of the total vari-
ance, respectively, played a vital role in elucidating the 
interactions between the selected soil properties. The 
Correlograms (Additional file  1: Fig. S2) showed the 
relationships and correlations between the different soil 
physicochemical properties in the PPT and Mono crop-
ping systems.

The non-metric multidimensional scaling (NMDS) 
plot, using the Bray–Curtis similarity index, revealed 
no significant difference between the soil physicochem-
ical properties tested in PPT and Mono cropping sys-
tems (One-way ANOSIM: P = 0.9591, R = -0.078; Stress 
value = 0.1894) (Fig. 1B). However, the analysis of simi-
larities (ANOSIM) showed that certain soil physico-
chemical properties contributed most of the differences 
between the PPT and Mono cropping systems. Inter-
estingly, the properties that contributed positively to 
the differences in the PPT cropping system compared 
to Mono are as follows: calcium (59.20%); manganese 
(16.34%); magnesium (9.59%); iron (6.02%); potas-
sium (5.18%); phosphorus (1.87%); sulphur (0.69%); 
zinc (0.40%); copper (0.16%); sodium (0.11%); pH, 
(0.11%); electrical conductivity (0.11%); and organic 
carbon (0.11%) (Fig.  1C). These properties collectively 
accounted for the observed differences between the two 
cropping systems (Fig. 1A-C).

Relative abundance of soil and maize‑root microbiome 
in push–pull and maize‑monoculture cropping system fields
Profiling the bacterial community yielded 5,714,532 
high-quality sequences, averaging 150,382.4 per sam-
ple with a range of 237,684 to 80,956. For fungal 
sequences, a total of 5,466,660 high-quality sequences 
were obtained, with a mean of 165,656.4 per sample, 
and each sample generated a read between 233,381 and 
123,338. However, after the rarefaction of the sequences 
(Additional file  1: Fig. S3) and removal of non-fungal 
and non-bacterial sequences, we found 3,953 fungal 
and 7,556 bacterial amplicon sequence variants (ASVs) 
in all soil and maize-root samples.

Taxonomic profiles of belowground fungal and bacterial 
communities
The differences between the maize-root and soil bacte-
rial and fungal genera were evident in the ASVs across 
all samples. We found the 30 most relatively abundant 
bacterial genera communities in PPT and Mono crop-
ping systems (Additional file  1: Figs. S4 and S5). The 
order of relative abundance in PPT (soil and maize-root) 
compared to the Mono (soil and maize-root) cropping 
system was as follows: Enterobacter > , Sphingomonas > , 
Candidatus Udaeobacter > , Sphingobium > , RB41 > , 
Stenotrophomonas > , Streptomyces > , Nitrospira > , and 
Mitsuaria (Fig.  2; Additional file  1: Table  S1). Pseu-
domonas > , Bryobacter > , Conexibacter > , Acidother-
mus > , and Pantoea were the most relatively abundant 
genera in the Mono cropping system compared to that of 
PPT. However, the interaction between sample type (soil 
and maize-root), and PPT and Mono cropping system 
(PPT soil and PPT maize-root, and Mono soil and Mono 
maize-root) had varying effects on the impact of the 
bacterial genera communities (Fig.  2; Additional file  1: 
Table  S2). In regard to study sites, the most enriched 
bacterial genera in Bungoma in the order of relative 
abundance were Pseudomonas > , Flavobacterium > , and 
Nocardioides compared to Siaya and Vihiga. Strepto-
myces > , Bacillus > , Sphingobium > , and RB41 were the 
most enriched genera in Siaya compared to the other 
two counties. Candidatus Udaeobacter > , Bradyrhizo-
bium > , Enterobacter > , Sphingomonas > , Nitrospira > , 
and Stenotrophomonas were more relatively abun-
dant in Vihiga compared to Bungoma and Siaya coun-
ties (Additional file  1: Fig. S6; Table  S3). However, PPT 
positively impacted bacterial genera in different sample 
types between the cropping system and study locations. 
Burkholderia-Caballeronia-Paraburkholderia were more 
relatively abundant in Siaya PPT maize-root compared to 
the other cropping system, sample types, and study loca-
tions. Acidothermus > , and Pantoea were more abundant 
in Siaya Mono maize-root, and Conexibacter enriched 
in Siaya Mono soil (Fig.  2; Additional file  1: Table  S4). 
The relative abundance of Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium was higher in Vihiga PPT 
maize-root compared to the other cropping systems, 

Fig. 1 Impact of push–pull cropping system on soil physicochemical properties: A Principal component biplot depicting the relationship 
between soil physicochemical properties and their association with cropping systems. 1 = Dim1 for principal component and 2 = Dim2 for principal 
component; B Non-metric multidimensional scaling (NMDs; distance Bray–Curtis) showing the clustering relationships between the different soil 
physicochemical properties; C Histogram showing the % predominant contribution of the soil chemical properties based on similarities. PPT, push–
pull technology; Mono, maize-monoculture cropping system; pH, potential of hydrogen; EC, electrical conductivity; P, phosphorus; K, potassium; Na, 
sodium; Ca, calcium; Mg, magnesium; Fe, iron; Mn, manganese; Cu, copper; Zn, zinc; B, boron; Mo, molybdenum; S, sulphur; N, nitrogen; OC, organic 
carbon; EA, exchangeable acidity; ESP, exchangeable sodium percentage

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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sample types, and study locations, while Enterobacter > , 
and Streptomyces exhibited higher relative abundance 
in Vihiga PPT soil. Bradyrhizobium > , and Stenotropho-
monas were more relatively abundant in Vihiga Mono 
maize-root. Arthrobacter > , and Nitrospira were more 
enriched in Vihiga Mono soil. Dyella > , and Ralstonia 
were more relatively dominant in Bungoma PPT maize-
root compared to the other cropping system, sample 
types, and study locations. Gaiella > , Nocardioides > , and 
Sphingobium were more relatively abundant in Bungoma 
PPT soil. Bryobacter > , and Sphingomonas were more 
enriched in Bungoma Mono soil. There was an increase 
of Pseudomonas bacteria in Bungoma Mono maize-root 
compared to the other cropping systems, sample types, 
and study locations.

The most highly enriched species in PPT (soil and 
maize-root) compared to that of Mono (soil and maize-
root) cropping system in the order of relative abundance 
were Rhizobium phaseoli > , Bacillus flexus > , Bradyrhizo-
bium elkanii > , Paraburkholderia vietnamiensis > , Dyella 
marensis > , Enterobacter hormaechei > , Herbaspirillum 
seropedicae > , Pseudomonas nitroreducens > , Ralstonia 

pickettii > , Sphingomonas paucimobilis > , Stenotropho-
monas maltophilia > , and Variovorax paradoxus.

In fungal genera communities, the predominant genera 
in PPT (soil and maize-root) in the order of relative abun-
dance were Mortierella > , Spiromyces > , Bionectria > , 
Clitopilus > , Marasmius > , Trichoderma > , and Rami-
candelaber compared to that of Mono (soil and maize-
root) cropping system. Gibberella > , Similiphoma > , 
Neocosmospora > , Aspergillus > , and Psathyrella were 
more relatively abundant in the Mono cropping sys-
tem compared to that of PPT (Fig.  3; Additional file  1: 
Table  S5). Candenascus, Xepicula, and Chloridium had 
the same relative abundance in PPT and Mono cropping 
systems. However, the interaction between cropping sys-
tems (PPT and Mono) and sample types (PPT soil and 
PPT maize-root, and Mono soil and Mono maize-root) 
had varying effects on the impact of the fungal genera 
communities. Arachnion > , Bionectria > , Spiromyces > , 
and Trichoderma were more enriched in PPT soil, while 
Exophiala > , Marasmius > , and Poaceascoma were the 
most relatively abundant in PPT maize-root compared 
to Mono soil and Mono maize-root (Fig.  3; Additional 

Fig. 2 Relative abundance of bacterial genera found in push–pull and maize-monoculture cropping systems by; A Location, sample type, 
and cropping system; PR, push–pull root; PS, push–pull soil; MR, maize-monoculture root; MS, maize-monoculture soil; B Cropping system 
and sample type; Push soil (push–pull soil); Mono soil (maize-monoculture soil); Push root (push–pull root); Mono root (maize-monoculture root); 
(C) Cropping systems; Push (push–pull technology (soil + maize-root)); Mono (maize-monoculture cropping system (soil + maize-root)). Bacterial 
genera with lower than 1% relative abundances were grouped as ’Others’
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file  1: Table  S6). However, Aspergillus > , Condenasus > , 
Neocosmosphora > , Parafabraea > , and Xepicula were 
more abundant in Mono soil. At the same time, Curvu-
laria > , Psathyrella > , and Similiphoma were more rela-
tively abundant in Mono maize-root compared to PPT 
soil and PPT maize-root. The three study counties had 
varying effects on the impact of fungal genera commu-
nities (Additional file 1: Fig. S7; Table S7). However, the 
impact of the fungal genera was felt differently when PPT 
and Mono cropping systems interacted with the sam-
ple types, study locations, and cropping systems (Fig. 3; 
Additional file 1: Table S8).

In 90% of the sample ASVs, the most prevalent and dis-
tinguishing genera were present, each with a 75% prev-
alence in every ASV. A Venn diagram showed that PPT 
had one unique bacterial genus compared to the Mono 
cropping system, with three overlapping bacterial gen-
era shared between the two cropping systems. When 
we compared cropping systems, and sample types inter-
action, PPT soil and PPT maize-root, we found 18 and 
eight unique bacteria, respectively, in comparison to 
Mono soil and Mono maize-root, which had 11 and one 

bacterium taxon (Fig. 4). In terms of the studied counties, 
Bungoma and Vihiga each harbored two distinct bacte-
rial genera. In contrast, Siaya had only one unique bac-
teria genus. The PPT had seven individual taxa in fungal 
genera communities, while the Mono cropping system 
had six. Push–pull and Mono cropping systems shared 
11 overlapping fungal genera. Between sample and soil 
type, and cropping systems interaction, PPT soil and PPT 
maize-root had eight and one unique genus, respectively, 
compared to Mono soil and Mono maize-root, which had 
five and one genus (Fig.  5). In terms of study locations, 
Vihiga had six unique fungal genera compared to Bun-
goma and Siaya.

Alpha diversity of soil and maize‑root microbiomes in push–
pull and maize‑monoculture cropping system fields
There was no significant difference in bacterial com-
munities between PPT (soil + maize-root) and Mono 
(soil + maize-root) cropping systems in richness (Chao1 
estimator, P = 0.820) and evenness (Shannon index, 
P = 0.390) (Fig.  6). However, a significant difference was 
found in richness and evenness between cropping system, 

Fig. 3 Relative abundance of fungal genera found in push–pull and maize-monoculture cropping systems by; A Location, sample type, 
and cropping systems; PR, push–pull root; PS, push–pull soil; MR, maize-monoculture root; MS, maize-monoculture soil; B Cropping & sample type; 
Push soil, push–pull soil; Mono soil, maize-monoculture soil; Push root, push–pull root; Mono-root, maize-monoculture root; C Cropping systems; 
Push pull (soil + maize-root); monoculture (soil + maize-root). Fungal genera with relative abundances lower than 1% were grouped as ’Others’
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sample, and soil type interactions (Chao1 estimator, 
PPT-soil vs Mono-root P < 0.001; PPT-soil vs PPT-root 
P < 0.001; Mono-soil vs Mono-root P < 0.001; Shannon 
index, PPT-soil vs Mono-root P < 0.001; PPT-soil vs PPT-
root P < 0.001; Mono-soil vs Mono-root P < 0.001). There 
was no significant difference in richness and evenness 
between PPT and Mono-soil (Chao1 estimator, P = 0.730; 
Shannon index, P = 0.140). We observed no significant 
difference between the studied locations in richness and 
evenness (Chao1 estimator, Bungoma vs Vihiga P = 0.340; 
Bungoma vs Siaya P = 0.490; Vihiga vs Siaya P = 0.690; 
Shannon index, Bungoma vs Vihiga P = 0.180; Bungoma 
vs Siaya P = 0.570; Vihiga vs Siaya P = 0.370).

The fungal communities did not differ in richness 
(Chao1 estimator, P = 0.930) and evenness (Shannon 
index, P = 0.710) between PPT (soil + maize-root) and 
Mono (soil + maize-root) cropping systems (Fig.  7). 
However, there was a significant difference in the fun-
gal community in richness and evenness between crop-
ping systems, sample, and soil type interaction (Chao1 
estimator, PPT-soil vs PPT-root P < 0.001; PPT-soil vs 
Mono-root P < 0.001; Mono-soil vs Mono-root P < 0.001; 
Shannon index, PPT-soil vs PPT-root P < 0.001; PPT-
soil vs Mono-root P < 0.002; Mono-soil vs Mono-root 

P < 0.003). There was no significant difference between 
the cropping system, sample, and soil type interaction 
in richness (Chao1 estimator, PPT-soil vs Mono-soil 
P = 0.160 and Shannon index, PPT-soil vs Mono-soil 
P = 0.073). There was no significant effect in richness 
between studied locations (Chao1 estimator, Bungoma 
vs Siaya P = 0.180; Vihiga vs Siaya P = 0.560; except 
Bungoma vs Vihiga P = 0.034). There was a significant 
effect in evenness between studied locations (Shannon 
index, Bungoma vs Vihiga P = 0.056; Bungoma vs Siaya 
P = 0.050; except Vihiga vs Siaya P = 0.940).

Beta diversity and the influence of push–pull 
and maize‑monoculture cropping systems on soil 
and maize‑root microbial communities
The β-diversity of fungal and bacterial communities 
was compared between PPT and Mono cropping sys-
tems through visualization and quantification of soil 
and maize-root microbiomes community (bacterial and 
fungal) clustered by cropping systems (Figs.  8 and 9). 
Betadisper analyses revealed no significant differences 
in bacterial and fungal community structures across 
different cropping systems (P = 0.211 and P = 0.966, 
respectively), an indication of true biological difference 

Fig. 4 Bacterial genera shared between A Cropping systems and sample types; Mono-Root, maize-monoculture root; PPT-root, push–pull 
maize-root; Mono-soil, maize-monoculture soil; PPT-soil, push–pull soil; B Cropping systems; Push–pull, push–pull technology (soil + maize-root); 
Maize-monoculture (soil + maize-root); C Locations
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within-group dispersion. Betadisper analyses of micro-
bial communities across different studied locations 
revealed significant difference only in fungal communi-
ties (bacteria, P = 0.581; fungi, P = 0.001, respectively). 
However, when comparing sample types, betadisper 
results demonstrated significant differences in bacterial 
and fungal community dispersion (P = 0.001; P = 0.024, 
respectively). PERMANOVA analyses found signifi-
cant differences in microbial composition between the 
different sample types and studied locations that were 
conditioned by the two cropping systems (sample types 
and cropping systems of bacteria, R2 = 0.337, P < 0.001 
and fungi R2 = 0.160, P < 0.001; locations, sample types 
and cropping systems of bacteria R2 = 0.524, P < 0.001 
and fungi R2 = 0.352, P < 0.001; study locations of bac-
teria R2 = 0.071, P > 0.05 and fungi R2 = 0.991, P < 0.001; 
Additional file  1: Tables S9 (bacteria) and S10 (fungi)). 

However, there was no significant difference in the PPT 
and Mono cropping systems (bacteria R2 = 0.018, P > 0.05 
and fungi R2 = 0.032, P > 0.05; Additional file  1: Tables 
S9 (bacteria) and S10 (fungi)). The soil and maize-root 
bacterial communities of the sample type and cropping 
systems were distinctly separated along axis 1, and we 
observed a subtle clustering by PPT and Mono cropping 
systems and sample type along axis 2. The soil bacterial 
communities tended to group themselves through the 
intensity of sample type interaction (Fig. 8). A compara-
ble trend was observed in the soil and maize-root fungal 
communities (Fig. 9).

Differential expression of bacterial protein functions in soil 
and maize‑root
The prediction of sequences associated with signifi-
cant functional metabolic pathways in PPT and Mono 

Fig. 5 Fungal genera shared between A Cropping systems and sample types; Mono-Root, maize-monoculture root; PPT-root, push–pull 
maize-root; Mono-soil, maize-monoculture soil; PPT-soil, push–pull soil; B Cropping systems; Push–pull, push–pull technology (soil + maize-root); 
Maize-monoculture (soil + maize-root); C Locations
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cropping systems across different sample types and 
locations revealed the following six most abundant 
pathways: PWY-5695 (inosine 5-phosphate degrada-
tion), theocat-PWY (superpathway of L-threonine 
metabolism), gallate-degradation-I-PWY (gallate deg-
radation II), P221-PWY (octane oxidation), 3-hydroxy-
phenyllacetate-degradation, and biotin-biosynthesis 
PWY. Based on hierarchical clustering, the different 
cropping systems, sample types, and locations were 
grouped into two main clades. In the first clade, Bun-
goma push–pull soil (BPS), Siaya maize-monoculture 
soil (SMS), and Siaya push–pull soil (SPS) clustered 
together. Similarly, Bungoma maize-monoculture soil 
(BMS), Vihiga maize-monoculture soil (VMS), and 
Vihiga push–pull soil (VPS) formed another cluster. 
In the second clade, Bungoma maize-monoculture 
root (BMR) clustered separately, while Siaya maize-
monoculture root (SMR) and Siaya push–pull root 
(SPR) clustered together. Vihiga push–pull root (VPR), 

Bungoma push–pull root (BPR), and Vihiga maize-
monoculture root (VMR) were also grouped (Fig. 10).

Based on the prediction of sequences associated with 
major functional metabolic pathways, the ten most 
abundant pathways were identified in the two crop-
ping systems: PWY-5695 (inosine 5’-phosphate degra-
dation), theocat-PWY (superpathway of L-threonine 
metabolism), gallate-degradation-I-PWY (gallate deg-
radation II), lipasyn-PWY (phospholipases), P161-PWY 
(acetylene degradation (anaerobic)), PWY-5088 (L-glu-
tamate degradation VIII), lactosecat-PWY (lactose 
degradation I), homoser-metsyn-PWR (L-methionine 
biosynthesis I), PWY-6386 (syringate degradation), and 
P221-PWY (octane oxidation). Regarding the crop-
ping systems, two hierarchical clustering clades were 
observed. The first clade consisted of push–pull soil 
(PS) and maize-monoculture soil (MS), while the sec-
ond clade consisted of push–pull root (PR) and maize-
monoculture root (MR) (Fig. 11).

Fig. 6 Alpha diversity of bacterial communities at the genus level; A, E, I Location, sample type, and cropping systems; BPR, Bungoma push–
pull root; BPS, Bungoma push–pull soil; BMR, Bungoma maize-monoculture root; BMS, Bungoma maize-monoculture soil; SPR, Siaya push–pull 
maize-root; SPS, Siaya push–pull soil; SMR, Siaya maize-monoculture root; SMS, Siaya monoculture soil; VPR, Vihiga push–pull root; VPS, Vihiga 
push–pull soil; VMR, Vihiga maize-monoculture root; VMS, Vihiga maize-monoculture soil; B, F, J Cropping systems and sample type; PPT-soil, push–
pull soil; Mono-soil, maize-monoculture soil; PPT-root, push–pull root; Mono-root, maize-monoculture root; C, G, K Cropping systems; Push–Pull 
(soil + maize-root); Maize-monoculture (soil + maize-root); D, H, L Locations
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Discussion
The use of push–pull cropping system by small-scale 
farmers positively impacted soil physicochemical 
properties, as well as soil and maize-root microbial 
communities. The positive association of PPT was dem-
onstrated by the enhancement of soil OC, pH, P, N, and 
B. Additionally, the presence of ecologically important 
belowground microbial groups involved in soil fertility 
improvement, decomposition, siderophore production, 
high carbon sequestration, nutrient cycling, and plant 
protection in comparison to the Mono cropping sys-
tem further supported this positive association. These 
findings can be linked to agroecosystem functions and 
other ecosystem services, including soil health and 
maize yield. This section explores the contribution of 
PPT on belowground ecosystem services provision 
including soil physicochemical properties, microbiome 
relative abundance and diversity, shedding light on the 
system’s role and function in promoting sustainable 
maize production.

Effect of push–pull cropping system on soil 
physicochemical properties
Previously, multiple cropping systems have been shown 
to influence soil characteristics such as pH, organic car-
bon, and nitrogen compared to Mono [35, 53]. In this 
study, we found higher levels of pH, OC, N, and P in 
soil conditioned by PPT in comparison to the Mono 
cropping system. A pH below 5.5 can negatively affect 
plants and pose a significantly threat to the agroeco-
system [54]. Given that the pH in the PPT was higher 
than in Mono, we infer that PPT positively contributes 
to enhancing soil physicochemical properties and the 
overall soil health [3, 22]. Frac et al. [55] reported that 
biotic and abiotic factors, such as soil pH, structure, 
and nutrient levels, influence the diversity and activ-
ity of soil microbes. Our findings regarding the pos-
sible influence of cropping systems on both above and 
belowground abiotic and biotic factors align with the 
predictions by Drinkwater et  al. [3, 5, 54, 56, 57] that 
crop diversification significantly impacts belowground 

Fig. 7 Alpha diversity of fungal communities at the genus level; A, E, I Location, sample type, and cropping systems; BPR, Bungoma push–pull 
maize-root; BPS, Bungoma push–pull soil; BMR, Bungoma maize-monoculture root; BMS, Bungoma maize-monoculture soil; SPR, Siaya push–pull 
maize-root; SPS, Siaya push–pull soil; SMR, Siaya maize-monoculture root; SMS, Siaya maize-monoculture soil; VPR, Vihiga push–pull maize-root; VPS, 
Vihiga push–pull soil; VMR, Vihiga maize-monoculture root; VMS, Vihiga maize-monoculture soil; B, F, J Cropping systems and sample type; PPT-soil, 
push–pull soil; Mono-soil, maize-monoculture soil; PPT-root, push–pull root; Mono-root, maize-monoculture root; C, G, K Cropping systems; Push–
Pull (soil + maize-root); Maize-Monoculture (soil + maize-root); D, H, L Locations
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microbiomes, plant, and soil health, as well as overall 
productivity.

Impact of push–pull cropping system on soil 
and maize‑root bacterial community
There is growing evidence suggesting that plant diversi-
fication impact belowground microbiomes [6, 12, 58]. 
This study found that PPT cropping systems led to a 
higher diversity of soil bacterial communities compared 
to that of the Mono cropping system soil. Notably, the 
high relative abundances of beneficial bacterial genera 
such as Sphingomonas, Bacillus, Enterobacter, RB41, 
Herbaspirillum, Nocardioides, Mitsuaria, Gaiella, Nitro-
spira, Burkholderia-Caballeronia-Paraburkholderia, 
Dyella, Enterobacter, and Conexibacter in both the soil 
and maize-root of PPT systems indicate that PPT favors 
the proliferation of beneficial bacteria, which improve 
crop performance and possibly contribute to pest man-
agement. Herbaspirillum is a nitrogen-fixing endophytic 
bacterium that colonizes plant roots and has been shown 
to positively impact plant growth, and crop yield [59]. 

Additionally, Bacillus and Enterobacter bacterial gen-
era are potential biofertilizer agents due to their abil-
ity to solubilize inorganic phosphate, fix nitrogen, act as 
biological control agents, carry out bioremediation, and 
promote plant growth [60, 61]. Sphingomonas, Gaiella, 
and Dyella play a vital role in promoting plant growth 
by producing phytohormones and/or inducing changes 
in phytohormone signalling through volatile organic 
compound (VOCs), decomposition of lignocellulose, 
bioremediation of hydrocarbon-contaminated soil, and 
nutrient cycling in agroecosystem fields [62–64]. Addi-
tionally, Sphingomonas possesses distinctive capabilities, 
including the degradation of persistent contaminants, 
acting as bacterial antagonists to phytopathogenic fungi, 
and secreting highly beneficial gellan exopolysaccharides 
[65]. RB41 plays a critical role in regulating the soil car-
bon cycle and is involved in processing the metabolism of 
both organic and inorganic nitrogen sources [30, 35, 61]. 
Furthermore, according to Huang et al. [66], Burkholde-
ria and Mitsuaria genera have a beneficial impact on 
drought resistance in plants. These bacteria accomplish 

Fig. 8 Beta diversity of bacterial communities at the genus level; A Location, sample type, and cropping systems; BPR, Bungoma push–pull root; 
BPS, Bungoma push–pull soil; BMR, Bungoma maize-monoculture root; BMS, Bungoma maize-monoculture soil; SPR, Siaya push–pull root; SPS, 
Siaya push–pull soil; SMR, Siaya maize-monoculture root; SMS, Siaya maize-monoculture soil; VPR, Vihiga push–pull root; VPS, Vihiga push–pull soil; 
VMR, Vihiga maize-monoculture root; VMS, Vihiga maize-monoculture soil; B Cropping systems and sample type; PPT-soil, push–pull soil; Mono-soil, 
maize-monoculture soil; PPT-root, push–pull root; Mono-root, maize-monoculture root; C Cropping systems; Push–Pull (soil + maize-root); 
Maize-Monoculture (soil + maize-root); D Locations
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this by reducing the levels of ethylene, a plant hormone, 
and producing 1-aminocyclopropane-1-carboxylic acid. 
Brewer et  al. [67] stated that Candidatus Udaeobacter 
contributes to global hydrogen cycling by utilizing  H2. 
Lazcano et al. [68] found that Nocardioides spp. can act 
as biocontrol agents for bacterial leaf spots and promote 
plant growth.

Soil and maize-root from PPT had a greater rela-
tive abundance of Streptomyces and Stenotrophomonas, 
which possess broad biotechnological potential, such as 
the ability to promote plant growth, production of bio-
active secondary metabolites, VOCs, and are promising 
candidates for biocontrol of phytopathogenic microbes 

[69]. These characteristics may be attributed to their 
multiplication rate, ability to produce antibiotics and 
siderophores, controlled gene expression quorum detec-
tion, and synthesis of lipase, chitinase, cellulases, phy-
tohormones, β-1,3-glucanase, and amino acids [70]. 
Streptomyces spp. can colonize plant root surfaces, sur-
vive in various soil types, and produce spores that allow 
them to persist in extreme conditions. Stenotrophomonas 
is a potential biocontrol agent against Ralstonia [71, 
72]. The presence of these bacterial genera in PPT soils 
and maize-roots implies that PPT positively influences 
belowground microbial populations compared to that of 
Mono. Similar findings have been observed in various 

Fig. 9 Beta diversity of fungal communities at the genus level; A Location, sample type, and cropping system; BPR, Bungoma push–pull root; BPS, 
Bungoma push–pull soil; BMR, Bungoma maize-monoculture root; BMS, Bungoma maize-monoculture soil; SPR, Siaya push–pull root; SPS, Siaya 
push–pull soil; SMR, Siaya maize-monoculture root; SMS, Siaya maize-monoculture soil; VPR, Vihiga push–pull maize-root; VPS, Vihiga push–pull soil; 
VMR, Vihiga maize-monoculture root; VMS, Vihiga maize-monoculture soil; B Cropping systems and sample type; PPT-soil, push–pull soil; Mono-soil, 
maize-monoculture soil; PPT-root, push–pull root; Mono-root, maize-monoculture root; C Cropping systems; Push–Pull (soil + maize-root); 
Maize-Monoculture (soil + maize-root); D Locations
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other cropping systems, including long-term intercrop-
ping systems, push–pull experimental plots, multiple 
cropping systems, crop rotation, and cover cropping [7, 
8, 31, 58]. Nitrospira, which are capable of carrying out 
nitrification through oxidation of ammonia involving a 
single organism as opposed to other nitrifying bacteria, 
which require two different organisms to complete the 
process [3, 7, 73] were enriched in PPT. These findings 
imply that PPT influences maize-root microbial popula-
tions compared to Mono-root and affects maize-root and 
soil microbial communities. We also found that the pres-
ence of companion crops in a push–pull cropping sys-
tem had a greater impact on PPT maize-root microbiota 
such as Streptomyces, Herbasoirillum, Stenotrophomonas, 
Sphingomonas, Allorhizobium-Neorhizobium-Pararhizo-
bium-Rhizobium, and Dyella compared to Mono-root 
cropping system. The presence of these beneficial bac-
teria in the push–pull maize-root may positively con-
tribute to an increase in nitrogen nutrients, carbon 
sequestration, and biocontrol agent against plant patho-
gens. This, in turn, can results in improved plant growth 
due to plant growth-promoting rhizobacterial (PGPR) 

and siderophores availability, which facilitates iron con-
tent in soil and plants from the PPT field. This may lead 
to higher crop yields in PPT fields compared to that of 
Mono fields. To better understand the role of different 
bacterial and fungal species, including those within the 
same genus, in this cropping system, it is necessary to 
perform species-level characterization. The finding that 
Bryobacter, a disease-causing bacterial genus, was more 
abundant in Mono than in the PPT cropping system 
shows that Mono cropping systems potentially predis-
pose crops to disease-causing agents.

The high relative abundance of beneficial bacterial 
species, including Rhizobium phaseoli, Bacillus flexus, 
Bradyrhizobium elkanii, Paraburkholderia vietnamiensis, 
Dyella marensis, Enterobacter hormaechei, Herbaspiril-
lum seropedicae, Pseudomonas nitroreducens, Ralstonia 
pickettii, Sphingomonas paucimobilis, Stenotrophomonas 
maltophilia, and Variovorax paradoxus, in both the soil 
and maize-roots within the push–pull cropping sys-
tems indicates that this system promotes the prolifera-
tion of bacteria that enhance crop performance, improve 
soil health, water purification, and plant growth, and 

Fig. 10 The normalized relative abundance of predicted functional categories in bacterial communities across various cropping systems, sample 
types, and locations: BPS, Bungoma push–pull soil; SMS, Siaya maize-monoculture soil; SPS, Siaya push–pull soil; BMS, Bungoma maize-monoculture 
soil; VMS, Vihiga maize-monoculture soil; VPS, Vihiga push–pull soil; BMR, Bungoma maize-monoculture root; SMR, Siaya maize-monoculture root; 
SPR, Siaya push–pull maize-root; VPR, Vihiga push–pull maize-root; BPR, Bungoma push–pull maize-root; VMR, Vihiga maize-monoculture root. 
Pathways correlation is indicated within the range of -2, and + 2 in different cropping systems. The colors red, black, and green represent negative, 
zero, and positive correlations
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potentially contribute to insect-pests and disease man-
agement. Interestingly, Bacillus flexus possesses the abil-
ity to solubilize tricalcium phosphate and hydroxyapatite, 
making it valuable for biodegradation processes [74, 75]. 
Bradyrhizobium elkanii produces rhizobitoxine, which 
acts as a defense mechanism against stress-induced eth-
ylene and plays a significant role in nitrogen fixation [76]. 
Variovorax paradoxus and Pseudomonas aeruginosa can 
degrade and/or metabolize N-acyl-homoserine lactones 
(AHLs) as a carbon source [77]. Chen et al. [78] demon-
strated the importance of the complete ethylene signal 
transduction pathway in enhancing Arabidopsis thali-
ana growth through the PGPR, Variovorax paradoxus, 
underscoring the significance of ethylene signalling 
PGPR activity. Stenotrophomonas maltophilia contrib-
utes to bioremediation and nitrogen fixation processes. 
Interestingly, it contributes to the sulfur cycle and pro-
motes plant growth and health in ecosystems [72, 79]. 
Sphingomonas paucimobilis enhances antioxidant activ-
ity, promotes plant growth, and exhibits biodegradation 
capabilities [80, 81]. Ralstonia pickettii demonstrates 
biodegradative abilities through siderophore production, 
while Pseudomonas nitroreducens produce biosurfactants 
and solubilizes phosphate [82–84]. Herbaspirillum 

seropedicae, an endophytic diazotrophic PGPR, colonizes 
various crops (rice, maize, sorghum, and sugarcane) and 
exhibits beneficial traits such as solubilization of min-
erals, production of phytohormones, and atmospheric 
nitrogen fixation [85, 86]. Enterobacter hormaechei has 
been identified as a potassium solubilizing microbe, 
showing potential for plant growth and controlling harm-
ful algal blooms [87–90]. Dyella marensis produces bio-
surfactants and siderophores, while Paraburkholderia 
vietnamiensis and Rhizobium phaseoli have shown prom-
ise as nitrogen-fixing fertilizers for plant growth [91–93].

Impact of push–pull cropping system on soil 
and maize‑root mycobiome
Push–pull cropping system decreased the number of 
harmful fungal genera. Contrarily, it increased the pres-
ence and relative abundance of beneficial belowground 
fungal genera, such as Mortieralla, Exophiala, Para-
boeremia, Bionectria, Clitopilus, Marasmius, Pyreno-
chaetopsis, and Trichoderma compared to the Mono 
cropping system. These findings align with previous 
studies which have demonstrated crop diversifica-
tion enhance beneficial fungi with a positive impact on 
agroecosystem productivity [3, 6, 94, 95]. For example, 

Fig. 11 Normalized relative abundance of predicted functional categories in bacterial communities across various cropping systems and sample 
types: PS, push–pull soil; MS, maize-monoculture soil; PR, push–pull maize-root; and MR, maize-monoculture root. Pathways correlation is indicated 
within the range of -2, and + 2 in different cropping systems. The colors red, black, and green represent negative, zero, and positive correlations
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Mortierella spp. has been shown to solubilize phosphate, 
improve nutrient uptake, and influence soil microbiota, 
synthesize phytohormones that support plant growth 
and defense mechanisms [74]. Enriched in PPT, Mor-
tierella and Pyrenochaetopsis spp. are important indi-
cators of soil-root microbiome continuum, enhancing 
crop yield, disease resistance, and salinity tolerance in 
tomatoes [90]. Exophiala spp. which was enriched in 
PPT, has been observed to produce phytohormones and 
enzymes, promoting plant shoot growth under drought 
and salinity conditions [15]. Paraboeremia spp. has been 
demonstrated to increase plant biomass and glycyr-
rhizin content in Liquorice plants [96], and it can para-
sitize eggs of the rice root-knot nematode, Meloidogyne 
graminicola, in in-vitro assays [27, 97]. Bionectria spp. 
has been shown to decompose plant debris, improve soil 
health, and act as biological control agents against insect-
pests [98]. The volatile antimicrobial compounds pro-
duced by this fungus suppress plant pathogens and could 
be used as an effective biofumigant [99, 100]. Clitopilus 
spp. produces pleuromutilin, a biologically active com-
pound with potent antimicrobial activity and the ability 
to increase plant growth through facilitative potassium 
uptake [101, 102]. Trichoderma spp. found enriched in 
PPT, is associated with colonizing the rhizoplane, rhizo-
sphere, and plant roots, and produces metabolites with 
antimicrobial (volatile and non-volatile compounds, cel-
lulose/lignin/cell wall degrading enzymes and antibiot-
ics) and biostimulating properties (phytohormones and 
phytoregulators) [98, 103]. This fungus has direct and 
indirect biocontrol potential against soil phytopatho-
gens, increases nutrient solubility, and contributes to 
plant protection, crop yield, and biofertilization produc-
tion [104, 105]. Fungal spp. belonging to Ramicandelaber 
and Robillarda have been reported as decomposers, with 
Robillarda producing β-1,3/1,4-glucans that contribute 
to disease resistance in plants [106, 107]. While harmful 
fungal genera such as Aspergillus, Gibberalla, Neocosmo-
pora, and Curvularia were found to be more enriched in 
the Mono cropping system compared to that of PPT, it is 
important to note that not all species within these genera 
are harmful. Some species within these genera also exist 
as endophytes. However, some produce toxins; for exam-
ple, Zearalenone, an estrogenic mycotoxin that is pro-
duced by Gibberella spp. causes Gibberella ear rot (GER) 
in crops like maize, oats, wheat, sorghum, rice, and barley 
[33, 94, 108]. Neocosmospora, identified as a phytopatho-
gen causing stem rot, adversely affects potato growth and 
yields, leading to economic losses due to stunted growth, 
leaf yellowing, and grayish-black stems [109]. Fungal spp. 
belonging to Curvularia, poses a threat to cereal crops, 
causing economically burdensome Curvularia leaf spots 
in maize [110, 111]. Similarly, mycotoxin producing 

species like Aspergillus, infect various fruits, cereal, and 
vegetable plants, causing several disorders, reducing seed 
germination, and impairing root and shoot elongation 
[32, 112].

Diversity of soil and maize‑root microbiome in push–pull 
and maize‑monoculture cropping systems
While annual legume intercropping may temporarily 
affect belowground microbiome profiles, the impact of 
perennial companion intercrop, such as Desmodium spp. 
is expected to be stronger and more resilient, contribut-
ing to increased soil and maize-root microbial diversity 
[3, 7, 113]. Hence, we argue that the higher beta diver-
sity of microbial communities in long-term push–pull 
compared to Mono cropping systems, in both soil and 
maize-root bacterial and fungal populations, could result 
from the baseline differences between the two cropping 
systems. These differences include factors such as a com-
panion crop like Desmodium spp. which likely contrib-
utes to a more diverse and resilient microbial community. 
This underscores the potential benefits of incorporating 
companion crops in agroecosystems to enhance below-
ground microbial communities. Similar trends have been 
reported in other studies investigating cereal and legume 
intercropping systems, such as wheat-soybean, millet-
mung bean, and maize/wheat-faba bean; push–pull 
on-station experimental plots [7, 11, 57, 114]. Crop diver-
sification, aimed at improving food security, soil fertility, 
and/or controlling insect-pests through push–pull strat-
egies or maize-legume intercropping systems [3, 5, 10, 
17], has demonstrated additional benefits, including the 
suppression of parasitic weeds like Striga spp. increased 
soil nitrogen and carbon content, and reduction of myco-
toxin incidence in maize [21–23]. The current study con-
tributes to these benefits by highlighting diversification 
of soil and maize-root microbial communities, particu-
larly emphasizing a significant positive shift in ecologi-
cally important bacterial and fungal genera. Ecosystem 
diversity is generally recognized to enhance stability, 
resilience, and productivity, primarily due to resource 
complementarity and functional redundancy. These 
findings underscore the importance of promoting crop 
diversification, like push–pull, to cultivate a balanced and 
resilient beneficial microbiome in agricultural ecosys-
tems, mitigating risks associated with Mono cropping.

Microbiome functional protein pathways
The study focused on differential expression of micro-
bial protein function in push–pull cropping systems. It 
identified crucial pathways, such as inosine 5’-phosphate 
degradation (PWY-5695), theocat-PWY (L-threonine 
metabolism), gallate-degradation-I-PWY (gallate deg-
radation II), lipasyn-PWY (phospholipases), P161-PWY 
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(acetylene degradation, anaerobic), PWY-5088 (L-glu-
tamate degradation VIII), lactosecat-PWY (lactose 
degradation I), homoser-metsy n-PWR (L-methionine 
biosynthesis I), PWY-6386 (syringate degradation), cat-
echol degradation II (meta-cleavage pathway), and P221-
PWY (octane oxidation) most of which were enhanced in 
PPT. These pathways contribute to soil–plant biochemi-
cal processes, plant growth, nitrogen fixation, stress, and 
disease resistance, climate change effects, and root archi-
tecture modulation [59, 115–117].

Nitrogenase is crucial for converting atmospheric 
nitrogen into ammonia, meeting the plant’s nitrogen 
requirements, and promoting plant growth. Inosine 
5’-phosphate degradation pathways are involved in nitro-
gen fixation, where bacteria generate ammonia, essen-
tial for purine synthesis during nitrogen fixation in plant 
roots [118, 119]. Zahid et  al. [60] reported that aerobic 
bacteria utilize acetylene for plant growth and nitrogen 
fixation. Gallate degradation II pathways contribute to 
the breakdown of plant lignin and tannins in the carbon 
cycle [117]. Phospholipases act as crucial second messen-
gers in plant signal transduction during growth, devel-
opment, and stress responses [120]. The meta-cleavage 
pathway is essential for the degradation of aromatic 
compounds and has been observed in bacterial genera 
like Azotobacter, Ralstonia, and Pseudomonas [115, 116]. 
Pseudomonas simiae WCS417r induce resistance against 
pathogens [121, 122], while Bacillus subtilis S499 pro-
vides ISR-mediated protection to tomato plants against 
Botrytis cinerea [123]. L-glutamate degradation VIII 
pathway plays a role in nutrient foraging and shaping root 
architecture in soil environments, like the plant growth 
regulator auxin (indole-3-acetic acid, IAA) [123, 124]. 
Notably, L-methionine biosynthesis positively influences 
maize and tomato plant growth [125, 126]. The syringate 
degradation pathway enables microbes to utilize lignin-
derived compounds. Lignin is broken down into biaryl 
and monoaryl compounds such as Biphenyl, ferulate, 
vanillate, and syringate. Microbes like Sphingomonas 
spp. SYK6 can use guaiacyl and syringyl moieties derived 
from lignin to degrade them into vanillate and syringate 
[127]. Further research is necessary to investigate the 
influence of soil microorganisms on soil physicochemical 
properties, plant mineral nutrients, and bacterial protein 
activities, especially in perennial intercropping scenarios.

Conclusion
The study demonstrated that the PPT cropping sys-
tem greatly influenced soil characteristics such as pH, 
P, N, and soil organic carbon content compared to the 
Mono cropping system. It further revealed that the PPT 
cropping system shifts belowground soil and maize-
root microbiome composition compared to the Mono 

cropping system. The microbial communities enriched 
in both soil and maize-root by the PPT belong to gen-
era and species associated with essential ecosystem ser-
vices such as soil fertility enhancement, organic matter 
decomposition, carbon sequestration, plant protec-
tion, and human safety. This enrichment contributes 
to the diversification of ecosystem services provided 
by the cropping system in farmer fields, enhancing the 
system’s resilience and functional redundancy. Fur-
ther research is needed to assess which specific soil 
and maize-root microorganisms are strongly impacted 
by the cropping system, their role in aboveground tri-
trophic interactions, and their influence on enzymatic 
activity and nutrient accessibility in farmer fields where 
this cropping system is practiced. Additionally, explor-
ing the impact of Desmodium root exudates on the 
belowground microbiome and their interactions with 
maize-root and soil organisms are crucial for gaining a 
comprehensive understanding of the ecological dynam-
ics within the cropping system.
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