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Abstract
Background Oral microbiome dysbacteriosis has been reported to be associated with the pathogenesis of advanced 
esophageal cancer. However, few studies investigated the potential role of oral and gastric microbiota in early-stage 
intramucosal esophageal squamous carcinoma (EIESC).

Method A total of 104 samples were collected from 31 patients with EIESC and 21 healthy controls. The 
compositions of oral and gastric microbiota were analyzed using 16 S rRNA V3-V4 amplicon sequencing. Linear 
discriminant analysis effect size (LEfSe) analysis was performed to assess taxonomic differences between groups. 
The correlation between oral microbiota and clinicopathological factors was evaluated using Spearman correlation 
analysis. Additionally, co-occurrence networks were established and random forest models were utilized to identify 
significant microbial biomarkers for distinguishing between the EIESC and control groups.

Results A total of 292 oral genera and 223 species were identified in both EIESC and healthy controls. Six oral 
genera were remarkably enriched in EIESC groups, including the genera Porphyromonas, Shigella, Subdoligranulum, 
Leptotrichia, Paludibacter, and Odoribacter. LEfSe analysis identified genera Porphyromonas and Leptotrichia with 
LDA scores > 3. In the random forest model, Porphyromonas endodontalis ranked the top microbial biomarker to 
differentiate EIESC from controls. The elimination rate of Porphyromonas endodontalis from the oral cavity to the 
stomach was also dramatically decreased in the EIESC group than controls. In the microbial co-occurrence network, 
Porphyromonas endodontalis was positively correlated with Prevotella tannerae and Prevotella intermedia and was 
negatively correlated with Veillonella dispar.

Conclusion Our study potentially indicates that the dysbacteriosis of both the oral and gastric microbiome 
was associated with EIESC. Larger scale studies and experimental animal models are urgently needed to confirm 
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Introduction
Esophageal cancer is a prevalent form of cancer glob-
ally, ranking as the seventh most common type and the 
sixth leading cause of cancer-related deaths [1]. The two 
primary histological subtypes of esophageal cancer are 
squamous cell carcinoma and adenocarcinoma [2, 3]. 
Squamous cell carcinoma accounts for up to 85% of all 
esophageal cancer cases [4]. There are notable regional 
variations in the incidence of the two subtypes. Squa-
mous cell carcinoma is more frequently observed in 
East, Central, and Western Asia, as well as South Africa 
[5, 6], whereas adenocarcinoma has a higher prevalence 
in several developed countries in Northern Europe and 
North America [6, 7]. The reason for distribution dif-
ference is often attributed to the distinct etiology of the 
two subtypes. The risk factors associated with squamous 
cell carcinoma include smoking, alcohol consumption, 
low intake of fruits and vegetables, and consumption of 
hot beverages [8]. On the other hand, adenocarcinoma 
is more commonly linked to excess body weight, gastro-
esophageal reflux disease, and Barrett’s esophagus [9]. In 
recent years, there has been an increasing focus on the 
role of digestive tract microecological disorders, in addi-
tion to the aforementioned lifestyle habits and patho-
physiology, in the incidence of esophageal cancer.

The esophagus, which serves as a connection between 
the mouth and stomach, is significantly affected by the 
microbiome of both these regions [10]. Several publica-
tions have indicated a potential correlation between oral 
or gastric microflora and esophageal cancer. A case-con-
trol study conducted in China compared the oral micro-
biota of patients diagnosed with esophageal cancer and 
healthy volunteers [11]. The study found that patients 
with esophageal cancer had an enrichment of Prevotella 
and Veillonellaceae, as well as a depletion of Neisse-
ria. However, it is important to note that the study did 
not provide any description of the pathological type of 
esophageal cancer. In a separate study by Liu et al. [12], 
it was reported that the genera Streptococcus and Pre-
votella are associated with the prognosis of esophageal 
squamous cell carcinoma. However, this study did not 
include a control group for comparison. Peters et al. [13] 
conducted a nested case-control study in the American 
population and found a unique composition of the oral 
microbiome in both esophageal adenocarcinoma and 
squamous cell carcinoma. They observed the enrich-
ment of Tanneria forsythiae and depletion of Neisseria 
symbionis and Streptococcus pneumoniae in patients with 

esophageal adenocarcinoma. On the other hand, patients 
with esophageal squamous cell carcinoma showed an 
enrichment of Porphyromonas gingivalis. Another obser-
vational study conducted in Iran also revealed that the 
abundance of Clostridium difficile and erysipelas in the 
stomach was associated with esophageal squamous cell 
dysplasia and carcinoma [14].

Although previous studies have examined the rela-
tionship between gastrointestinal flora and advanced 
esophageal cancer, there is a lack of research specifically 
focusing on the association of oral microbiota with early-
stage esophageal cancer, particularly early-stage intramu-
cosal esophageal squamous cell carcinoma (EIESC). 
EIESC refers to esophageal squamous cell carcinoma that 
is confined to the mucosa, with invasion into the sur-
rounding lamina propria and muscularis mucosa, while 
sparing the submucosa [15]. EIESC often goes unnoticed 
during white-light endoscopy and can progress to inva-
sive tumors. Currently, the gold standard for diagnosing 
EIESC is endoscopy with tissue biopsy, which is an inva-
sive procedure [16]. However, esophageal biopsy may 
sometimes not accurately identify EIESC due to the lim-
ited area of cancerous tissue. Consequently, patients may 
require ongoing endoscopic follow-up, which can lead to 
a higher social and economic burden. Non-invasive bio-
markers for detecting EIESC are still lacking. Addition-
ally, the potential interactions between the microbiome 
in different parts of the gastrointestinal tract in relation 
to esophageal cancer are not fully understood. Therefore, 
this study aims to investigate the correlation between 
early esophageal squamous cell carcinoma and the oral 
and stomach microflora, as well as explore the interac-
tions between these two microbiomes. The study also 
aims to identify potential microbial biomarkers for pre-
dicting early esophageal squamous cell carcinoma.

Method
Study design
A case-control study was performed in the First Affili-
ated Hospital of Nanjing Medical University, a tertiary 
care university medical center. Patients pathologically 
diagnosed with EIESC after receiving endoscopic sub-
mucosal dissection (ESD) were consecutively enrolled 
between September 2022 and January 2023. Inclusion 
criteria were: (1) histopathological diagnosis of EIESC on 
ESD specimens; (2) pT1 stage carcinoma (no tumor inva-
sion beyond the mucous layer); (3) no history of previ-
ous malignancies and anticancer therapies; (4) patients 

the possible role of microbial dysbacteriosis in the pathogenesis of EIESC. (Chinese Clinical Trial Registry Center, 
ChiCTR2200063464, Registered 07 September 2022, https://www.chictr.org.cn/showproj.html?proj=178563)
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who agreed to provide saliva and gastric biopsy samples 
for the study. Exclusion criteria: (1) pathological diagno-
sis of adenocarcinoma or other histopathological types; 
(2) mixed type of esophageal cancer; (3) tumor with the 
undefined pathological origin and metastatic cancer; (4) 
patients younger than 18 years; (5) a history of infection 
and antibiotics or probiotics use during the past four 
weeks before admission; (6) current or previous history 
of Helicobacter pylori infection confirmed by the carbon 
urea breath test; (7) previous medical history of hema-
tologic or rheumatic autoimmune disease; (8) acute or 
chronic infections during hospitalization; (9) a previous 
aspirin or warfarin-taken history. Written informed con-
sent was obtained from each enrolled patient for collect-
ing the saliva and gastric biopsy samples and obtaining 
relevant medical information during hospitalization. The 
control group consisted of individuals who underwent 
upper gastrointestinal endoscopy at the outpatient center 
between September 2022 and January 2023. No obvious 
abnormalities were observed under endoscopy in these 
individuals. They voluntarily provided saliva and gas-
tric biopsy samples for the study. Exclusion criteria for 
the control group included: (1) presence of endoscopi-
cally-reported lesions such as atrophic gastritis, reflux 
esophagitis, upper gastrointestinal tumors, dysplasia, 
ulcers, erosion, and submucosal lesions; (2) individuals 
who refused to provide saliva and gastric biopsy sam-
ples;(3) individuals under 18 years of age; (4) history of 
infection and use of antibiotics or probiotics in the four 
weeks prior to admission; (5) current or previous history 
of Helicobacter pylori infection confirmed by the carbon 
urea breath test; (6) previous medical history of atro-
phic gastric, inflammatory bowel diseases, hematologic 
or rheumatic autoimmune disease; (7) acute or chronic 
infections; (8) previous use of aspirin or warfarin.

The 8th edition AJCC/UICC staging system of esopha-
geal cancer was applied [17]. Tumor sizes were deter-
mined as the maximum diameter in two dimensions, 
measured by Vernier calipers. Histologic grade was cat-
egorized as well-differentiated (G1), moderately differen-
tiated (G2) and poorly differentiated (G3). Macroscopic 
tumor type was classified using the 2016 Japanese Clas-
sification of Esophageal Cancer, 11th.

Edition [18]. MedCalc (Version 20.100t) was used to 
calculate the sample size. The parameters were set as fol-
lows: the ROC curve (AUC) at the 0.05 alpha level, the 
0.1 beta level (power is 90%), the expected AUC was 0.8, 
and the null hypothesis value was set to 0.5. The mini-
mum sample size required for each group was 17. The 
study was approved by the Institutional Ethics Commit-
tee of the First Affiliated Hospital of Nanjing Medical 
University and was then registered in the Chinese Clini-
cal Trial Registry center (www.chictr.org.cn; registration 
no. ChiCTR2200063464).

Saliva sample collection
The saliva samples were collected from eligible patients 
using the Navazesh method [19]. Prior to the collection 
procedure, patients were instructed to rinse their mouths 
thoroughly with deionized water 30  min beforehand. 
They were then asked to sit comfortably for 5  min and 
minimize orofacial movements. The saliva (2 ml) was col-
lected from the bottom of the mouth and patients were 
instructed to spit it into a sterile saliva collection tube 
(43,805, Shanghai Xiyan Technology Co., Ltd.) every 
60 s. Each sample was mixed thoroughly and centrifuged 
(3000 g at 4℃) for 10 min. The supernatant (500ul) was 
extracted into a sterile freezing vial (V9255, Germany 
Merck Group Co., Ltd.) and immediately transferred 
to liquid nitrogen. Finally, the samples were stored in a 
refrigerator at -80℃.

Gastric biopsy sample collection
Gastric biopsy tissues were collected from each patient 
during the esophageal ESD procedure. Prior to the inva-
sive steps of ESD, which included marking and submuco-
sal injection, two pieces of biopsies were obtained from 
the gastric antrum using disposable sterile endoscopic 
biopsy forceps (MTN-BF-23/16-A-C, Nanjing Micro-
Tech Co., Ltd). The collected tissues were then placed 
into sterile freezing vials (V9255, Germany Merck Group 
Co., Ltd.) and immediately transferred to liquid nitro-
gen for storage in a refrigerator at -80 ℃. The biopsy tis-
sues were disrupted by bead-beating after digestion with 
a mutanolysin and lysozyme enzyme cocktail (Sigma), 
according to cetyltrimethylammonium bromide (CTAB) 
based protocol [20].

DNA extraction and 16 S rRNA gene sequencing
Microbial genomic DNA was extracted using the CTAB 
Method and stored at -20  °C. The V3-V4 hypervariable 
regions, approximately 468 bp in length, were amplified 
by polymerase chain reaction (Primers: 338  F (5′- A C T 
C C T A C G G G A G G C A G C A-3′) and 806R (5′-GGAC-
TACHVGGGTWTCTAAT-3′). PCR samples were 
quantified using the Quant-it PicoGreen dsDNA Assay 
Kit on a Microplate reader (BioTek, FLx800) and mixed 
based on the amount of data for each sample. DNA 
library construction was performed using the TruSeq 
Nano DNA LT Library Prep Kit (Illumina Scientific 
Co., Ltd). The quantity and quality of each library were 
measured using the Quant-iT PicoGreen dsDNA Assay 
Kit and Agilent High Sensitivity DNA Kit, respectively. 
For qualified libraries, the NovaSeq 6000 SP Reagent 
Kit (500 cycles) on the Illumina NovaSeq machine was 
used for 2 × 250  bp double-ended sequencing. Raw data 
from the 16s rRNA sequence was processed by Person-
albio Technology Co., Ltd. (Shanghai, China). Amplicon 
sequence variants (ASVs) were integrated into merged 
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taxonomic abundance and taxonomy classification 
tables. All amplicon raw data have been submitted to the 
Sequence Read Archive (SRA) in NCBI (Archive number: 
PRJNA961904).

Statistical analysis
Statistical analysis was conducted using R software (ver-
sion 4.1.0, http://www.Rproject.org/). Normality test 
were applied by Shapiro-Wilk and Kolmogorov-Smirnov 
test. Data with normal distribution were considered if 
the p-value is less than 0.05 and is presented as mean 
and Standard Deviation, and data with non-normal dis-
tribution were presented as median with Interquartile 
Range (Q). Wilcoxon Mann‒Whitney test was performed 
for unpaired data with a non-normal distribution, while 
the Wilcoxon signed-rank test was performed for paired 
data. Pearson chi-square test was used to compare cat-
egorical variables with no more than 20% of cells with 
expected frequencies < 5, and Fisher’s exact test was used 
if > 20% of expected cell counts are less than 5.

Analysis of microbial diversity
The Chao1, Shannon, and Simpson indices were applied 
to evaluate the alpha diversity of microbial communities 
using QIIME2 (2019.4) platform (https://docs.qiime2.
org/2019.4/) and ggplot2 R package (https://cran.r-proj-
ect.org/web/packages/ggplot2/). The alpha-rarefaction 
curve was generated using the QIIME2 (2019.4) platform 
(https://docs.qiime2.org/2019.4/). Beta-diversity was 
visualized using the unconstrained principal coordinate 
analyses (PCoA) scatter plots via calculating Bray-Cur-
tis distances. An upset plot was using UpSetR package 
(https://cran.r-project.org/web/packages/UpSetR/) to 
identify unique and common OTUs.

Differential analysis of microbial compositions
The pairwise differential analysis was performed using 
the Mann-Whitney U test. Multiple comparisons were 
performed using the Kruskal-Wallis test. The volcano 
plot was generated using the ggrepel and ggplot2 R pack-
ages (https://cran.r-project.org/web/packages/ggplot2/). 
The manhattan plot was generated using metageno-
meSeq and ggplot2 packages. Linear discriminant anal-
ysis effect size (LEfSe) was calculated with the online 
website (http://huttenhower.sph.harvard.edu/galaxy) to 
determine significant biomarkers for differentiating CRC 
and control samples [21]. The cutoff value was defined if 
the linear discriminant analysis (LDA) score was more 
than 2.0 and P < 0.05. The random forest model [22] was 
built using the randomForest and pROC package. The 
predictive performance was optimized by selecting spe-
cies that displayed the best discriminatory power.

Microbial interaction with clinicopathological factors
The Spearman correlation analysis was performed and 
visualized in R using the package corrplot, ggcor, ggplot2, 
and pheatmap packages. Mantel analysis was also per-
formed to investigate the relationship of significantly dif-
ferent microbes/metabolites with clinical characteristics 
of mice, using the R packages of LinkET [23].

Co‑occurrence network
A correlation matrix was developed by calculating the 
pairwise Spearman’s rank correlations in all EIESC saliva 
or gastric biopsy samples. A correlation between two 
microbes was considered statistically robust if Spear-
man’s correlation coefficient was > 0.6 and the p-value 
was < 0.01 [24]. To reduce the chances of obtaining false-
positive results, the p-values were adjusted using the 
Benjamini–Hochberg method. The molecular ecological 
network analyses (MENA) were applied to construct ran-
dom matrix theory (RMT) based on co-occurrence bac-
terial networks and was visualized in Cytoscape Version 
3.9.1. The most densely connected node was defined as 
the hub microbe, and hub microbes were searched using 
the cytohubba module in Cytoscape Version 3.9.1.

The prediction of microbial taxa functional pathways
PICRUSt2 (https://huttenhower.sph.harvard.edu/pic-
rust/) was used for the prediction of amplicon functions. 
Bray-Curtis distances were applied to evaluate the simi-
larity of data from the microbial composition [25]. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functional 
prediction was performed. The Benjamini-Hochberg 
procedure was applied to correct the false discovery rate 
due to multiple tests.

Results
The baseline characteristics of the enrolled samples
Figure  1 presents the flowchart of the study. A total of 
110 individuals were enrolled. After following the inclu-
sion and exclusion criteria, 52 patients (31 EIESC and 21 
controls) were finally included. A total of 104 samples, 
including 52 paired saliva and biopsies of the gastric 
antrum, were collected. The baseline characteristics were 
shown in Table 1. There were no significant differences in 
age, sex, and history of smoking or drinking between the 
EIESC group and healthy controls (all p > 0.05).

No significant difference in alpha diversity between EIESC 
and healthy groups
16 S rRNA gene sequencing of the V3-V4 region gener-
ated a total of 28,337,336 reads (with a median of 280,529 
reads per sample and a range of 187,908 − 299,982 reads 
per sample). All samples met the sequencing quality cri-
teria, with Q30 scores exceeding 90% and average good’s 
coverage estimates surpassing 99% (Table S1). Alpha 
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diversity (Fig.  2A-F) showed no significant difference 
between EIESC and healthy groups in both the saliva and 
gastric biopsy samples, according to the Chao1, Shan-
non, and Simpson indices (all p > 0.05). Refraction curves 
of Chao1, Shannon, and Simpson tend to flatten out, 
indicating the sequencing detecting depth has reached 
saturation.

Heterogeneous beta diversities between saliva and gastric 
samples
When evaluating the beta diversity, there were no sig-
nificant heterogeneous microbiota distributions of each 
saliva and gastric sample between the EIESC and con-
trol groups, respectively. However, the difference in beta 
diversity was observed in PcoA Axis1 between the saliva 
and gastric samples in each EIESC group (p < 0.001) and 
control group (p < 0.001), respectively (Fig. 2G).

Different microbiome compositions between EIESC and 
controls
A total of 292 oral genera and 223 oral species (with 
unidentified species excluded) were identified in both 
EIESC and healthy controls. Thirty-nine microbial 

species were distinctively identified in EIESC groups 
(Fig.  2H, Table S2). At the phylum level, there was no 
significant difference in the abundance of Firmicutes 
(Mean Relative Abundance (MRA), EIESC versus Con-
trol: 32.6% versus 31.1%, p = 0.276), Bacteroidetes (MRA 
15.4% versus 13.4%, p = 0.151), and Proteobacteria (MRA 
20.9% versus 34.3%, p = 0.101) between EIESC and con-
trols (Fig. 3A-D). The Firmicute/Bacteroidetes ratio (F/B 
Ratio) (1.87 versus 2.04, p = 0.920) and Firmicute/Proteo-
bacteria ratio (F/P Ratio) (1.48 versus 0.96, p = 0.161) also 
showed no significant difference between the two groups 
(Fig.  3E-F). As for the gastric microbial composition, 
the abundance of Firmicutes (MRA 42.3% versus 37.2%, 
p = 0.016) and F/B Ratio (5.46 versus 3.84, p = 0.015) were 
significantly increased in patients with EIESC when com-
pared with healthy controls, whereas the abundance of 
Bacteroidetes (MRA 6.5% versus 8.0%, p = 0.080), and 
Proteobacteria (MRA 14.2% versus 18.4%, p = 0.237) and 
F/P Ratio (2.9 versus 2.1, p = 0.080) show no statistical dif-
ference (Fig. 3G-L).

At the genus level, the vertical bar chart presenting the 
top 10 abundant genera of the oral and gastric microbi-
ota compositions between EIESC and healthy controls at 

Fig. 1 The flowchart of the study
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the genus level were shown in Fig.  3M-N. Six oral gen-
era were remarkably enriched in EIESC groups (Fig. 3O, 
Table S3), including the genera Porphyromonas (MRA 
3.19% versus 1.37%, p = 0.008), Subdoligranulum (MRA 
0.002% versus 0.0002%, p = 0.024), Leptotrichia (MRA 
2.96% versus 1.40%, p = 0.021), Paludibacter (MRA 0.12% 
versus 0.04%, p = 0.044), Shigella (MRA 0.02% versus 
0.008%, p = 0.019), and Odoribacter (MRA 0.007% versus 
0.0006%, p = 0.005).

At the species levels, the different compositions of oral 
species was shown in Fig. 4A. A total of 19 species were 
significantly enriched in the EIESC group, whereas 49 
species were depleted when compared with the healthy 
controls (Fig. 4A, Table S4).

To further investigate the composition difference, we 
specifically compared the abundance change of the com-
mon bacterial genera in different groups (Fig.  4B). The 
abundance of Bifidobacterium presented no significant 
change in both oral and gastric microbiome between 
the EIESC and control groups. The gastric genera Akker-
mansia was significantly depleted in patients with EIESC 
compared with control groups. There was a remarkable 
enrichment of Bifidobacterium in gastric microbiome 
when compared with the oral genera in healthy controls, 
whereas this tendency of enrichment was not presented 
in the EIESC group. We also observed a remarkably 
decreased abundance of the genera Campylobacter, Fuso-
bacterium, Haemophilus, and Neisseria in the gastric 
microbiome compared with the oral microbiome in both 

the EIESC and control groups, indicating the possible 
elimination of these genera with gastric acid. However, 
the abundance of the genera Acinetobacter, Enterococ-
cus, and Pseudomonas was significantly increased in the 
gastric environment compared with oral microbiota. In 
patients with EIESC, the abundance of Streptococcus in 
the stomach was remarkably enriched compared to that 
in the oral cavity, but this trend was not observed in 
healthy controls.

No significant correlation of oral microbiome with clinical 
factors in EIESC
To track the association of significantly changed oral taxa 
with clinicopathological characteristics in EIESC groups, 
we applied Mantel (Fig.  4C) and Spearmen correlation 
tests (Fig. 4D). No significant correlations were observed 
of oral species with tumor size, tumor area (pathological 
ESD specimens), and common serum blood tests such as 
WBC, Alb, and Hemoglobin (all rho < 0.4, p > 0.05). The 
increased abundance of potentially pathogenic genera 
was positively correlated with the AST levels in Mantel’s 
correlation test.

The LefSe and RF model identified several oral microbial 
biomarkers for EIESC
LefSe analysis identified two genera with LDA score > 3, 
including the genera Porphyromonas and Leptotrichia 
(Fig. 5A). In the random forest model, we identified that 
the oral species of Porphyromonas endodontalis, Cam-
pylobacter rectus, and Bulleidia moorei were the top 3 
ranked species to differentiate EIESC with healthy con-
trols (Fig.  5B). Next, we specifically investigated the 
abundance of Porphyromonas endodontalis in differ-
ent microbial samples in both the EIESC and controls. 
Interestingly, we observed a significant enrichment of 
oral Porphyromonas endodontalis in patients with EIESC 
compared with healthy controls. The elimination rate of 
Porphyromonas endodontalis from the oral cavity to the 
stomach was also dramatically decreased in the EIESC 
group than controls (Fig. 5C). Besides, we also observed 
the strong positive correlation of Porphyromonas 
endodontalis with two Prevotella species, including Pre-
votella tannerae, and Prevotella intermedia (Fig.  5D-E), 
whereas the abundance of Veillonella_dispar was nega-
tively correlated with that of Porphyromonas endodonta-
lis (Fig. 5F).

The co‑occurrence network identified hub species of EIESC 
patients
The co-occurrence patterns among the EIESC patients 
were explored using network inference based on strong 
(|ρ|> 0.6) and significant (p < 0.01) correlations. The oral 
microbiome network (Fig.  6A, Table S5) was composed 
of 99 nodes (microbes) and 250 edges. The top 3 ranked 

Table 1 Baseline characteristics of patients in EIESC and control 
groups
No. of patients EIESC 

(n = 31)
Controls 
(n = 21)

p

Age
(median [IQR])

70 [60, 71] 64 [59, 69] 0.094

BMI
(median [IQR])

21.61
[21.40, 22.03]

22.31
[21.10, 22.55]

0.309

Sex (n, %) 0.523
Female 12 (38.7) 10 (47.6)
Male 19 (61.3) 11 (52.4)
History of smoking (n, %) 0.494
Yes 9 (29.0) 8 (38.1)
No 22 (71.0) 13 (61.9)
History of drinking (n, %) 0.624
Yes 7 (22.6) 6 (28.6)
No 24 (77.4) 15 (71.4)
Family history of Esophageal 
cancer (n, %)

0.985

Yes 3 (9.7) 2 (9.5)
No 28 (90.3) 19 (90.5)
Note †p value was derived from the Mann-Whitney test in data of continuous 
variables with abnormal distribution (M, Median; IQR, Interquartile Range). 
p value was derived from the Chi-square test or fisher’s exact test in data of 
categorical variables from EIESC and controls (n,%). Abbreviation: EIESC: early-
stage intramucosal esophageal squamous cell carcinoma; BMI: body weight 
index
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hub microbes were Bacillus muralis, Denitromonas indo-
licum, and Sphingomonas wittichii using the maximal 
clique centrality (MCC) method within the cytohubba. 
The gastric microbiome network (Fig. 6B, Table S6) was 
composed of 88 nodes (microbes) and 115 edges. The top 
3 ranked hub microbes were Johnsonella ignava, Burk-
holderia bryophila, and Porifericola rhodea. (Fig.  6B). 
Using the PICRUSt2 method, no significant KEGG path-
ways were strongly associated with EIESC (Table S7).

Discussion
Our findings highlight the potential role of the oral 
microbiome in the development of EIESC. In general, 
we observed that patients with EIESC had distinguished 
oral microbial compositions compared with healthy con-
trols. Although we observed no significant difference 
in microbial diversities, our analysis revealed distinct 

distributions of several microbial taxa, such as the genera 
Porphyromonas and Leptotrichia, between the EIESC and 
control groups.

Firmicutes, Bacteroidetes, and Proteobacteria are the 
three major bacterial species most commonly found in 
the human gut microbiota [26, 27]. The F/B ratio is con-
sidered a potential biomarker of gut dysbiosis [27], which 
has been reported in several diseases [28, 29]. Different 
tumor samples were found to have different F/P ratios 
[30]. In our study, no statistical differences were observed 
in the F/P and F/B ratios of the oral microbiome. How-
ever, the F/B ratio of the EIESC group was significantly 
lower than that of the normal growth group, indicating 
the potential gastric dysbiosis in patients with EIESC.

Porphyromonas, particularly Porphyromonas gingiva-
lis, has been consistently found to have a higher abun-
dance in saliva samples [13], blood serum [31], and 

Fig. 2 Comparisons of microbial diversity. A, C, and E: the boxplot of alpha diversity between the EIESC and controls using the Chao1 (A), Shannon(C), 
and Simpson index (E). B, D and F: the Rarefaction curves of the diversity detected compared with the predicted diversity. The x-axis represents the 
number of sequences sampled while the y-axis represents the estimated Chao1 (B), Shannon index (D), and Simpson index (F). G: PCoAs of Bray‒Curtis 
distances on the microbiota distributions. Each dot represents a patient with EIESC or controls. Points clustered in red and blue represent the gastric 
microbial composition of the EIESC and controls, whereas the points clustered in yellow, blue represent the oral microbial composition of the EIESC and 
controls. EIESC: early-stage intramucosal esophageal squamous cell carcinoma; PCoAs: principal coordinate analyses. H: UpSet plot of differently-distrib-
uted taxa. The left graph represents the total number of differently-distributed species (X-axis) in EEC saliva (EEC_o), Control saliva (NC_o), EEC gastric 
biopsy (EEC_g), and control gastric biopsy groups (EEC_g) (Y-axis). The right graph represents the intersection of sets of species in multiple groups. Each 
column corresponds to a group or set of groups (dots connected by lines below the X-axis) containing the same species. The number of species in each 
set appears above the column, while groups shared are indicated in the graphic below the column. *, **, *** stands for p-value < 0.01, 0.005 and 0.001, 
respectively). EEC: early esophageal cancer
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tumor tissues [32] of patients diagnosed with esopha-
geal squamous cell carcinoma. This genus has been 
potentially linked to an increased risk [13, 33] and poor 
prognosis [31, 32] of esophageal squamous cell carci-
noma. Our findings suggest that the abundance change 
of genus Porphyromonas may occur even at an early 
stage of esophageal cancer. The genus Porphyromonas is 
a potentially harmful bacterium linked to periodontitis 
[33]. Several previous studies have demonstrated a link 
between inadequate oral hygiene and a higher likelihood 
of developing esophageal cancer [34, 35]. In our study, 
we observed a higher presence of the Porphyromon-
asz genus in the saliva of EIESC patients. Therefore, our 
findings indicate that the Porphyromonas genus could 

potentially contribute to the increased vulnerability to 
esophageal cancer in individuals with periodontal dis-
eases. However, different from previous studies [31, 32], 
our findings revealed a significant presence of Porphy-
romonas endodontalis, another Porphyromonas spp., in 
the EIESC groups. Similar to Porphyromonas gingivalis, 
Porphyromonas endodontalis commonly populates den-
tal plaque and is associated with endodontic infections 
and abscesses [36]. However, there have been no previ-
ous report of a significant change in the abundance of 
Porphyromonas endodontalis in esophageal cancer. Our 
findings suggest that Porphyromonas endodontalis could 
potentially serve as a microbial biomarker to distinguish 
EIESC from controls. Besides, our study revealed strong 

Fig. 3 The differential analysis of microbiota compositions between EIESC and controls at the phylum and genus level. A: the vertical bar chart present-
ing the oral microbiota compositions between EIESC and controls at the phylum level. The x-axis represents each sample and its group, and the y-axis 
represents the relative abundance. B‑F: Boxplots showing the relative abundance of Firmicutes, Bacteroidetes, Proteobacteria, Firmicutes/Bacteroidetes 
(F/B) ratio, and Firmicutes/Proteobacteria (F/P) ratio in saliva samples. G: the vertical bar chart presenting the gastric microbiota compositions between 
EIESC and controls at the phylum level. H‑L: Boxplots showing the relative abundance of Firmicutes, Bacteroidetes, Proteobacteria, F/B ratio, and F/P ratio 
in gastric biopsy samples. M‑N: the vertical bar chart presenting the oral (M) and gastric (N) microbiota compositions between EIESC and controls at the 
phylum level. O: Volcano plot: the log2 fold-change indicates the mean relative abundance for each taxon. Each dot represents one genus. The blue dots 
represent no significant expression difference between the MHO and control groups, the red dots represent EIESC-enriched genus
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Fig. 4 The differential analysis of microbiota compositions between EIESC and controls at the species level and microbial correlation with clinicopatho-
logical factors. A: Manhattan plots showing the distributions of each oral species identified in EIESC and individuals. Significantly-enriched species are 
depicted as transparent triangles, significantly-depleted species are presented as inverted solid triangles, and species with no statistical significance are 
depicted as full circles. The color of each dot represents the different phylum affiliations, and the size stands for their relative abundance. The light-green 
and light-blue boxes are used to denote different phylum groups. B: boxplots showing the abundance (Log 2 transformed) of typical genera in four differ-
ent groups. The Wilcoxon Test was performed and *, **, *** stands for p-value < 0.01, 0.005 and 0.001, respectively). C: Visualization of the Mantel test. The 
triangle on the right side represents pairwise comparisons of clinically relevant factors with a color gradient denoting Spearman correlation coefficients. 
The potentially beneficial genus and potentially harmful genus were related to each clinical factor, respectively, using partial (geographic distance– cor-
rected) Mantel tests. Edge width corresponds to the Mantel r statistic for the corresponding distance correlations, and edge color denotes the statistical p 
significance value. D: Heatmap matrix plot of Spearman’s correlation coefficients (ρ) among significantly enriched or delpeted species. The absolute value 
of ρ is indicated by a color code explained in the legend. The blue color indicates a positive correlation, whereas red represents a negative one. The scale 
of a square is proportional to ρ2. Cells above the matrix diagonal refer to specific ρ values and their statistical significance (p-value). Significance levels 
p < 0.05, p < 0.01, and p < 0.001 are indicated by *, **, and ***, respectively, whereas p > 0.05 is presented p explicitly
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positive correlations between Porphyromonas endodon-
talis and two Prevotella species: Prevotella tannerae 
and Prevotella intermedia. These two species were also 
identified as important biomarkers in the random forest 
model of EIESC. It is worth noting that Prevotella tan-
nerae and Prevotella intermedia have been associated 
with periodontal and endodontic infections [37], indicat-
ing a potential link between oral hygiene and the progres-
sion of esophageal cancer at an early stage.

Interestingly, we observed that the microbial composi-
tion of esophageal cancer varied depending on the his-
topathology. Peters et al. [13] conducted a study on the 
oral microbiota of the two main types of esophageal can-
cer and found that esophageal adenocarcinoma showed 
significant changes in genera compared to squamous cell 
carcinoma. They identified no significant microbiota-
associated functional pathways in patients with advanced 

squamous cell carcinoma. Similarly, in our study, we also 
found no significant differences in functional pathway 
predictions between EIESC and the control group. This 
suggests that the oral microbiome may potentially have 
a lesser role in the development of esophageal squamous 
cell carcinoma compared to adenocarcinoma. In fact, 
other risk factors such as smoking, alcohol consump-
tion, and consumption of pickled food may have a greater 
impact on patients with EIESC. Therefore, future cancer 
screening strategies should consider integrating vari-
ous factors and establishing comprehensive predictive 
models that incorporate microbial biomarkers and other 
esophageal cancer risk factors.

In addition, we also investigated the characteristics 
of gastric microbiota in each patient paired with their 
saliva samples, which has not been studied in previous 
studies. There were significant microbial diversity and 

Fig. 5 Identification of the oral microbial biomarkers. A: LEfSe analysis. Plot of LDA Effect Size. The length of the bar column represents the LDA score. 
The figure shows the oral microbial taxa with significant differences between the EIESC (orange) and Control (green) (LDA score > 2). B: Random Forest 
model of the representative 30 microbial biomarkers to predict EIESC based on their mean decrease scores of the optimal model performance. C: box-
plots showing the different abundance of Porphyromonas endodontalis in four different groups (Left boxplot), and the elimination rate of Porphyromonas 
endodontalis from the oral cavity to the stomach (Right boxplot). Significance levels p < 0.05, p < 0.01, and p < 0.001 are indicated by *, **, and ***, respec-
tively, whereas p > 0.05 is presented p explicitly. D-F: Correlation plot of Porphyromonas endodontalis with strong correlation with three species, including 
Prevotella tannerae (D), Prevotella intermedia (E) and Veillonella_dispar (F)
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Fig. 6 (See legend on next page.)
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composition differences between the oral and gastric 
mucosa in both the EIESC and controls. We observed 
a notable decrease in the abundance of several gastric 
genera due to the elimination of gastric acid, while some 
genera, such as Acinetobacter, Enterococcus, and Pseudo-
monas, were even more abundant in the stomach com-
pared to the oral cavity. In EIESC patients, we observed 
a decreased abundance of Streptococcus in the stomach 
compared to that in the oral cavity, and the gastric Bifi-
dobacteria was significantly depleted. These results all 
indicate that there is also an imbalance in the gastric 
microbiome in EIESC patients.

Our study has several limitations. First, it is a case-con-
trol study with a relatively small sample size. The main 
reasons for a relatively small sample size include: (1) we 
excluded all patients with previous and current H. pylori 
infection as an important confounding factor that may 
affect the gut microbiome; (2) we only include patients 
with intramucosal cancer which represents a very early 
stage of esophageal cancer. The sample size in control 
group was also very small. It is important to note that the 
microbiome obtained from these controls might not nec-
essarily represent a healthy microbiome. This is because 
the microbiome of a healthy person might not yet fully 
understood and each individual has a highly diverse 
microbiome [38–41]. Second, we did not investigate the 
periodontal status of participants to study whether all the 
oral species we identified were independent of periodon-
tal disease. Third, we only applied the 16s rRNA sequence 
which had limitations to detect significant taxon at the 
species level. Thus, further research is warranted to 
investigate the role of these species in the pathogenesis of 
esophageal cancer using a larger scale of sample size with 
more accurate microbial analysis, such as metagenomic 
analysis.

In conclusion, this study potentially indicates that 
the dysbacteriosis of both the oral and gastric microbi-
ome was possibly associated with early-stage of esopha-
geal squamous cell carcinoma. Larger scale studies and 
experimental animal models are urgently needed to con-
firm the possible role of microbiome dysbacteriosis in 
the pathogenesis of esophageal cancer, especially at an 
early stage. Also, a comprehensive prediction model that 
combines both microbial biomarkers and other esopha-
geal cancer risk factors should be further established to 
increase the accuracy of the screening strategy for early 
esophageal cancer.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12866-024-03233-4.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
Not applicable.

Author contributions
Han Chen: study concept and design, analysis and interpretation of data; 
drafting of the manuscript, authorship; Xingzhou Jiang: study concept and 
design, analysis and interpretation of data, authorship. Fengyi Zhu: study 
concept and design, analysis and interpretation of data, authorship. Ruoyun 
Yang and Xin Yu: data extraction, design and order the figures and tables, 
assessment of study quality, authorship. Xiaoying Zhou: design and order the 
figures and tables, assessment of study quality, authorship. Nana Tang: critical 
revision of the manuscript for important intellectual content; obtain funding; 
study supervision, authorship.

Funding
The research was funded by Jiangsu Province Hospital (the First Affiliated 
Hospital with Nanjing Medical University) Clinical Capacity Enhancement 
Project (JSPH-MC-2021-10 and JSPH-MC-2022-29) and the National Natural 
Science Foundation of China (No. 82100594).

Data availability
All the amplicon raw data have been submitted to the Sequence Read Archive 
(SRA) in NCBI (Archive number: PRJNA961904). In addition, all data from this 
study can be obtained from the corresponding author upon reasonable 
request.

Declarations

Competing interests
The authors declare no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study was approved by the Institutional Ethics Committee of the First 
Affiliated Hospital of Nanjing Medical University and was then registered 
in the Chinese Clinical Trial Registry center (www.chictr.org.cn; registration 
No. ChiCTR2200063464). Informed consent was obtained from each subject 
enrolled. All experiments were performed in accordance with relevant 
guidelines and regulation.

Author details
1Department of Gastroenterology, The First Affiliated Hospital of Nanjing 
Medical University, 300# Guangzhou Road, Nanjing 210029, China
2The First Clinical Medical College, Nanjing Medical University, Nanjing, 
China

Received: 2 August 2023 / Accepted: 23 February 2024

(See figure on previous page.)
Fig. 6 Co-occurrence network visualization of the oral (A) and gastric (B) microbial interactions in the EIESC individuals. The lines connecting nodes 
(edges) represent a positive (light green) or negative (red) co-occurrence relationship. The color of each dot represents the different taxonomic affilia-
tions of the species (phylum level), the width of the edges reflects the absolute value of correlation coefficients, and the size corresponds to their relative 
abundance

https://doi.org/10.1186/s12866-024-03233-4
https://doi.org/10.1186/s12866-024-03233-4
http://www.chictr.org.cn


Page 13 of 13Chen et al. BMC Microbiology           (2024) 24:88 

References
1. Murphy G, McCormack V, Abedi-Ardekani B, Arnold M, Camargo MC, Dar 

NA, et al. International cancer seminars: a focus on esophageal squa-
mous cell carcinoma. Annals Oncology: Official J Eur Soc Med Oncol. 
2017;28(9):2086–93.

2. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, et al. 
Oesophageal cancer. Nat Reviews Disease Primers. 2017;3:17048.

3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, 
et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence 
and Mortality Worldwide for 36 cancers in 185 countries. Cancer J Clin. 
2021;71(3):209–49.

4. Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, 
et al. The Global Landscape of esophageal squamous cell carcinoma and 
esophageal adenocarcinoma incidence and mortality in 2020 and projec-
tions to 2040: new estimates from GLOBOCAN 2020. Gastroenterology. 
2022;163(3):649–58e2.

5. Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell 
carcinoma. Gastroenterology. 2018;154(2):360–73.

6. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesopha-
geal cancer by histological subtype in 2012. Gut. 2015;64(3):381–7.

7. Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adeno-
carcinoma. Gastroenterology. 2018;154(2):390–405.

8. Sheikh M, Poustchi H, Pourshams A, Etemadi A, Islami F, Khoshnia M, et al. 
Individual and Combined effects of Environmental Risk factors for Esopha-
geal Cancer based on results from the Golestan Cohort Study. Gastroenterol-
ogy. 2019;156(5):1416–27.

9. Lagergren J, Lagergren P. Recent developments in esophageal adenocarci-
noma. Cancer J Clin. 2013;63(4):232–48.

10. Nardone G, Compare D, Rocco A. A microbiota-centric view of diseases of the 
upper gastrointestinal tract. Lancet Gastroenterol Hepatol. 2017;2(4):298–312.

11. Zhao Q, Yang T, Yan Y, Zhang Y, Li Z, Wang Y, et al. Alterations of oral micro-
biota in Chinese patients with esophageal Cancer. Front Cell Infect Microbiol. 
2020;10:541144.

12. Liu Y, Lin Z, Lin Y, Chen Y, Peng XE, He F, Liu S, Yan S, Huang L, Lu W, 
Xiang Z, Hu Z. Streptococcus and Prevotella are associated with the 
prognosis of oesophageal squamous cell carcinoma. J Med Microbiol. 
2018;67(8):1058–106.

13. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral Microbi-
ome Composition reflects prospective risk for esophageal cancers. Cancer 
Res. 2017;77(23):6777–87.

14. Nasrollahzadeh D, Malekzadeh R, Ploner A, Shakeri R, Sotoudeh M, Fahimi S, 
et al. Variations of gastric corpus microbiota are associated with early esopha-
geal squamous cell carcinoma and squamous dysplasia. Sci Rep. 2015;5:8820.

15. Ashrafi D, Memon B, Memon MA. Management of oesophageal intramucosal 
carcinoma. BMJ Case Rep. 2018;2018:bcr2018224893.

16. Ro TH, Mathew MA, Misra S. Value of screening endoscopy in evalua-
tion of esophageal, gastric and colon cancers. World J Gastroenterol. 
2015;21(33):9693–706.

17. Rice TW, Patil DT, Blackstone EH. 8th edition AJCC/UICC staging of cancers of 
the esophagus and esophagogastric junction: application to clinical practice. 
Ann Thorac Cardiovasc Surg. 2017;6(2):119–30.

18. Japan Esophageal Society. Japanese classification of esophageal cancer, 11th 
edition: part II and III. Esophagus. 2017;14(1):37–65.

19. Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci. 1993;694:72–7.
20. Thomas JC, Khoury R, Neeley CK, Akroush AM, Davies EC. A fast CTAB method 

of human DNA isolation for polymerase chain reaction applications. Biochem 
Educ. 1997;25:233–5.

21. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metage-
nomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

22. Liaw A WM. Classification and regression by randomForest. R news. 
2002;2:18–22.

23. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. 
Ocean plankton. Structure and function of the global ocean microbiome. 
Volume 348. New York, NY: Science; 2015. p. 1261359. 6237.

24. Li B, Yang Y, Ma L, et al. Metagenomic and network analysis reveal wide 
distribution and co-occurrence of environmental antibiotic resistance genes. 
ISME J. 2015;9:2490–502.

25. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Hut-
tenhower C, Langille MGI. PICRUSt2 for prediction of metagenome functions. 
Nat Biotechnol. 2020;38(6):685–8.

26. Nejman D, Livayatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human 
microbiome is composed of tumour type-specific intracellular bacteria. Sci-
ence. 2020;368(6494):973–80.

27. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamuru-
gan R. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis 
in obese patients? Nutrients. 2020;12(5):1474.

28. Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, Buurman 
WA, de Vos WM, Rensen SS. Human intestinal microbiota composition is asso-
ciated with local and systemic inflammation in obesity. Obes (Silver Spring). 
2013;21(12):E607–15.

29. Fang CY, Chen JS, Hsu BM, Hussain B, Rathod J, Lee KH. Colorectal Cancer 
Stage-Specific Fecal Bacterial Community Fingerprinting of the Taiwanese 
Population and Underpinning of potential taxonomic biomarkers. Microor-
ganisms. 2021;9(8):1548.

30. Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human micro-
biome in tumorigenesis, cancer progression, and biotherapeutic develop-
ment. BMC Microbiol. 2022;22(1):53.

31. Gao SG, Yang JQ, Ma ZK, Yuan X, Zhao C, Wang GC, Wei H, Feng XS, Qi YJ. 
Preoperative serum immunoglobulin G and a antibodies to Porphyromonas 
gingivalis are potential serum biomarkers for the diagnosis and prognosis of 
esophageal squamous cell carcinoma. BMC Cancer. 2018;18(1):17.

32. Gao S, Li S, Ma Z, Liang S, Shan T, Zhang M, Zhu X, Zhang P, Liu G, Zhou F, 
Yuan X, Jia R, Potempa J, Scott DA, Lamont RJ, Wang H, Feng X. Presence of 
Porphyromonas gingivalis in esophagus and its association with the clinico-
pathological characteristics and survival in patients with esophageal cancer. 
Infect Agent Cancer. 2016;11:3.

33. Yuan X, Liu Y, Kong J, Gu B, Qi Y, Wang X, Sun M, Chen P, Sun W, Wang H, 
Zhou F, Gao S. Different frequencies of Porphyromonas gingivalis infection in 
cancers of the upper digestive tract. Cancer Lett. 2017;404:1–7.

34. Song X, Greiner-Tollersrud OK, Zhou H. Oral microbiota variation: a risk factor 
for development and poor prognosis of Esophageal Cancer. Dig Dis Sci. 
2022;67(8):3543–56.

35. Kawasaki M, Ikeda Y, Ikeda E, Takahashi M, Tanaka D, Nakajima Y, Arakawa S, 
Izumi Y, Miyake S. Oral infectious bacteria in dental plaque and saliva as risk 
factors in patients with esophageal cancer. Cancer. 2021;127(4):512–9.

36. Relevance of the plasminogen. System in physiology, pathology, and regen-
eration of oral tissues - from the perspective of dental specialties. Arch Oral 
Biol. 2017;74:136–45.

37. Könönen E, Fteita D, Gursoy UK, Gursoy M. Prevotella species as oral residents 
and infectious agents with potential impact on systemic conditions. J Oral 
Microbiol. 2022;14(1):2079814.

38. Dewhirst FE, Chen T, Izard J, Paster BJ, TannerACR, Yu W-H, Lakshmanan A, 
Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.

39. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch 
Microbiol. 2018;200:525–40.

40. Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some 
systemic diseases. J Transl Med. 2019;17:225.

41. Nishijima S, Suda W, Oshima K, Kim SW, Hirose Y, Morita H, Hattori M. The gut 
microbiome of healthy Japanese and its microbial and functional unique-
ness. DNA Res. 2016;23:125–33.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	Characteristics of the oral and gastric microbiome in patients with early-stage intramucosal esophageal squamous cell carcinoma
	Abstract
	Introduction
	Method
	Study design

	Saliva sample collection
	Gastric biopsy sample collection
	DNA extraction and 16 S rRNA gene sequencing
	Statistical analysis
	Analysis of microbial diversity
	Differential analysis of microbial compositions
	Microbial interaction with clinicopathological factors
	Co‑occurrence network
	The prediction of microbial taxa functional pathways

	Results
	The baseline characteristics of the enrolled samples
	No significant difference in alpha diversity between EIESC and healthy groups
	Heterogeneous beta diversities between saliva and gastric samples
	Different microbiome compositions between EIESC and controls
	No significant correlation of oral microbiome with clinical factors in EIESC
	The LefSe and RF model identified several oral microbial biomarkers for EIESC
	The co-occurrence network identified hub species of EIESC patients

	Discussion
	References


