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Abstract
Background  Camels harbouring multidrug-resistant Gram-negative bacteria are capable of transmitting various 
microorganisms to humans. This study aimed to determine the distribution of anti-microbial resistance among 
Escherichia coli (E. coli) isolated from the feces of apparently healthy camels in Egyptian abattoirs. Additionally, we 
sought to characterize Shiga toxin-producing E. coli (STEC) strains, assess their virulence potential, and investigate the 
possibility of camels spreading carbapenem- and colistin-resistant E. coli.

Methods  121 fecal swaps were collected from camels in different abattoirs in Egypt. Isolation and identification of E. 
coli were performed using conventional culture techniques and biochemical identification. All isolates obtained from 
the examined samples underwent genotyping through polymerase chain reaction (PCR) of the Shiga toxin-encoding 
genes (Stx1 and Stx2), the carbapenemase-encoding genes (blaKPC, blaOXA−48, blaNDM, and blaVIM), and the mcr genes for 
mcr-1 to mcr-5.

Result  Bacteriological examination revealed 75 E. coli isolates. PCR results revealed that one strain (1.3%) tested 
positive for Stx1, and five (6.6%) were positive for Stx2. Among the total 75 strains of E. coli, the overall prevalence of 
carbapenemase-producing E. coli was 27, with 7 carrying blaOXA48, 14 carrying blaNDM, and 6 carrying blaVIM. Notably, 
no strains were positive for blaKPC but a high prevalence rate of mcr genes were detected. mcr-1, mcr-2, mcr-3, and mcr-
4 genes were detected among 3, 2, 21, and 3 strains, respectively.

Conclusion  The results indicate that camels in Egypt may be a primary source of anti-microbial resistance (AMR) E. 
coli, which could potentially be transmitted directly to humans or through the food chain.
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Background
Camels play a vital role in the socioeconomic growth of 
many nations, particularly in Africa and the Middle East 
[1]. They provide essential resources and services that 
benefit local communities and economies, such as milk 
and meat production, transportation, and entertainment, 
particularly in Egypt’s tourism sector [2].

The impact of climate change and the rise in drought 
conditions have shifted livestock preferences in various 
regions worldwide, leading to a notable increase in the 
abundance of camels [3].

Camels in sub-Saharan Africa serve as a reservoir for 
various potentially zoonotic diseases and pathogens [4]. 
Carcass microbiological contamination primarily occurs 
during processing and handling stages, such as skinning, 
evisceration, preparation, storage, and distribution at 
abattoirs and retail shops [5].

Escherichia coli, or E. coli, is a rod-shaped bacterium 
in the intestinal tracts of humans and warm-blooded 
animals. While many strains of E. coli are harmless and 
coexist naturally, certain strains, such as Shiga toxin-E. 
coli (STEC), can result in foodborne illnesses. Some E. 
coli strains can also cause infections in the urinary and 
respiratory systems and other diseases [6].

In contrast, STEC in camels, capable of causing gas-
trointestinal illnesses such as non-bloody or bloody diar-
rhoea, haemorrhagic colitis (HC), and haemolytic uremic 
syndrome (HUS), has been rarely documented. However, 
STEC is responsible for approximately 2,801,000 cases 
of acute illnesses each year, posing a substantial global 
health burden [7].

E. coli produces numerous highly virulent genes, with 
Shiga toxin-producing E. coli (STEC) being the most sig-
nificant serotype regarding public health toxins. The vir-
ulence factors of STEC are primarily derived from Shiga 
toxin genes (Stx1 and Stx2), which play a significant role 
in the manifestation of clinical symptoms [8]. Further-
more, Stx1 and Stx2 can have sequence variants, and a 
single STEC bacterium can produce multiple variants of 
these toxins [9].

The primary mode of transmission of STEC to humans 
is through consuming contaminated foods, including raw 
or undercooked ground meat products and unpasteur-
ized milk. Additionally, cross-contamination during food 
preparation is another significant mode. Hand-to-mouth 
transfer involving direct contact with farm animals is also 
identified as a substantial transmission mode [10].

Antibiotic resistance (AMR) poses a significant threat 
to human and animal health, making the treatment of 
bacterial infections increasingly challenging. One of the 
essential AMR mechanisms in the Enterobacteriaceae 
family involves the production of extended-spectrum 
β-lactamases (ESBLs) and metallo-β-lactamases (MBLs), 

which can inactivate a wide range of antibiotics, includ-
ing carbapenems, considered last-line therapies [11].

Gram-negative bacteria can resist antibiotics in several 
ways, such as by producing enzymes that destroy antibi-
otics, making it harder for antibiotics to enter the cell, or 
changing the cell membrane’s structure to prevent antibi-
otic penetration. These changes have been seen in many 
bacteria resistant to multiple drugs [12].

Carbapenems, important in human medicine as broad-
spectrum beta-lactam antibiotics, are considered the last-
line therapies for severe infections. The five most crucial 
carbapenemase enzymes are KPC, NDM, IMP, VIM, and 
OXA. These enzymes can break down carbapenems, con-
ferring antibiotic resistance [13].

E. coli can resist many different types of antibiotics; 
the most common is beta-lactam resistance, including 
cephalosporins, aminoglycosides, and tetracyclines. E. 
coli achieves this by producing enzymes called beta-lac-
tamases associated with genes such as blaTEM and blaCTX, 
which code for beta-lactamases [14].

Colistin, a potent antibiotic used in treating severe 
infections and often considered a last-resort antibiotic, 
faces the challenge of resistance, which can spread to 
other bacteria through mobile genetic elements, rapidly 
spreading this resistance within bacterial populations. A 
plasmid known as mcr-1, capable of transmitting colistin 
resistance to other bacteria [15, 16], can also be found 
on plasmids carrying other antibiotic-resistance genes, 
including those encoding carbapenemases and extended-
spectrum beta-lactamases [17]. Many studies have dem-
onstrated that using colistin as an antibiotic growth 
promoter (AGP) in livestock contributes to the emer-
gence and spread of plasmid genes, conferring resistance 
to polymyxins, including colistin itself [18].

This study aimed to update our understanding of the 
prevalence of E. coli bacteria in camels in Egypt, charac-
terize the strains of E. coli causing STEC infections, assess 
the potential of camels to spread E. coli bacteria resistant 
to carbapenem and colistin antibiotics, and evaluate the 
potential risk to human and animal health arising from 
the transmission of these strains to the environment.

Methods
Sample preparation: A total of 121 faecal swaps were col-
lected from camels aged 3–5 years in different abattoirs 
in Cairo and Giza governorates (Al Waraq and Al Basa-
teen abattoirs) during the period from January 2022 to 
June 2022. Subsequently, the swabs were placed in 2 ml 
of sterile saline (0.9% NaCl) and stored in an ice box until 
transported to the laboratory.

Bacterial isolation and identification: All samples were 
inoculated into brain-heart infusion broth tubes and 
incubated at 37  °C for 24  h. A loopful from the previ-
ously incubated tubes was streaked on eosin methylene 
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blue agar (EMB) and incubated aerobically at 37  °C for 
24–48 h. Suspected colonies were purified through sub-
culture on EMB agar plates and subjected to traditional 
biochemical tests, including indole, methyl red, Voges-
Proskauer, citrate utilization, and urease tests [19]. The 
isolates were stored at − 20  °C until further molecular 
analysis.

Molecular detection of virulence and antibiotic resis-
tance genes in E. coli: All isolates obtained from the 
examined samples underwent genotyping using poly-
merase chain reaction (PCR), according to the protocol 
described by [20]. The template DNA used consisted of 
boiled lysates prepared from the isolates. In brief, a loop-
ful of culture was suspended in 100 µl of sterile TE buf-
fer, boiled for 10 min at 100 °C, and centrifuged for 5 min 
at 6000×g. The extracted DNA was stored at -20 °C until 
use.

All genomic DNA of the identified E. coli strains under-
went PCR testing for Shiga toxin-encoding genes (Stx1 
and Stx2) using multiplex PCR assays. The target genes, 
oligonucleotide primer sequences, and the expected 
product size in different PCR assays are outlined in 
Table 1.

To detect the carbapenemase-encoding genes (blaKPC, 
blaOXA−48, blaNDM, and blaVIM), multiplex PCR was per-
formed using specific oligonucleotide primers for detect-
ing blaKPC and blaNDM (Table 2). The PCR mixtures had 
a total reaction volume of 25 mL. All reaction mixtures 
were subjected to 30 cycles at 94 °C for 1 min, 55 °C for 
1  min, and 72  °C for 2  min. Subsequently, 5 mL of the 
PCR product was electrophoresed on a 1% agarose gel to 
determine the size of the product [21]. Uniplex PCR was 
also conducted using a specific oligonucleotide primer 
to detect blaVIM (Table 2). The PCR mixtures had a total 
reaction volume of 25 mL. All reaction mixtures were 
subjected to 35 cycles at 94 ºC for 30  s, 55 ºC for 30  s, 

72ºC for 1 min, and a final elongation at 72 ºC for 10 min. 
Then, 5 mL of the PCR product was electrophoresed on a 
1% agarose gel to determine the size of the product [22].

The plasmid DNA served as the template for PCR. The 
primer pair used to detect the blaOXA−48 gene consisted 
of blaOXA−48 F(5ʹ-​G​C​T​T​G​A​T​C​G​C​C​C​T​C​G​A​T​T-3ʹ) and 
blaOXA−48 R (3ʹ-​G​A​T​T​T​G​C​T​C​C​G​T​G​G​C​C​G​A​A​A-5ʹ). 
The thermal cycling process consisted of initial denatur-
ation at 94 °C for 10 min, denaturation at 94 °C for 40 s, 
annealing at 60 °C for 40 s, extension at 72 °C for 1 min, 
and a final extension at 72 °C for 7 min. In total, 30 cycles 
were run. The amplified products were then subjected to 
gel electrophoresis [22].

Multiplex PCR was also performed using oligonucle-
otide primers for mcr-1 to mcr-5 (Table 3). The PCR con-
ditions included denaturation at 94 °C for 5 min, followed 
by 25 cycles of denaturation at 94 °C for 30 s, annealing 
at 58 °C for 90 s, elongation at 72 °C for 60 s, and a final 
cycle of elongation at 72 °C for 10 min.

Results
Isolation and identification of E. coli strains:

The bacteriological examination of 121 camels’ fae-
cal swaps showed the presence of 75 E. coli isolates 
(Table 4). Using multiplex PCR for the detection of Shiga 
toxin-encoding genes (Stx1 and Stx2) (Table  5), one E. 
coli strain (1.3%) tested positive for Stx1, and five strains 
(6.6%) were positive for Stx2.

Molecular findings of virulence and antibiotic resis-
tance genes in E. coli:

In Table  5, the total prevalence of carbapenemase-
producing E. coli was 27 strains: 7 carrying blaOXA−48, 14 
carrying blaNDM, and 6 carrying blaVIM, while no strain 
carried blaKPC. Additionally, the total prevalence of colis-
tin resistance genes in E. coli isolates was 29 strains, with 

Table 1  List of primer pairs used for the stx1 and stx2 genes in this study
Target Primer sequence (5`→3`) Band size Reference
Stx 1 CGA TGT TAC GGT TTG TTA CTGTGA CAG C 244  [47]

AAT GCC ACG CTT CCC AGA ATT G
Stx2 CCA TGA CAA CGG ACA GCA GTT 779  [48]

CCT GTC AAC TGA GCA GCA CTT TG

Table 2  Primer sequences used for PCR amplification of carbapenemase encoding genes
Target Primer sequence (5`→3`) Band size Reference
KPC ATG TCA CTG TAT CGC CGT CT 882  [49]

TTT TCA GAG CCT TAC TGC CC
NDM GGT TTG GCG ATC TGG TTT TC 621

CGG AAT GGC TCA TCA CGA TC
OXA 48 ​G​C​T​T​G​A​T​C​G​C​C​C​T​C​G​A​T​T 283  [50]

​G​A​T​T​T​G​C​T​C​C​G​T​G​G​C​C​G​A​A​A
VIM ​A​G​T​G​G​T​G​A​G​T​A​T​C​C​G​A​C​A​G 261  [51]

​A​T​G​A​A​A​G​T​G​C​G​T​G​G​A​G​A​C
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mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 being 3, 2, 21, 3, 
and 0, respectively.

Discussion
Camels are susceptible to several infectious diseases, 
meaning eating camel meat or coming into contact with 
camels can pose a significant risk of zoonotic disease 
transmission [23]. In this study (Table  4), special con-
sideration aligns with Jones et al. [24], who concluded 
that eating raw camel meat often leads to outbreaks of 
diarrheagenic E. coli, a type of bacteria that can cause 
diarrhea. This typically occurs due to rough handling 
procedures during slaughter and transportation. Addi-
tionally, many countries worldwide have reported a high 
incidence of pathogenic E. coli strains in fresh camel milk 
[25].

STEC is a type of bacteria that can cause food poison-
ing. It is a zoonotic pathogen responsible for mild to 
severe diarrhea, hemorrhagic colitis (bloody diarrhea), 
and hemolytic uremic syndrome (HUS) [26]. The distin-
guishing feature of STEC is the presence of one or more 
Shiga toxin (Stx) genes, which code for proteins that can 
damage the cells in the lining of the intestines. There are 
two main types of Shiga toxins: Stx1 and Stx2 [27].

Most E. coli bacteria live in the intestines of humans 
and animals without causing any harm. However, some 
E. coli bacteria produce toxins, leading to food poisoning. 
STEC infections are most common in ruminants. These 

animals can carry STEC bacteria in their intestines with-
out getting sick. However, these bacteria can be spread to 
people through food or water contaminated with animal 
feces [28, 29]. This transmission occurs because the lin-
ing of their intestines lacks vascular receptors, prevent-
ing the toxins from being absorbed into the bloodstream 
and transported to other organs. As a result, the STEC 
bacteria can colonize the large intestine without causing 
symptoms [30].

The prevalence of Shiga toxin-encoding genes (Stx1 
and Stx2) detected in this study was closely consistent 
with those reported by Erickson and Doyle [31] and 
Kintz et al. [32]. These studies focused on uncovering the 
source and transmission of STEC infections in the food 
chain and humans.

STEC can be transmitted to humans in several ways, 
including eating undercooked ground beef or other raw 
foods, such as lettuce, sprouts, or spinach, from manured 
gardens, drinking contaminated water or unpasteurized 
milk or juice, coming into direct contact with animal 
feces, or being infected with STEC [33].

Extended-spectrum beta-lactamase (ESBL)-producing 
Enterobacteriaceae (ESBL-E) are bacteria equipped with 
enzymes that can break down a wide range of beta-lac-
tam antibiotics, including penicillin and cephalosporins. 
However, they are not resistant to carbapenem antibiotics 
[34]. ESBL-E bacteria pose a serious public health threat 
as they can be difficult or impossible to treat, leading to 

Table 3  List of primers used for the mcr 1–5 genes
Target Primer sequence (5`→3`) Band size Reference
MCR1 ​A​G​T​C​C​G​T​T​T​G​T​T​C​T​T​G​T​G​G​C 320  [52]

​A​G​A​T​C​C​T​T​G​G​T​C​T​C​G​G​C​T​T​G
MCR2 ​C​A​A​G​T​G​T​G​T​T​G​G​T​C​G​C​A​G​T​T 715

​T​C​T​A​G​C​C​C​G​A​C​A​A​G​C​A​T​A​C​C
MCR3 ​A​A​A​T​A​A​A​A​A​T​T​G​T​T​C​C​G​C​T​T​A​T​G 929

​A​A​T​G​G​A​G​A​T​C​C​C​C​G​T​T​T​T​T
MCR4 ​T​C​A​C​T​T​T​C​A​T​C​A​C​T​G​C​G​T​T​G 1116

​T​T​G​G​T​C​C​A​T​G​A​C​T​A​C​C​A​A​T​G
MCR5 ​A​T​G​C​G​G​T​T​G​T​C​T​G​C​A​T​T​T​A​T​C 1644

​T​C​A​T​T​G​T​G​G​T​T​G​T​C​C​T​T​T​T​C​T​G

Table 4  Occurrence rate of E-coli isolates from apparent healthy camels in Egyptian abattoirs
Area of Study Samples No. of samples No. of positive (%)
Al Waraq abattoir Faecal swaps 86 56(65.11)
Al Basateen abattoir 35 21(60)
Total 121 75 (61.98)

Table 5  Molecular detection of Shiga toxin genes (Stx1 and Stx2), the carbapenemase-encoding genes (blaKPC, blaOXA−48, blaNDM, and 
blaVIM) and colistin resistance genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) among E. coli isolates
Total
E. coli 
Isolates

Positive for Stx1 (%) Positive for Stx2 (%) carbapenemase-encoding genes (%) Colistin resistance genes (%)
blaKPC blaOXA−48 blaNDM blaVIM Mcr1 mcr2 mcr3 mcr4 mcr5

75 1(1.3) 5 (6.6) 0(0) 7(9.3) 14(18.6) 6(8) 3(4) 2(2.6) 21(28) 3(4) 0(0)
27(36) 29(38.66)
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more extended hospital stays, more severe illnesses, and 
even death [35]. Infections caused by ESBL-producing 
Enterobacteriaceae (ESBL-E) are concerning for vari-
ous reasons, including increased hospital costs, length of 
hospital stays, and mortality rates. ESBL-E infections can 
also be more deadly than other infections, necessitating 
treatment with last-resort antibiotics like carbapenems 
[36]. Recently, the effectiveness of carbapenems has been 
disposed of globally by the emergence of carbapenem-
resistant bacteria. The resistance of Enterobacteriaceae to 
carbapenems includes numerous mechanisms, the most 
significant being the production of carbapenemases.

In Table 5, the prevalence of carbapenemase-producing 
E. coli was 27 strains: 7 carried blaOXA, 14 carried blaNDM, 
and 6 carried blaVIM, while no strain carried blaKPC. This 
result agrees with Tzouvelekis et al. [37], who concluded 
that the clinical intake of carbapenems has increased, 
leading to a rise in the number of pathogen isolates pro-
ducing carbapenemases. The increased prevalence of 
bacterial species carrying ESBL genes, as reported world-
wide, included community-acquired Escherichia coli iso-
lates with the ability to produce ESBLs [38]. Moreover, 
this result agrees with Cantón et al. [39], who discussed 
that KPC, OXA, and NDM involve three of the ‘big five’ 
carbapenemases associated with nosocomial contagions. 
The global increase in carbapenemase-producing Entero-
bacteriaceae (CPE) has led to the overuse of colistin. 
This overuse has raised concerns about the emergence of 
colistin resistance (mcr) genes in bacteria [40], which are 
already resistant to many other antibiotics. Additionally, 
data on colistin-resistant E. coli and mcr genes in camels 
are lacking. Given the increasing use of camels for meat 
and milk production, this is a concern, raising the pos-
sibility that camels play a role in transmitting colistin-
resistant bacteria to humans.

the present study showed a surprising occurrence of 
mcr genes in E. coli isolates where the total prevalence of 
colistin resistance genes in E. coli isolates was 29 (Table 5) 
and these findings was much higher than those obtained 
by Rhouma et al., who found no colistin resistance in E. 
coli isolated from camel feces in southern Tunisia [41].

Veterinarians working with camels face a significant 
challenge because there is no approved anti-microbial to 
treat bacterial infections in these animals. Anti-microbi-
als approved for ruminants, horses, or other animal spe-
cies to treat sick camels have proven ineffective due to 
the unique physiology of camels [42].

In a recent study in Egypt, Kamel et al. [43] investi-
gated carbapenem-resistant Gram-negative bacteria 
isolated from febrile paediatric cancer patients from 
October 2014 to December 2016. The study revealed that 
blaOXA−48 was the most ubiquitous carbapenemase gene 
(58.62%), followed by blaNDM (27.58%), blaVIM (10.3%), 
and blaKPC (6.89%).

Evidence shows that camels could be a significant 
source of mcr gene contamination for Egypt’s local pop-
ulation and tourists. This is because camels and tour-
ists often come into close contact, potentially spreading 
resistant bacteria globally.

New plasmid-mediated mcr genes have rapidly 
emerged in the past four years, compromising the thera-
peutic effectiveness of colistin, a last-resort antibiotic 
used to treat multidrug-resistant bacterial infections [44].

The mcr-1 and mcr-2 genes have engrossed worldwide 
consideration, heralding the polymyxin gap. However, 
in this study, the mcr-3 gene exhibited a prevalence of 
28% compared with the mcr-1, mcr-2, mcr-4, and mcr-5 
genes, which had prevalence rates of 4%, 2.6%, 45%, and 
0%, respectively. These results agree with Yin et al. [45], 
who examined a colistin-resistant Escherichia coli isolate. 
The study yielded negative results for mcr-1 and mcr-2 
and discovered a novel mcr-3. They found wide-ranging 
mcr-3 between Enterobacteriaceae and Aeromonas spe-
cies initiating from clinical infections and environmental 
specimens across twelve countries on four continents.

E. coli, normal inhabitants of the intestines of humans 
and mammals, potentially represent a significant reser-
voir of AMR and play a vital role in gaining and propa-
gating AMR mechanisms. Since colistin is widely used 
in veterinary medicine and is increasing in use in human 
medicine, it is crucial to continuously monitor the spread 
of mcr genes in both the agricultural and healthcare sec-
tors. This can be achieved by tracking the presence of 
mobile colistin resistance determinants in colistin-resis-
tant Gram-negative bacteria [46].

Conclusion
STEC is a significant foodborne zoonotic bacterium, 
and camels may play a role in transmitting E. coli, which 
resists many antibiotics to humans. These results rec-
ommend the need for careful veterinary practice of 
beta-lactams in the camel industry. For the first time in 
Egypt, camels could become a source of the mcr-3 gene. 
Therefore, the search for the mcr-3 gene should be imme-
diately encompassed in investigating colistin-resistant 
Gram-negative bacteria from animals, humans, and the 
environment.
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