
Wyss et al. BMC Microbiology           (2024) 24:69  
https://doi.org/10.1186/s12866-024-03195-7

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Microbiology

Development of non-alcoholic 
steatohepatitis is associated with gut microbiota 
but not with oxysterol enzymes CH25H, EBI2, 
or CYP7B1 in mice
Jacqueline Wyss1†, Tina Raselli2†, Annika Wyss2, Anja Telzerow3, Gerhard Rogler2, Niklas Krupka1, 
Bahtiyar Yilmaz1,4, Thomas S. B. Schmidt3*† and Benjamin Misselwitz1,2† 

Abstract 

Liver steatosis is the most frequent liver disorder and its advanced stage, non-alcoholic steatohepatitis (NASH), will soon 
become the main reason for liver fibrosis and cirrhosis. The “multiple hits hypothesis” suggests that progression from sim-
ple steatosis to NASH is triggered by multiple factors including the gut microbiota composition. The Epstein Barr virus 
induced gene 2 (EBI2) is a receptor for the oxysterol 7a, 25-dihydroxycholesterol synthesized by the enzymes CH25H 
and CYP7B1. EBI2 and its ligand control activation of immune cells in secondary lymphoid organs and the gut. Here we 
show a concurrent study of the microbial dysregulation and perturbation of the EBI2 axis in a mice model of NASH.

We used mice with wildtype, or littermates with  CH25H−/−,  EBI2−/−, or  CYP7B1−/− genotypes fed with a high-fat diet 
(HFD) containing high amounts of fat, cholesterol, and fructose for 20 weeks to induce liver steatosis and NASH. 
Fecal and small intestinal microbiota samples were collected, and microbiota signatures were compared according 
to genotype and NASH disease state.

We found pronounced differences in microbiota composition of mice with HFD developing NASH compared 
to mice did not developing NASH. In mice with NASH, we identified significantly increased 33 taxa mainly belonging 
to the Clostridiales order and/ or the family, and significantly decreased 17 taxa. Using an Elastic Net algorithm, we 
suggest a microbiota signature that predicts NASH in animals with a HFD from the microbiota composition with mod-
erate accuracy (area under the receiver operator characteristics curve = 0.64). In contrast, no microbiota differences 
regarding the studied genotypes (wildtype vs knock-out  CH25H−/−,  EBI2−/−, or  CYP7B1−/−) were observed.

In conclusion, our data confirm previous studies identifying the intestinal microbiota composition as a relevant marker for NASH 
pathogenesis. Further, no link of the EBI2 – oxysterol axis to the intestinal microbiota was detectable in the current study.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) has a global 
prevalence of 32% [1, 2], and currently constitutes 
the most frequent liver disorder. With global trends 
towards adaptation of a Western lifestyle worldwide, 
the number of people affected by NAFLD will rise even 
further. NAFLD comprises benign liver steatosis; how-
ever, it may progress to non-alcoholic steatohepatitis 
(NASH) [3, 4] which can lead to liver fibrosis and liver 
cirrhosis with related complications including hepa-
tocellular carcinoma. Since viral hepatitis has been 
substantially declining in the last decade due to the 
availability of effective antiviral treatments, NAFLD/
NASH will soon become the main reason for liver 
fibrosis and cirrhosis [5]. Subsequently, NAFLD/NASH 
will pose a significant clinical and economic burden on 
the healthcare systems [6, 7].

The pathogenesis of NAFLD and NASH is criti-
cally linked to a metabolic state with overabundance 
of macronutrients including free fatty acids (FFA). 
NAFLD is characterized by synthesis and accumula-
tion of triglycerides in the liver. Importantly, NAFLD is 
associated with other metabolic diseases such as obe-
sity, type 2 diabetes mellitus and dyslipidemia, a con-
stellation of conditions termed “metabolic syndrome” 
[8, 9]. NASH is characterized by a hepatic inflamma-
tory reaction [10]. However, only a subset of patients 
exhibiting similar metabolic comorbidities and dietary 
risk eventually develops NASH. The key steps mediat-
ing the progression of benign steatosis to NASH remain 
incompletely understood. A multiple hits hypothesis 
has been suggested in which additional adverse effects 
mediate hepatic inflammation [11]. Main inflammatory 
triggers include the alteration of lipid metabolism, with 
changes in the generation of adipokines and cytokines 
and increased oxidative stress inside the liver. Further 
the gut microbiota has been suggested as one key factor 
for NASH pathogenesis [10, 12, 13].

A possible causal role of the gut microbiota in the 
generation of hepatic steatohepatitis has been sug-
gested, as in mice NASH can be induced by trans-
plantation of dysbiotic gut microbiota, whereas the 
transplantation of complete healthy gut microbiota can 
alleviate NASH susceptibility [14–17]. The exact role 
of the gut microbiota in NASH pathogenesis is still 
unknown. Gut endotoxins, mainly bacterial lipopol-
ysaccharides (LPS), have been shown to promote 
hepatic inflammation [18]. Further possible hypoth-
eses involve induction of a microbiota-induced gut 
barrier dysfunction by increasing epithelial permeabil-
ity, shifts in bile acid composition influencing micro-
biota community structure, and bacterial metabolites, 

like ethanol, influencing hepatic metabolism [19]. 
Increased permeability of the intestinal epithelium 
facilitates the transfer of bacterial lipopolysaccharides 
to the systemic circulation which can further promote 
proinflammatory effects [20].

Oxysterols are cholesterol metabolites, generated by 
enzymatic and non-enzymatic cholesterol oxidation 
[21]. They constitute precursors for bile acid synthe-
sis but have also been implicated in sterol homeostasis 
and immune regulation [22]. One example of immune 
regulation via oxysterols is the EBI2-oxysterol axis. The 
Epstein Barr virus induced protein 2 (EBI2 – also known 
as GPR183) belongs to the family of G protein-coupled 
receptors [23]. Two landmark papers have identified 
EBI2 as a high-affinity receptor for the oxysterol 7a, 
25-dihydroxycholesterol (7a, 25-diHC), generated by 
the enzymes cytochrome P450 7B1 (CYP7B1) and cho-
lesterol 25-hydroxylase (CH25H) [24, 25]. EBI2 and its 
ligand 7a, 25-diHC have been implicated in the position-
ing and the activation of B cells, T cells, and dendritic 
cells and the generation of an efficient antibody response 
[26–28]. Further, the 7a, 25-diHC synthesizing enzyme 
CH25H has additional roles in inflammation [29] and has 
been involved in intestinal fibrosis [30].

Some evidence suggests a role of oxysterols in liver 
inflammation including NASH [22, 31–35]. However, the 
role of oxysterols in NASH pathogenesis is not yet fully 
understood. In a detailed previous study from our group, 
levels of 24- and 7-hydroxylated oxysterols were sig-
nificantly increased in human NASH. However, murine 
knockouts of CH25H, EBI2 and CYP7B1 neither effected 
liver function tests, nor liver inflammatory markers, his-
tological NAFLD activity or liver fibrosis in a long-term 
feeding model of NASH [31].

A connection between the microbiota and the EBI2-
oxysterol axis, as well as the oxysterol precursor cho-
lesterol has been suggested [36–38]. The bacterial 
metabolite lauroyl tryptamine can act as an antago-
nist of EBI2 in  vitro. Intestinal lauroyl tryptamine 
production was attributed to gene clusters found in 
diverse Clostridia and has been demonstrated in  vitro 
by Eubacterium rectale [39]. Other bacterial metabo-
lites such as short chain fatty acids (SCFA) can act as 
GPR41 and GPR43 ligands and in turn down-regulate 
cholesterol transport and synthesis [36, 40]. Finally, the 
intestinal microbiota also has general effects on choles-
terol levels. For example, bile salt hydrolases from Lac-
tobacillus strains can deconjugate bile acids, leading to 
reduced reabsorption and lower circulating cholesterol 
levels [36]. Further, multiple Eubacterium and Lactoba-
cillus strains can biotransform cholesterol into copros-
tanol, facilitating elimination with feces [37, 41].
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Taken together, EBI2 and CH25H have profound effects 
on the intestinal immune system; however, the role of 
the EBI2-oxysterol axis on the intestinal microbiota in 
health and disease (e.g., NASH) is unknown, justifying 
a detailed investigation. The high degree of interconnec-
tion between metabolic state, oxysterol regulation, and 
microbiota, creates a challenge for disentangling individ-
ual effects. We used samples from a previous study [31] 
to assess any concurrent relationship between players of 
the EBI2-oxysterol axis and microbiota composition in a 
murine-feeding model of NASH [31].

Methods
Murine feeding model
Approval by the local animal welfare authority (Tierschutz-
kommision Zürich, Zurich, Switzerland; registration num-
ber ZH 50/2013) was granted for the experimental protocol 
for animal testing. All animals used had a C57BL/6 back-
ground. Knockout animals for CH25H  (Ch25h−/−), EBI2 
 (Ebi2−/−), and CYP7B1  (Cyp7b1−/−) were generated as pre-
viously described [31]. The initial knockout animals were 
provided by Novartis Institutes  (Ch25h−/− and  Ebi2−/−) or 
purchased from Jackson Laboratories  (Cyp7b1−/−). Het-
erozygous mice were subsequently crossed with each other 
to obtain wild-type  (Ch25h+/+,  Ebi2+/+, or  Cyp7b1+/+) and 
knockout  (Ch25h−/−,  Ebi2−/−, or  Cyp7b1−/−) littermates. 
The mice used were eight-week-old littermates, housed 
under specific pathogen-free conditions in individually 
ventilated cages.

We induced NAFLD/NASH by a murine feeding model 
in C57BL/6 mice by supplying the animals for 20 weeks 
with a high-fat, high-cholesterol diet (HFD; ssniff Spezi-
aldiäten GmbH) and a high-fructose corn syrup equiva-
lent (55% fructose and 45% glucose, at a concentration 
of 42 g/l) in the drinking water as described previously 
[31]. Control mice (standard diet, STD) were fed stand-
ard chow (Provimi Kliba) and water ad libitum. Wildtype 
and knockout animals were sacrificed and tested regard-
ing clinical and histological hallmarks of NASH after 20 
weeks [31]. Further, microbiota samples from the small 
intestine and feces were collected. Liver samples were 
assessed by histology to score for the presence of steatosis, 
the occurrence of cellular hypertrophy or ballooning, and 
the presence of necroinflammation to diagnose NASH.

In total, 68 mice were investigated under HFD in the 
study and 42 fecal samples could be analyzed. From con-
trol animals under STD 54 fecal samples were included in 
the analysis (Table 1).

16S rRNA amplicon sequencing
DNA was extracted using DNEasy PowerSoil kits 
(Qiagen, Hilden, Germany) as per the manufacturer’s 
instructions. Targeted amplification of the 16S rRNA V4 

region (primer sequences F515 5’-GTG CCA GCMGCC 
GCG GTAA-3’ and R806 5’-GGA CTA CHVGGG TWT 
CTAAT-3’ [42], was performed in a two-step barcoded 
PCR protocol using the FailSafe PCR PreMix (Lucigen, 
WI, USA) according to the manufacturer’s instructions. 
PCR products were pooled, purified using size-selective 
SPRIselect magnetic beads (0.8 left-sized), and then 
sequenced at 2 × 250bp on an Illumina MiSeq (Illumina, 
San Diego, CA, USA) at the Genomics Core Facility, 
European Molecular Biology Laboratory, Heidelberg.

Raw 16S rRNA reads were trimmed, denoised, and fil-
tered to remove chimeric PCR artefacts using DADA2 
[43]. The resulting Amplicon Sequence Variants (ASVs) 
were then clustered into Operational Taxonomic Units 
(OTUs) at 98% sequence similarity using an open-refer-
ence approach: reads were first mapped to the pre-clus-
tered reference set of full-length 16S rRNA sequences at 
98% similarity included with MAPseq v1.2.6 [44]. Reads 
that did not confidently map were aligned to bacterial 
and archaeal secondary structure-aware SSU rRNA mod-
els using Infernal [45] and clustered into OTUs with 98% 
average linkage using hpc-clust [46], as described previ-
ously [47]. The resulting OTU count tables were noise fil-
tered by asserting that samples retained at least 400 reads 
and taxa were prevalent in at least 1% of samples; these 
filters removed 45% of OTUs as spurious, corresponding 
to 0.16% of total reads.

Data analysis
Local sample diversities were calculated as OTU rich-
ness, exponential Shannon entropy and inverse Simp-
son index (corresponding to Hill diversities of order 0, 
1, and 2 [48]) as average values of 100 rarefaction itera-
tions to 400 reads per sample. Between-sample commu-
nity diversity was calculated as Bray–Curtis dissimilarity 
[49]. Trends in community composition were quantified 
using ordination methods (Principal Coordinate Analy-
sis, distance-based Redundancy Analysis) and tested 
using permutational multivariate analysis of variance 
(PERMANOVA [50]) or ANOVA, as implemented in the 
R package vegan [51].

Table 1 Overview of samples in regard to genotypes and NASH 
phenotype

Genotype NASH
(n = 20)

no NASH
(n = 22)

CH25H.WT 3 1

CH25H.KO 3 3

CYP7B1.WT 5 3

CYP7B1.KO 9 6

EBI2.WT 2 4

EBI2.KO 0 3



Page 4 of 15Wyss et al. BMC Microbiology           (2024) 24:69 

Machine learning models were built by randomly split-
ting data into test and training sets in 10 times repeated 
tenfold cross-validation. For each fold, models were 
trained using the Elastic Net algorithm as implemented 
in the R package siamcat [52]. Models were evaluated 
based on the average Area Under the Receiver Operating 
Characteristic curve (AUROC), averaged across valida-
tion folds. All codes used are deposited in the git reposi-
tory at https:// git. embl. de/ tschm idt/ ch25h- micro biome.

Results
Impact of a high‑fat diet on the intestinal microbiota
We used a high-fat diet (HFD) containing high amounts 
of fat and cholesterol with high-fructose corn syrup 
equivalent in the drinking water (42g/l) to induce NASH 
in mice. Animals were sacrificed at 20 weeks, and the 
degree of steatohepatitis was assessed in liver histology. 
As previously described, the HFD induced liver steato-
sis in most animals and NASH in approximately 50% of 
animals at 20 weeks, while the liver histology in controls 
remained normal, as described in detail before [31].

We analyzed the microbiota in fecal samples at 20 
weeks by 16S sequencing. The HFD resulted in signifi-
cant microbial changes in the mice. Taxa richness in stool 
samples of mice fed HFD was significantly lower than 

that of mice fed STD (Fig.  1A). This pattern persisted 
when richness was assessed by the exponential Shannon 
and the inversed Simpson diversity indices (Fig. S1). Diet 
further induced gross changes in the microbiota com-
munity structure. The ordination plot showed a clear dis-
tinction of the samples clustered together according to 
diet type (PERMANOVA R2 = 0.079, p ≤ 10^-4; Fig. 1B). 
Overall, these results suggest that HFD diet impacts on 
the microbiota composition and leads to a reduction of 
alpha diversity. Taken together, reduced alpha diversity 
and beta diversity shifts, hint towards microbial adapta-
tion with a reduced number of taxa in HFD.

Microbiota profile in stool samples and the small intestine
To analyze the small intestinal microbiota, we iso-
lated samples from the small intestine in mice with the 
HFD and STD controls. Species richness was higher 
in fecal samples than from samples collected from the 
small intestine; however, no difference in diversity was 
observed between the proximal, middle, and distal small 
intestines (Fig.  2A, Fig. S2). In the ordination analysis, 
fecal samples and small intestinal samples were signifi-
cantly separated, indicating a different microbiota com-
position (PERMANOVA R2 = 0.112, p ≤ 10^-4). Further, 
samples from different sites of the small intestine clus-
tered together, and a gradual shift from the proximal 

Fig. 1 Comparison of species richness and beta-diversity of mice under standard diet and high-fat diet. A Individual measurements of OTU 
richness after rarefaction to the lowest sequencing depth are depicted. Each dot represents a sample from a total of n = 43 mice. B PCoA depiction 
of beta-diversity measured by Bray–Curtis dissimilarity with colors indicating samples belonging to the standard diet and the high-fat diet group

https://git.embl.de/tschmidt/ch25h-microbiome
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to the distal intestine was detected with samples from 
the distal small intestine being closest to fecal samples 
(Fig. 2B).

Similar to fecal samples, small intestine samples also 
tended to cluster according to feeding type and dis-
ease status in all small intestinal sampling locations 
(Fig. 3A-C). However, the number of samples with suffi-
cient recovered DNA from the HFD group was very low 
(n = 27), thus limiting detailed comparisons. These find-
ings indicate a systematic shift in the microbiota compo-
sition in regard to feeding type and the NASH status on 
top of an underlying gradient of the microbiota composi-
tion along the longitudinal axis of the intestinal tract.

Microbiota profile according to NASH disease state
Upon 20 weeks of HFD, approximately 50% of animals 
developed NASH. Interestingly, NASH was associ-
ated with a higher (although only borderline significant) 
microbiota diversity compared to animals with HFD 

without NASH (Fig. 4A), indicating an association of the 
intestinal microbiota with liver inflammation beyond the 
HFD. The community analysis also indicated differences 
in microbiota community structures according to liver 
histology (PERMANOVA R2 = 0.108, p ≤ 10^-4) even 
though we observed a pronounced overlap in the mul-
tidimensional scaling map (Fig. 4B). Thus, the change in 
alpha and beta diversity appears to be linked to NASH 
progression. This suggests that even under the same feed-
ing regimen (all mice with HFD) the microbiota differed 
between individual animals. Limited associations could 
be detected between individual microbiota profiles and 
the occurrence of NASH, either as a triggering factor or a 
consequence of the liver disease.

Microbiota profile according to genotypes
Animals in our HFD trial comprised wildtype animals 
but also littermates with knockouts in the oxysterol 
receptor EBI2 or one of the 7a, 25-diHC synthesizing 

Fig. 2 Comparison of species richness and beta-diversity of intestinal samples from different body sites. A Individual measurements of OTU 
richness after rarefaction to the lowest sequencing depth are depicted. Each dot is representing a sample from a total of n = 77 mice. Plots are split 
according to sampling location. B PCoA depiction of beta diversity measured by Bray–Curtis dissimilarity with colors indicating sampling location

Fig. 3 Comparison of beta-diversity according to diet type between intestinal samples stratified by genotypes. PCoA depiction of beta diversity 
measured by Bray–Curtis dissimilarity of genotypes and diet type. Samples are color-coded as indicated by the figure legend. Genotypes: wildtype 
(wt) and knockout. Diet: standard diet (STD) and high-fat diet (HFD). A Distal small intestine. B Mid small intestine. C Proximal small intestine. The 
plot represents 14 HFD and 38 STD samples in the distal, 9 HFD and 26 STD samples in the mid, and 4 HFD and 42 STD samples in the proximal 
small intestine. Missing samples originate from technical inabilities to obtain successful sequencing results

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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enzymes CH25H or CYP7B1. When the fecal samples 
were stratified by diet, NASH status and genotypes, 
microbiota clustered distinctly according to diet and 
NASH (Fig.  5A-C) without apparent effects of the 
investigated genotypes wildtype, CH25H, EBI2, or 
CYP7B1. Similarly, samples from the distal, mid and 
proximal small intestine also showed no or only mini-
mal deviation according to genotype (Supplementary 
Fig.  3C-F). This indicates that the known modulating 
effect of the EBI2-axis on gut lymphoid structures was 
not relevant for gut microbiota alterations related to 
NASH pathogenesis.

Differential abundance analysis
We observed a significant increase of 33 OTUs and a 
decrease of 17 OTUs in animals with NASH compared 
to animals without NASH (Wilcoxon test, FDR-corrected 

p < 0.05). Among the enriched OTUs, 17 belong to either 
the Clostridiales order and/ or the Clostridiaceae family, 
3 were belonging to the Bacteroidales order, 2 belong-
ing to the Rikenellaceae family, one was identified as 
Akkermansia muciniphila, 2 were belonging to Rumino-
coccaceae family, two were Lactobacillus, one belonged 
to the Prevotellaceae family, one was an Eubacterium, 
another belonged to the Eubacteriaceae, two to the Oscil-
lospiraceae and one to the Eggerthellaceae family (Fig. 6).

Among the 17 OTUs depleted in NASH, 4 belong to 
Bacteroidales, one to Bacteroides, 2 to Lactobacillus, 3 to 
Clostridiales, 1 to Clostridium symbiosum, 1 to Prevotel-
laceae, one to Delftia, one belonging to Firmicutes, one 
to Porphyromonadaceae, one to Lachnospiraceae and one 
Oscillospiraceae (Fig. 6).

To test how these univariate associations could be 
harnessed to predict NASH status, we next trained 

Fig. 4 Comparison of species richness and beta-diversity of fecal samples according to NASH status. A Individual measurements of OTU richness 
after rarefaction to the lowest sequencing depth are depicted. Each dot is representing a sample from a total of n = 42 mice. Plots are split according 
to disease status. B PCoA depiction of beta-diversity measured by Bray–Curtis dissimilarity with colors indicating NASH status of mice

Fig. 5 Distance-based redundancy analysis of fecal microbiota samples according to genotypes with diet, genotype, and NASH status 
as explanatory variables. Samples are colored according to feeding type (blue: standard diet, green: high-fat diet). A  EBI2−/− (dark/light) 
versus wildtype. B  CH25H−/− (dark/light) versus wildtype. C  CYP7B1−/− (dark/light) versus wildtype. In these plots global centroids for genotype (`KO` 
vs `WT`) and diet (`STD` vs `HFD`) are shown; a larger distance of the centroids from `[0, 0]` indicate a stronger effect on community composition. 
The (constrained) vectors of continuous variable effects are shown (for NAS, q.0, q.1, q.2); the direction of the vectors relative to each other indicates 
if effects are correlated (same direction) or anti-correlated (different direction). q.0, q.1, and q.2 are Hill alpha-diversities; q.0 is (rarefied) taxa richness, 
q.1 and q.2 are effective taxa numbers weighted by taxa abundances

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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predictive models using the Elastic Net (ENET) algo-
rithm using 10 times repeated tenfold cross-validation 
(see Methods). The resulting models were moderately 
predictive of NASH at an AUROC of 0.64; interestingly, 
the algorithm exclusively picked microbiome features, as 
other features were homogenously distributed among the 
populations with and without NASH.

Discussion
We provide evidence that fecal and intestinal microbi-
ota composition in a murine feeding model of NASH 
differ between mice developing NASH and the ones 
that do not, according to liver histology upon feed-
ing with a high fat diet. In mice with NASH, 33 OTUs 
were significantly enriched, mainly stemming from the 
Clostridiales order or the Clostridiaceae family, while 
17 OTUs were significantly depleted (Fig.  7). In con-
trast, the microbiota composition did not reveal strong 

differences between wildtype,  CH25H−/−,  EBI2−/−, 
or  CYP7B1−/− animals. The most striking difference 
between the enriched OTUs comparing NASH and 
non-NASH mice in our study was the generally higher 
abundance of members of the Clostridiales order or the 
Clostridiaceae family in the NASH mice, while some 
members were also decreased. This might reflect a high 
baseline abundance of these taxa in the murine intes-
tinal microbiota under a high-fat diet [53]. It has to be 
noted that several members of this clade are metaboli-
cally active and might therefore benefit from the high 
influx of easily accessible metabolites [54, 55]. Many 
species of these anaerobic bacteria ferment indigestible 
polysaccharides and are one of the main producers of 
SCFAs. SCFA have anti-inflammatory effects and are 
generally associated with positive health outcomes in 
many settings. However, NASH-associated taxa from 

Fig. 6 Identification of microbiota signatures according to NASH status after classification by SIMCAT. The importance of specific microbial taxa 
for the classification according to NASH status is shown. The weight of individual taxa used for classification is indicated together with individual 
effect size and robustness of classification. OTUs are named by their lowest taxonomic resolution and are colored according to their classification 
status (brown: NASH, green: no-NASH). The heatmap indicates taxa as features with sample abundance colored by the corresponding Z-scores. The 
panel at the bottom of the figures indicates the metadata available to the model (Classification: Result of Enet classification. Gene (cohabitation): 
Mice raised in the same cage. Genotype: wildtype vs knock-out  CH25H−/−,  EBI2−/−, or CYP7B1.−/−. Fibrosis: Histology scoring of liver. NASH: Outcome 
measure of occurrence of NASH. q0: (rarefied) taxa richness).The panel with the title ENET model represents the weight statistic of the model 
(number of top features and their weight in the complete model)
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our study with documented SCFA production are not 
limited to Clostridiales and Clostridiaceae. The family 
Oscillospiraceae belongs to the Clostridia class as well 
and includes SCFA producing bacteria like Faecalibac-
terium prausnitzii [56]. Other NASH-associated taxa in 
our study, involved in SCFA production are Prevotel-
laceae and Lachnospiraceae [57–61].

On the other hand, effects of Clostridiales and Clostri-
diaceae might also be mediated by other mechanisms. 
Some Clostridiaceae can degrade polyphenols, thereby 
mitigating potential anti-oxidative effects of this class 
of molecules [62]. Furthermore, Eubacteriaceae of the 
Clostridia class also contribute to enzymatic bile acid 
and cholesterol transformations [63]. Among NASH-
associated non-Firmicutes, Eggerthellaceae of the phylum 
Actinomycetota are not saccharolytic and perform unu-
sual chemical transformations involving amino-acids and 
polyphenols [64, 65].

Lactobacillus are characterized by their fermentation 
of carbohydrate to lactic acid which is widely used in the 
food industry. Apart from this they are able to produce a 
wide range of other metabolites like SCFAs, amines, bac-
teriocins and vitamins [57]. They are commonly used as 

probiotics for intestinal and metabolic health [58]. Some 
Lactobacillus taxa were positively, others negatively asso-
ciated with NASH in our study (Fig. 6); however, the rea-
sons for the respective effects are unknown.

Surprisingly, also Akkermansia muciniphila was associ-
ated with NASH in our analysis. Generally, Akkermansia 
is considered to be a probiotic bacterium with positive 
influence against metabolic diseases, including NASH 
and obesity [66–68]. It is using mucin as a carbon and 
energy source producing SCFAs and oligosaccharides 
as main metabolites [69].  Porphyromonadaceae were 
negatively associated with NASH in our study; in agree-
ment with past human observations related to increased 
human life span and reduced visceral fat [70, 71].

Previous microbiota signatures found in mice with 
NASH induced by several feeding models proved incon-
sistent so far. Similar to our results, a differential expres-
sion of some taxa with a high abundance of Lactobacillus 
and Akkermansia has been described, [72, 73] while other 
groups reported differing findings [72–77].

The microbiota composition between animals fed with 
the HFD compared to the STD was markedly different. 
The lower species richness of the intestinal microbiota 

Fig. 7 Summary of the evidence and model of the interplay between gut microbiota, oxysterol synthesizing enzymes and NASH: Levels 
of 24- and 7 hydroxylated oxysterol in liver biopsies are elevated in human NASH (upper left [31]). In a murine feeding model of NASH, relative 
abundance of some bacterial taxa of the intestinal differed between animals with and without NASH. Because of limits in the taxonomic resolution 
some OTUs with identical assignment were found in both conditions. Mechanistic effects of the intestinal microbiota and NASH have not been 
addressed by the current study but microbial metabolites absorbed from the intestine might mediate the induction of liver inflammation
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under a HFD is lower in accordance with previous stud-
ies [59]. On a taxonomic level, microbiota signatures in 
mice provided with an HFD are consistently character-
ized by an increase of Firmicutes and a decrease of Bac-
teroidetes [78]. On lower taxonomic levels, findings are 
more complex; however, in one study a swift and dis-
tinct increase of Clostroidales, Verrucomicrobiales and 
Erysipelotrichiales upon a high-fat diet challenge was a 
reproducible finding across multiple wildtype strains of 
mice [79]. Animal studies have thus provided important 
insights into microbiota changes associated with NASH. 
The use of animal models permits standardization of 
the investigated subjects regarding sex, feeding patterns 
and in regard to metabolic comorbidities (especially type 
2 diabetes) that are often difficult to control in human 
studies [80].

Our findings are in line with differences in human 
microbiota profiles in NAFLD and NASH compared 
to the composition in controls. Signatures differ from 
the ones observed in mice models. In human NASH, 
an enrichment of Proteobacteria has been consistently 
described [81–86]. On the family level an increase of 
Enterobacteriaceae [81, 84] and a decrease of Rikenel-
laceae [87] and Ruminococcaceae [81, 82, 88–90] has 
been observed. Several genera are consistently found 
to be increased (e.g. Dorea [82, 87, 91]) or decreased 
(Faecalibacterium [84], Coprococcus [84, 87, 90, 92, 93], 
Anaerosporobacter [92]). Furthermore, a differential 
abundance in Lachnospiraceae [81, 82, 87, 92] has been 
commonly but less consistent described. To note, NASH 
shows some shared dysbiotic patterns similar to other 
metabolic diseases like obesity or type 2 diabetes mellitus 
[94] with decreased Clostridium levels [83, 85, 87, 88, 95] 
and increases in Lactobacillaceae including Lactobacillus 
[82, 85, 87, 88, 90–93, 95–97] which in turn are shared 
with the profile detected in the current study.

The comparison of wildtype mice with  CH25H−/−, 
 EBI2−/−, or  CYP7B1−/− animals did not reveal relevant 
differences in their microbiota composition. Therefore, 
effects of the EBI2-oxysterol axis on the formation of 
intestinal lymphoid structures, positioning of B cells in 
the colon and intestinal IgA levels did not notably affect 
bacterial populations [24–26]. Notably, the design of our 
study with litter mates of wildtype and knockout animals 
with the same diet but differing only by the genotype 
would enable detection also of subtle microbiota shifts 
with high sensitivity. While this argues against a relevant 
impact of the EBI2-oxysterol axis on the microbiota com-
position in NASH, other oxysterols might still be rel-
evant, especially since bile acids and other products of 
liver metabolism can shape the gut microbiota [98]. Bile 
acids are modified by the intestinal microbiota and are 
reabsorbed as secondary bile acids which have important 

immune regulatory functions [99–101]. The composition 
and amount of bile acid secreted has been shown to be 
influenced by dysbiosis [102], and concurrent changes of 
bile acid composition and microbiota aberrations have 
been found in human NASH patients with hepatocellular 
carcinoma [88]. The upregulation of bile acids can thus 
have a direct effect on microbiota composition, favor-
ing strains with better adaption to higher bile acid con-
centrations [103]. Therefore, complex indirect effects of 
changes in sterol synthesis affecting the gut microbiota 
have to be considered in studies addressing the intestinal 
microbiota and hepatic sterol metabolism.

Therapeutic efforts in liver steatosis and NASH are cur-
rently centered around lifestyle modification. While these 
are effective in reversing early disease stages, patient 
compliance is often lacking, limiting therapeutic suc-
cess [104]. Additional medical therapies are currently 
under investigation [11, 83, 105], potentially preventing 
and reversing NAFLD; however, no effective treatment 
for fibrosis is available yet. In end-stage liver disease, 
liver transplantation ultimately remains the only treat-
ment option. Thus, understanding relevant factors of the 
gut microbiota influencing the progression of liver stea-
tosis to NASH can potentially indicate new therapeutic 
targets. Notably, gut microbiota directed therapies have 
shown clinically relevant results. Modulation of gut 
microbiota in by symbiotic therapy was able to reduce 
liver steatosis [76, 106–109].

Our study has several strengths and limitations. 
Strengths include the use of a relevant animal feeding 
model mimicking human NASH pathogenesis. Although 
generally NASH mice models do not show the full phe-
notype of human steatosis (especially hepatocyte bal-
looning) they are useful to investigate hepatic metabolic 
pathways [110]. Notably, blinded histological analysis of 
mice livers in the current study confirmed histological 
hallmarks of NASH in our feeding model [31]. Our study 
used littermates as controls, further reducing possible 
confounding factors.

An obvious limitation is the limited possibility of 
a direct translation of mice microbiota results to the 
human physiology. Further, human and murine oxys-
terol chemistry is complex, and our results only apply 
to EBI2 and its ligands and cannot be generalized to 
other oxysterols. Moreover, from many animals receiv-
ing a HFD, no sequencing results could be obtained in 
small intestinal samples, most likely for technical rea-
sons. More generally, 16S amplicon sequencing based 
microbiome profiling provides a limited taxonomic res-
olution, although our analysis of both OTUs and ASVs 
exploited the available taxonomic profile information 
as far as currently possible. A notable further limita-
tion is that Enterobacteriaceae which were reported 
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to be related to NASH status in previous studies are 
only present in low abundance in our specific pathogen 
free mice population, which has likely precluded their 
detection as discriminatory taxa in our analysis.

In conclusion, differential expression of several 
intestinal microbiota taxa was detectable according to 
NASH disease state, confirming and expanding previ-
ous results. However, no impact of all tested genotypes 
(EBI2, CH25H, CYP7B1) on NASH could be detected, 
arguing against a relevant interaction of gut microbiota 
dysbiosis and the EBI – oxysterol axis in our murine 
NASH model.
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