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Abstract 

The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis 
and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic 
skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associ-
ated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular 
disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiot-
ics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development 
should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it 
from both a clinical and a genomic perspective.
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Background
Wohlfahrtiimonas chitiniclastica was first isolated from 
the larvae of Wohlfahrtia magnifica [1], an obligate para-
sitic fly that causes myiasis by depositing eggs and larvae 
in wounds of both mammals and humans [2]. W. mag-
nifica (Diptera:Sarcophagidae) was first described by 

Schiner in 1962 [3]. Cells of W. chitiniclastica are Gram-
negative, strictly aerobic, non-motile rods. The G + C 
content of the DNA of the type strain DSM  18708T is 
44.3 mol% and the major fatty acids are C18:1 and C14:0 
[1]. Both catalase and oxidase reaction are positive, while 
biochemical tests for urease, indole and  H2S are negative 
[1]. A key feature is the strong chitinase activity, which 
may be an indicator of a symbiotic relationship with its 
host fly and also plays an important role in metamorpho-
sis [1, 4, 5]. To date, several case reports have been pub-
lished suggesting that W. chitiniclastica can cause various 
diseases in humans as a zoonotic pathogen [6]. Although 
the pathogenesis of W. chitiniclastica has not been fully 
elucidated, the bacterium is expected to invade trau-
matic skin lesions through fly larvae, resulting in severe 
myiasis and/or wound contamination [2, 5–7]. Myiasis 
is defined as the infestation of living humans and verte-
brates with dipteran larvae (maggots) that feed, at least 
for some time, on dead or living tissues, liquid body sub-
stances, or ingested food of the host [2]. In this review, 
we summarize the currently available knowledge on W. 
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chitiniclastica and evaluate it from a clinical and genomic 
perspective. Since elucidating the significance of W. chi-
tiniclastica as a human pathogen is a major focus of our 
research, we also refer in this review to previously pub-
lished data from our own scientific work [6, 8]. The aim 
of this manuscript is therefore to point out gaps in our 
knowledge on W. chitiniclastica by summarizing the cur-
rently available data and thus to lay the foundation for 
further research on this species.

Recently, it could be shown that W. chitiniclastica is of 
importance for both veterinary and human medicine [8]. 
Although insects currently appear to be responsible for 
the main transmission, other transmission routes (e.g. 
through the contact with soil) may be possible as well 
[6, 9] (Fig. 2). However, these potential routes still need 

to be clearly elucidated in future studies. The fact that 
W. chitiniclastica harbours a resistance to heavy metals 
(especially arsenic) could assure this species a survival 
advantage [9]. In addition, it would also make sense to 
further clarify if other insects (not only flies) are associ-
ated with W. chitiniclastica infections. This is of particu-
lar interest since W. chitiniclastica occurs worldwide and 
does not seem to be restricted to a particular climate 
zone [6]. In addition, it can be assumed that W. chitini-
clastica was not detected in the past due to incorrect 
identification. According to recent studies, a secure iden-
tification of W. chitiniclastica is possible using MALDI 
TOF MS or sequencing of the 16S rRNA gene [6]. With 
the increasing use of MALDI TOF MS in routine labo-
ratories worldwide, it can be assumed that the number 

Ignatzschineria indica

Ignatzschineria cameli

Ignatzschineria ureiclastica

Ignatzschineria larvae

Wohlfahrtiimonas chitiniclastica

Wohlfahrtiimonas populi

Wohlfahrtiimonas larvae

Tree scale: 0.01

Fig. 1 Neighbor-joining phylogenetic tree of partial 16S rRNA gene sequences. Sequences of the type strains were retrieved from GenBank: W. 
chitiniclastica (accession number AM397063), W. populi (accession number KT988034), W. larvae (accession number JN873914), I. larvae (accession 
number AJ252143), I. ureiclastica (accession number EU008089), I. indica (accession number EU008088|), and I. cameli (accession number LC377575). 
Phylogenetic tree construction was completed using NGPhylogeny [151] and visualized with iTOL [152]

Fig. 2 Schematic representation of the possible transmission routes of W. chitiniclastica. This figure was created with BioRender.com 
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of clinical case reports will increase. This will allow risk 
factors such as poor hygienic conditions, chronic wounds 
or diabetes mellitus to be more clearly defined and con-
tribute to a better epidemiological understanding. As 
there is currently no surveillance system for rare human 
pathogenic bacteria, clinical case reports play a crucial 
role in further understanding the epidemiology of W. 
chitiniclastica infections. Since this bacterium is usually 
part of a polymicrobial infection, future studies need to 
be conducted to elucidate pathogenicity by exclusively 
investigating W. chitiniclastica isolates. For instance, 
such studies could address the interaction of W. chitini-
clastica with the host organism, both in vitro and in vivo 
(e.g., elucidation of the infection route, interaction with 
the human skin or the immune system) but also with 
other microorganisms. As far as sensitivity to antimicro-
bial agents is concerned, there is a pronounced (possibly 
primary) resistance to fosfomycin, the genetic basis of 
which is still unclear. Nevertheless, most isolates seem to 
be sensitive to quinolones and trimetoprim/sulfameth-
oxazole. Although W. chitiniclastica is currently regarded 
as a rare pathogen, it is likely that due to the growth of 
the world’s population (and thus closer contact between 
humans and animals), the number of zoonotic infec-
tions such as the ones caused by W. chitiniclastica, will 
increase [10].

Members of the genus Wohlfahrtiimonas
The genus Wohlfahrtiimonas of the class Gammapro-
teobacteria was first established by Tóth et  al. in 2008 
[1], and it currently consists of three species [11, 12]. 
These include W. chitiniclastica, Wohlfahrtiimonas 
populi [13] and Wohlfahrtiimonas larvae [14] (Fig.  1). 
Both, W. chitiniclastica and W. larvae were first iso-
lated from the larvae of dipteran flies [1, 14], whereas 
W. populi was isolated from the bark tissue of the 
Canadian poplar (Populus canadensis) [13]. To our 
knowledge, neither W. larvae nor W. populi have been 
associated with infections in animals or humans. Note-
worthy, the genus Wohlfahrtiimonas belongs to a dis-
tinct lineage close to Ignatzschineria larvae which was 
isolated from first and second larval stages of same fly 
W. magnifica [15, 16]. Like W. chitiniclastica, I. larvae 
are considered emerging human and animal pathogens, 
and have been linked to infections caused by maggot 
infestation of open wounds [11].

Zoonotic transmission routes of W. chitiniclastica
W. chitiniclastica has been described as part of the 
physiological flora of several fly species such as W. 
magnifica [1], Lucilia sericata (Meigen, 1826) (Dip-
tera: Calliphoridae) [17–19], Lucilia illustris (Meigen, 
1826) (Diptera: Calliphoridae) [20, 21], Chrysomya 

megacephala (Fabricius, 1794) (Diptera: Calliphoridae) 
[22, 23], Hermetia illucens (Linnaeus, 1758) (Diptera: 
Stratiomyidae) [14,  24,  25] and Musca domestica (Lin-
naeus, 1758) (Diptera:Muscidae) [26, 27]. To the best 
of our knowledge, flies mainly ensure the spread of 
W. chitiniclastica by depositing larvae in wounds and 
ulcers of vertebrates, also referred to as myiasis [2, 5]. 
Of note, the potential application of I. larvae and W. 
chitiniclastica in forensic microbiology was recently 
investigated from necrophagous insect species [20]. The 
study showed that W. chitiniclastica was detectable in 
all developmental stages of L. illustris, with the high-
est abundances observed in the second and third larval 
stages [20]. Although further investigations targeting 
these bacterial species are required to confirm their role 
as colonization biomarkers in forensic investigations 
this report highlights the applicative potential of W. chi-
tiniclastica in forensic sciences [20].

In addition to the various fly species, other habitats 
and zoonotic transmission routes are also conceiv-
able (Fig. 2). W. chitiniclastica has also been detected in 
arsenic-contaminated soil [9], in the pancreas of a zebra 
[28], in frozen chicken meat [29], poultry chickens in the 
Noakhali region of Bangladesh [30], in aquatic plants 
from Egypt [31] and in the human gut microbiome of 
deceased individuals [32]. In addition to transfer by 
insects, transmission by contact with the environment 
or consumption of food also appears to be possible. For 
example, W. chitiniclastica was found abundant in fer-
mented animal and fish-based foods [33] and in chicken 
meat samples obtained from retail markets [34]. Finally, 
and more importantly, recent studies indicate that W. 
chitiniclastica may be the cause of several diseases in 
different organisms. These include marine fish [35, 36], 
turtles [37], various mammals [7, 38–40] and humans [5, 
41], making the bacterium a previously underestimated 
veterinarian and human pathogen [5, 8]. Initially, W. chi-
tiniclastica was described as strictly aerobic by Tóth et al. 
[1], whereas both W. populi and W. larvae were described 
as facultatively anaerobic [13, 14]. Recently, two case 
studies reported for the first time that the W. chitiniclas-
tica strain found in each case also grew under anaerobic 
conditions [42, 43]. The fact that W. chitiniclastica can 
colonize different species under aerobic and anaerobic 
conditions should be considered an advantage for the 
bacterium [8]. The facultative anaerobic lifestyle allows 
to utilize electron acceptors that are byproducts of host 
inflammation, thereby increasing its prevalence within 
the community [44]. On the other hand, it also poses an 
increased risk for zoonotic transmission, whose dynamic 
interactions between humans, animals, and pathogens 
should be considered in the context of the “One Health” 
approach [8, 45, 46].
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Human infections reported in association with W. 
chitiniclastica
As of June 2023, 43 cases of human infection associated 
with W. chitiniclastica have been published (Table  1). 
In addition, several case reports relevant to veterinary 
medicine have also been reported. These include a fatal 
infection in a deer [7], a hoof infection in a cow [38], a 
fulminant fish sepsis from India [35], septicemia in a 
soft-shelled turtle (Pelodiscus sinensis; Testudines, Tri-
onychida) [37], interdigital dermatitis in dairy cows [40], 
evidence of endocarditis infection in a dolphin [39], and 
preliminary animal infection experiments by Qi et  al. 
suggest that W. chitiniclastica is pathogenic to mice [38]. 
However, since the focus of this review is on the human 
pathogenic aspect, these reports are mentioned only for 
completeness. Remarkably, myiasis was not detected 
in any of these veterinary case reports, supporting the 
hypothesis that the organism colonizes other ecological 
niches besides the maggot flora [41].

Human patients with W. chitiniclastica infection share 
some common similarities and risk factors for infec-
tion [5, 41]. In particular, patients with chronic/necrotic 
wounds, cardiovascular disease and poor hygienic con-
ditions were strongly represented, whereas myasis or 
maggots were only detected in one-third of the patients 
(Fig. 3). In addition, an association with a history of dia-
betes, different drug abuse, neurological impairment 
and osteomyelitis was observed (Fig. 3). It is also worth 
mentioning that five cases had carcinoma disease as an 
underlying condition [6, 47–51]. Three of these case 
studies were part of a polymicrobial infection [6, 48, 49] 
suggesting that this bacterium may be an opportunistic 
human pathogen in immunocompromised patients.

The average age of onset of the patients listed in Table 1 
was 62 years. The youngest patient was 17 years old and 
the oldest patient was 90 years old. Thirty-two patients 
were male and 11 were female. In general, W. chitiniclas-
tica was isolated either from the bloodstream or from 
wound swabs (Fig. 4). In three cases it was a bone sam-
ple [31, 52, 53] and once directly from a fly larva [54]. In 
most cases, patients received antimicrobial treatment 
with β-lactam antibiotics, and the vast majority sur-
vived the infection (Table  1). Strikingly, W. chitiniclas-
tica was often part of a polymicrobial infection in which 
the bacterium was isolated together with other sepsis-
causing pathogens [6, 55]. For example, the bacterium 
has been described together with Klebsiella pneumo-
niae, Acinetobacter lwoffii, and Staphylococcus aureus as 
a possible source of infection [56]. In other case reports, 
polymicrobial infection with S. aureus, Aeromonas 
spp., Staphylococcus simulans, and Bacteroides fragilis 
[42] or with Escherichia coli [6] was observed. Accord-
ingly, it remains unclear whether W. chitiniclastica was 

the disease-causing pathogen or part of a polymicro-
bial infection or colonization. Although only rudimen-
tary information is available on the associated microbial 
community of the W. chitiniclastica case studies, simi-
larities with the microbiome described for diabetic foot 
syndrome can be identified [6]. In particular, the genera 
Staphylococcus, Pseudomonas, as well as Streptococcus 
have recently been described as dominant taxa in chronic 
diabetic foot ulcers [57–59], while Proteus spp. could not 
be detected in all patients [59]. Interestingly, W. chitini-
clastica was recently described as a non-dominant part of 
a microbiome from chronic diabetic ulcers in India [60]. 
However, there is currently no further evidence of a pos-
sible key role in relation to diabetes mellitus and diabetic 
comorbidities.

Although only a few clinical case reports are avail-
able (Table 1), there seem to be no correlation between 
polymicrobial infection and fatal outcome. In one case, 
it was reported that monomicrobial sepsis with W. chi-
tiniclastica resulted in the patient’s death [61], whereas 
in another infection, the patient survived [55]. Primar-
ily, the initial health status of the patient on admis-
sion to the hospital appears to have an influence on the 
outcome [5]. Nevertheless, the trend should be further 
monitored. Especially considering that antibiotic treat-
ment of chronic wounds such as diabetic ulcer does not 
significantly alter the composition of the microbiome but 
leads to the selection of resistant pathogens [62, 63]. The 
presence of multiple resistance genes in different species 
colonizing an ecological niche in close proximity to each 
other provides an ideal starting point to promote the for-
mation of multidrug resistance [63]. With respect to W. 
chitiniclastica, this means that the organism can quickly 
develop drug resistance and may become a serious threat.

Methods of identification ‑ what works well, less well 
and why?
Based on the current literature, biochemical approaches 
such as API (bioMérieux), BD Phoenix Gram Negative 
Panel (BD Biosystems) or VITEK 2 (bioMérieux) lead to 
false and misleading results for the identification of W. 
chitiniclastica [5, 6, 31, 41, 61]. Almuzara et al. used the 
API 20 NE system (bioMérieux, France) which resulted 
in the identification as Oligella urethralis (with 88.5% 
accuracy) [61]. Similar results were obtained by de Dios 
et  al., where W. chitinclastica was identified as Acineto-
bacter lwoffii and Brevundimonas diminuta with 98.1 
and 88.5% probability, respectively [56]. The BD Phoenix 
Gram Negative Panel (BD Biosystems, Sparks, MD) lead 
to a misidentification as Moraxella sp. with a low confi-
dence score of 90% [41]. The VITEK 2 system, used by 
many laboratories worldwide in microbial routine diag-
nosis [64], also proved to be ineffective in identifying 
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W. chitiniclastica isolates [6]. In particular, incorrect 
identification as A. lwoffii [6,  31,  38] or Comamonas 
testosteroni [56] occurred. Noteworthy, most results 
were above 96%, representing excellent species identi-
fication; nevertheless, misidentification was evident in 
all strains [6,  31,  38,  56]. To the best of our knowledge, 
the reaction profile of W. chitiniclastica is not currently 
included in the VITEK 2 database [6]. Of note, A. lwoffii 
has been described as part of the physiological skin flora 
of humans [65,  66] but can also cause severe infections 
in humans [67]. Therefore, correct identification, includ-
ing at the best the resistance profile, is crucial to limit the 
emergence and spread of multidrug-resistant species.

In contrast, MALDI TOF MS, 16S rRNA gene sequenc-
ing or rpoB analysis have been shown to be safe and reli-
able identification methods [6, 8]. However, since the 
rpoB approach is not widely established in clinical rou-
tine diagnostics yet, MALDI TOF MS and 16S rRNA-
based identification most likely remains by far the most 
frequently used method. It must be assumed that W. chi-
tiniclastica was often not detected in the past due to mis-
identification and that its prevalence in the hospital may 
have been significantly underestimated [6, 31].

Geographical distribution and epidemiological aspects
W. chitiniclastica has been detected as a zoonotic patho-
gen in a variety of geographic locations [6]. Initially, the 
infection was thought to occur only in countries with 
warm climates [7], but additional human cases have 
since been reported from a variety of geographic and 
climatic regions (Table  1). These include 20 cases from 
Europe, 15 from the United States, 5 from Asia and one 
each from Africa and Australia (Table  1). Recently, a 

study surprised with a newly discovered subspecies of 
W. chitiniclastica [6]. It was originally thought to be an 
adaptation to the human environment and geographic 
location [6], but recent follow-up studies rather suggests 
a broad host and environmental range [8, 68]. Consid-
ering that W. chitiniclastica may not be as rare as origi-
nally thought, the host and geographic range might be 
even wider. This underscores the importance of correctly 
identifying clinically relevant bacteria to monitor the 
global spread of infectious diseases and their potential 
geographic changes [69].

Antibiotic susceptibility of W. chitiniclastica
There have been several case reports on the antibiotic 
susceptibility testing of W. chitiniclastica indicating that 
the bacterium is generally susceptible to a wide range of 
antibiotics with the exception of fosfomycin [5, 6, 29, 70]. 
Figure  5 provides an overview of the resistance profiles 
of all strains in the 43 cases where human infection was 
reported. In particular, W. chitiniclastica was found 
to be sensitive to the majority of beta-lactam antibiot-
ics such as penicillin, cephalosporins, and carbapen-
ems. This is consistent with recent case reports in which 
infections were successfully treated with cephalosporins 
[4,  49,  71–73] and carbapenems [42,  74,  75]. Further-
more, no specific resistance genes were detected by pre-
vious in silico genomic analyses [6, 8]. Of note, one case 
reported a strain resistant to piperacillin/tazobactam and 
cefuroxime [47], and a blaVEB-1 gene cassette [68, 76] and 
blaOXA-1 gene cassette [77] were detected in a rudimen-
tary genomic report of two different W. chitiniclastica 
isolates (Table  2), conferring resistance to ceftazidime, 

Risk factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 #
Chronic/necrotic wound; ulcer 37
Cardiovascular disease 21
Poor hygienic conditions 17
Insect larvae/infested wounds 16
Diabetes mellitus (documented) 15
Nicotine abuse 11
Alcohol abuse 10
Homeless 9
Neurologic impairment 8
Osteomyelitis 7
Cancer 6
Obesity 5
Other drug abuse 4

Fig. 3 Comorbidities and risk factors for W. chitiniclastica infection described in the case report listed in Table 1. Heatmap visualizing the presence/
absence of comorbidities in each case. Blue color indicates presence and gray indicates absence. # refers to the total number 

Source of isolation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 #
Wound swab 23
Bloodstream 18
Bone sample 3
Fly larvae 1

Fig. 4 Source of isolation of W. chitiniclastica described in the case report listed in Table 1. The red color indicates the evidence shown. # refers to the 
total number 
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ampicillin, and extended-spectrum β-lactamases (ESBL) 
resistance to different antibiotic classes [78].

The majority of strains showed sensitivity to fluoroqui-
nolones (Fig. 5). This is consistent with recent case stud-
ies in which infection caused by W. chitiniclastica was 
successfully treated with levofloxacin [5,  49,  79]. The in 
silico genomic analysis performed also failed to detect 
resistance genes specific for fluoroquinolones [6, 8]. 
Noteworthy, some case reports show resistance to moxi-
floxacin, ofloxacin [6], and ciprofloxacin [47, 70]. There-
fore, when in doubt, levofloxacin should be preferred for 
planned treatment with fluoroquinolones.

Aminoglycosides such as amikacin, gentamicin, and 
tobramycin are among the broad-spectrum antibiot-
ics. Several studies have reported that W. chitiniclastica 
is resistant (Fig.  5) [5,  6,  47,  70], and resistance genes 
have been detected in different genomic studies [8, 77] 
(Table 2). Consequently, aminoglycosides are not recom-
mended as first-line therapy.

With respect to tetracycline, W. chitiniclastica tends to 
exhibit a diverse antibiotic susceptibility profile (Fig. 5). 
This observation is also reflected in recent case and 
research studies. While the majority still appears to be 
susceptible [6, 31, 41–43, 52, 56, 61, 74, 75, 80], increas-
ing incidence can be observed [4, 6, 47, 70]. Comparative 
genomic analysis reflected this picture and supported 

the hypothesis of a rather diverse distribution of tetra-
cycline resistance genes (Table 2) [6, 8, 68, 77]. Notewor-
thy, these included transposon-encoded tetR and tetC [8] 
as well as a plasmid carrying tetA(H) [68]. This under-
scored the hypothesis that the majority of resistance 
genes in W. chitinclastica genomes arose by horizontal 
gene transfer [8].

Many W. chitiniclastica strains are susceptible to tri-
methoprim/sulfamethoxazole [4,  43,  48,  49,  74]. How-
ever, initial resistant strains have been reported from 
South Africa [81] and Belgium [70], as well as some sul-
fonamide resistance gene-containing genomes (Table  2) 
[8,  77]. A plasmid-encoded alteration in dihydrofolate 
reductase leading to insensitivity to trimethoprim/sul-
famethoxazole is particularly common in bacterial patho-
gens [82] with pronounced geographic differences [83]. 
For example, trimethoprim/sulfamethoxazole has been 
shown to be particularly effective against enterotoxin-
producing E. coli and Shigella species in Guadalajara, 
Mexico [84], whereas resistance levels of > 90% have 
been observed in Thailand [85]. In the case of the resist-
ant W. chitiniclastica isolates [70, 81], it would be con-
ceivable that the organism has expanded its resistance 
profile through the uptake of a resistance plasmid. In 
addition, trimethoprim/sulfamethoxazole is a relatively 
inexpensive drug. Consequently, it has been widely used 

Antibiotic substance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Amikacin
Amoxicillin 
Amoxicillin-Clavulansäure
Amoxyclav
Ampicillin
Ampicillin/Sulbactam
Azithromycin
Aztreonam
Cefepim
Cefoperazone
Cefotaxime
Cefoxitine
Ceftazidim
Ceftriaxon
Cefuroxim
Chloramphenicol
Ciprofloxacin
Colistin
Doripenem
Ertapenem
Fosfomycin
Gentamicin
Imipenem
Levofloxacin
Meropenem
Minocycline
Moxifloxacin
Ofloxacin
Penicillin
Piperacillin
Piperacillin/Tazobactam
Rifampicin
Sefepim
Tetracycline
Tigecylin
Tobramycin
Trimethroprim/Sulfamethoxazole

Fig. 5 This heatmap presents the antibiotic resistance profiles for the W. chitiniclastica strains described in the case reports listed in Table 1. 
Susceptible isolates are highlighted in green color, and resistant isolates in red. Grey color is shown, if no information is available or no testing 
has been performed
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Table 2 Overview of all publicly available W. chitiniclastica genomes as of March 2023. In addition to information on the host, isolation 
source, and location, this table provides an overview of the respective genome size and antibiotic resistance genes detected

Strain Host Isolation source Location Reference Genome size (bp) # CDSs Antibiotic 
resistance genes

DSM 100374 Homo sapiens Wound swap Dresden, Germany [8] 2,079,313 1961 macA, macB, tehB

DSM 100375 Homo sapiens Wound swap Dresden, Germany [8] 2,103,638 1932 macA, macB, tehB

DSM 100676 Homo sapiens Wound swap Dresden, Germany [8] 2,139,975 1953 macA, macB, tehB, 
tet(H), tet(B)

DSM 100917 Homo sapiens Wound swap Dresden, Germany [8] 2,144,768 1955 macA, macB, tehB, 
tet(H), tet(B)

DSM 105708 Homo sapiens Wound swap Dresden, Germany [8] 2,084,087 1969 macA, macB, tehB, 
tet(H), tet(B)

DSM 105712 Homo sapiens Wound swap Dresden, Germany [8] 2,133,608 1960 macA, macB, tehB

DSM 105838 Homo sapiens Wound swap Dresden, Germany [8] 2,069,521 1910 macA, macB, tehB

DSM 105839 Homo sapiens Wound swap Dresden, Germany [8] 2,123,437 1966 macA, macB, tehB

DSM 105984 Homo sapiens Wound swap Dresden, Germany [8] 2,120,278 1965 macA, macB, tehB

DSM 106597 Homo sapiens Wound swap Dresden, Germany [8] 2,131,555 1966 macA, macB, tehB

DSM 108045 Homo sapiens Wound swap Dresden, Germany [8] 2,090,370 1950 macA, macB, tehB

DSM 108048 Homo sapiens Wound swap Dresden, Germany [8] 2,074,016 1952 macA, macB, tehB, 
abaF

DSM 110179 Homo sapiens Wound swap Dresden, Germany [8] 2,119,644 1965 macA, macB, tehB

DSM 110473 Homo sapiens Wound swap Dresden, Germany [8] 2,126,147 1970 macA, macB, tehB

DSM 18708 Wohlfahrtia mag-
nitica

3rd stage larvae 
of fly

Mezöfalva, Hun-
gary

[1] 1,991,020 1849 macA, macB, tehB

SH04 Chrysomya mega-
cephala

– Pudong, China [22] 2,181,980 2132 macA, macB, tehB

BM-Y Zebra Pancreas Shenzhen, China [28] 2,180,519 2029 macA, macB, 
tehB, tet(H), tet(D), 
ant(2″)-Ia, aac(6′)-Ia, 
ant(3″)-Ib, blaVEB-1

Strain_20 Chicken Chicken carcass Rio de Janeiro, 
Brazil

[29] 2,123,239 1958 macA, macB, tehB

ATCC 51249 Homo sapiens Arm New York, USA CDC, Atlanta, USA 2,136,105 1973 macA, macB, tehB

F6512 Homo sapiens Foot New York, USA CDC, Atlanta, USA 2,120,698 1968 macA, macB, tehB, 
tet(H)

F6513 Homo sapiens Leg New York, USA CDC, Atlanta, USA 2,115,422 1975 macA, macB, tehB, 
tet(H), aph(3″)-Ib, APH 
[6]-Id. sul2, strA

F6514 Homo sapiens Oral lesion New York, USA CDC, Atlanta, USA 2,112,239 1974 macA, macB, tehB, 
tet(H), aph(3″)-Ib, APH 
[6]-Id. sul2, strA

F6515 Homo sapiens Ankle New York, USA CDC, Atlanta, USA 2,134,718 2011 macA, macB, tehB

F6516 Homo sapiens Arm New York, USA CDC, Atlanta, USA 2,071,321 1892 macA, macB, tehB

F9188 Homo sapiens Leg wound Indiana, USA CDC, Atlanta, USA 2,127,263 1987 macA, macB, tehB, 
tet(B), aph(3′)-Ib, 
aph(3″)-Ib, APH [6]-Id, 
sul2, strA

G9145 Homo sapiens Wound Colorado, USA CDC, Atlanta, USA 2,182,988 2017 macA, macB, tehB, 
tet(B), aph(3′)-Ib, 
aph(3″)-Ib, sul2, strA, 
cat3

MUWRP0946 Homo sapiens Wound swap Kampala, Uganda [77] 2,080,419 1942 tet(H), sul2, dfrA1, 
blaOXA-1, aph(3″)-Ib, 
aac(6′)-Ib-cr
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worldwide for many different infections, which in turn 
has further promoted the development of resistance [86].

Macrolides, such as azithroymycin, clarithromycin and 
erythromycin, are antibiotics with bacteriostatic activ-
ity. As of June 2023, only Fenwick et  al. have reported 
an azithroymycin-resistant strain [41]. Another research 
study performed a comprehensive in  vitro resistance 
analysis, and demonstrated relatively high MIC (mini-
mal inhibitory concentrations) values for clarithromycin 
and erythromycin [6]. However, PK/PD (non-species-
related) breakpoints based on the EUCAST (European 
Committee on Antimicrobial Susceptibility Testing) were 
not available at that time. Consequently, an evaluation 
according to the criteria published by EUCAST was not 
possible, so that no final statement on resistance or sus-
ceptibility could be made [6]. In a follow-up study, it was 
shown that the macA and macB genes could be detected 
in all W. chitiniclastica genomes that were publicly avail-
able at that time (Table 2) [8]. The genes macA and macB 
encode for macrolide-specific efflux pumps [87, 88]. 
Therefore, primary resistance to macrolides is feasible. 
In addition, W. chitiniclastica appears to be resistant to 
tellurite (Table 2) [8]. This aspect is not surprising since 
potassium tellurite has been used extensively as an anti-
microbial agent in the past and, as a result, many Gram-
positive and Gram-negative bacteria have developed 
resistance [89].

Last but not least, W. chitiniclastica is known for its 
pronounced fosfomycin resistance [5,  6,  29,  70]. Sur-
prisingly, this is not reflected in previous genome stud-
ies [6, 8, 22, 28, 29, 77]. Only one genome reveals the 
presence of the transporter gene abaF (Table  2) [8], 
which confers resistance to fosfomycin [90]. Other 
well-described fosfomycin resistance genes, such as 
fosA, fosC, or fomB [91], do not appear to play a role. 
It is therefore suggested that W. chitiniclastica has an 
as yet undescribed resistance mechanism to fosfomycin 
that remains to be discovered [8].

Compared to other pathogens such as A. lwoffii, the 
antibiotic resistance profile of W. chitiniclastica is still 
relatively narrow [92]. Nevertheless, increasing drug 
resistance has been observed, and its development 
should be followed with caution (Fig. 5) [8]. For W. chi-
tiniclastica infection, levofloxacin and cephalosporins, 
such as cefepime, appear to be suitable options. However, 
it should be noted that sensitivity to antibiotics may vary 
depending on the strain and the specific conditions of 
infection. Because exposure to many antibiotics leads to 
tremendous selection pressure, including the spread of 
resistance [93], it is recommended that clinical isolates 
be tested for antibiotic susceptibility in order to select the 
most appropriate antibiotic treatment.

Striking genomic features of W. chitiniclastica and their 
relevance to adaptation to environmental change
As of June 2023, NCBI lists 28 genomes of W. chitini-
clastica strains (Table 2), 24 of which have been isolated 
in the course of human disease [8, 77]. The remaining 
genomes were isolated from an animal source [22, 28, 29]. 
A recent comparative genomic study has shed light on 
various aspects such as virulence factors, mobile genomic 
elements and pangenomic features [8]. The composi-
tion of the pangenome revealed a core genome size of 
43%, which is highly conserved compared to other spe-
cies such as Clostridium perfringens (12.6%) [94], Pseu-
domonas aeruginosa (26%) [95], and K. pneumoniae 
(26%) [96], to name a few. Bacteria with a comparatively 
large core genome often lack a diverse repertoire of vir-
ulence and resistance factors and are less able to adapt 
flexibly and rapidly to changing environmental condi-
tions [95, 97]. This is consistent with recent observa-
tions on W. chitiniclastica, which are susceptible to most 
known antibiotics except fosfomycin [5,  6,  29,  70], sup-
porting the notion that members of this species are meta-
bolically conserved compared with others [8]. However, 
this could change over time. Recent studies have shown 
that genome-encoded transposons, bacteriophages and 
plasmids are ubiquitous in W. chitiniclastica genomes 
[8, 29, 68], which could be a key element for the acquisi-
tion of new resistance genes [8]. Surprisingly, tetracycline 
resistance genes in particular were found to be associated 
with mobile genetic elements such as the tetA(H)-carry-
ing plasmid [68] and tetR and tetC encoded by Tn10 [8]. 
Tetracycline is a broad-spectrum antibiotic and is widely 
used in human and veterinary medicine to treat bacte-
rial infections due to its low price and limited side effects 
[98–100]. Moreover it has been added to animal feed as 
a growth promoter [98, 99]. A recent systematic review 
showed that there is still continuous contamination with 
tetracyclines in both aquatic and terrestrial animals, lead-
ing to selection pressure on antibiotic-resistant bacteria 
[98] and by that to an alarming rise in antibiotic resist-
ance to tetracycline [101]. As stated above, there is an 
increasing incidence of drug resistance within the W. chi-
tiniclastica clade, most likely acquired through horizon-
tal gene transfer. Noteworthy, all genomes studied to date 
contain CRISPR-Cas elements and so-called anti-CRISPR 
proteins (Acr) [8, 29, 77]. The acronym CRISPR stands 
for “Clustered Regularly Interspaced Short Palindromic 
Repeats” and is part of the adaptive immune system that 
enables prokaryotes to recognize and destroy invading 
foreign DNA [102]. Therefore, in theory, W. chitiniclas-
tica should be well equipped against invasive genetic 
elements including bacteriophages, plasmids, and trans-
posons [103]. On the other hand, Anti-CRISPR (Acr) 
proteins represent the regulatory counterpart and are 
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thought to be able to inhibit CRISPR-Cas actions [104]. 
Recent studies have shown that numerous acr genes are 
present in the genomes of various prokaryotes such as 
Moraxella bovoculi or Pseudomonas spp. to name a few 
[105, 106]. Indeed, more than 30% of P. aeruginosa strains 
contain both acr and CRISPR-Cas genes [107]. Moreover, 
a positive correlation between the presence of antimicro-
bial restiance genes and acr genes has been demonstrated 
[108]. Currently, the interplay between CRISPR-Cas 
immunity and ACR activities is thought to be a key ele-
ment in the adaptation of W. chitiniclastica to new envi-
ronmental conditions [8]. Although the exact function 
has not been conclusively determined [104], Acr proteins 
can be expected to slow down the adaptive immune sys-
tem in W. chitiniclastica when needed and enable the 
uptake of additional resistance genes through genetic 
mutations and/or horizontal gene transfer between the 
same or different species to maintain their survivability 
under the disturbed environmental conditions.

First insights into potential virulence traits
To date, knowledge about potential virulence traits of 
W. chitiniclastica is limited. Although much research 
remains to be done, the first interesting findings have 
recently been published [8]. The ubiquitous genome-
encoded presence of several “multidrug efflux systems” 
and type II secretion systems (TS2) suggests a central 
role in the pathogenesis of W. chitiniclastica. In general, 
proteins secreted by T2S systems are associated with 
the destruction of various tissues, cellular damage, and 
disease. These include proteases, cellulases, pectinases, 
phospholipases, lipases, and toxins, but secretion of 
other substances is also feasible [109]. In Vibrio cholerae, 
for example, the T2S system supports secretion not only 
of cholera toxins and hemagglutinin proteases but also of 
chitinases [109–111]. W. chitiniclastica is known for its 
distinct chitinase activity [1], which is probably an indi-
cator of a symbiotic relationship with its host fly while 
also playing an important role in metamorphosis [1, 4, 5]. 
Thus, involvement of the T2S system in its secretion 
seems possible [8].

Some W. chitiniclastica strains harbor the toxin-encod-
ing gene relG, which is known to inhibit mycobacterial 
growth when expressed independently [112]. Moreover, 
the ubiquitous presence of the conserved virulence factor 
B (cvfB) suggests a central role in the virulence of W. chi-
tiniclastica. Recent studies showed that deletion of CvfB 
results in reduced virulence in S. aureus and decreased 
production of hemolysin, DNase, and protease [113]. 
Apart from that, other exotoxin encoding genes appear to 
be missing or are yet unknown suggesting an alternative 
virulence profile [8]. Undoubtedly, identifying pathogen-
esis and toxin encoding genes of W. chitiniclastica and its 

interaction with the host should be further investigated 
as it could serve as novel targets for drug development. 
However, there is still a long way to go.

Toxin-antitoxin (TA) modules are ubiquitous in bacte-
ria and are thought to be involved in various physiological 
processes including virulence [114]. Recently, a W. chi-
tiniclastica isolate from China was studied with a novel 
blaVEB-1 carrying plasmid [68], which, in addition to anti-
biotic resistance, also encodes the TA modules RelBE and 
YefM/YoeB [68]. TA systems that are localized on plas-
mids are associated with plasmid stabilization  and have 
been shown to increase plasmid maintenance [115, 116]. 
In contrast, the role of chromosomally encoded TA sys-
tems in bacterial physiology has not yet been conclusively 
elucidated [117]. It is assumed that they have a decisive 
influence on adaptation to new environmental condi-
tions, improved stress resistance and the stabilization of 
chromosomal regions [114], which gives the bacteria a 
considerable fitness advantage [118].

TA modules are also present in several W. chitini-
clastica genomes [8]. These include the type II TA sys-
tem YefM-YoeB and PasTI [119]. Previous studies have 
shown that YefM-YoeB is involved in the colonization of 
new niches, survival in the host and general stress toler-
ance [119]. It is therefore conceivable that the TA system 
is involved in the invasion of new habitats and provides 
W. chitiniclastica with a decisive fitness advantage in the 
course of a polymicrobial infection. PasTI enables cell 
formation in the presence of antibiotics and increases the 
pathogen’s resistance to nutrient limitation as well as oxi-
dative and nitrosative stress [119]. It is worth noting that 
the function of the pasT gene has recently been reanno-
tated based on new experimental evidence [120]. While 
PasT increases the antibiotic tolerance of pathogens, the 
function of PasTI as a TA system could not be confirmed 
[120]. Instead, the putative toxin PasT corresponds to a 
bacterial homolog of the mitochondrial protein Coq10, 
which plays a central role in respiratory electron trans-
port as an important cofactor in the ubiquinone-depend-
ent electron transport chain [120]. Therefore, it can 
currently only be speculated whether the pasT gene of W. 
chitiniclastica is primarily involved in virulence and/or 
energy production. Overall, the role of chromosomally or 
plasmid-encoded TA systems in bacterial physiology has 
not yet been conclusively clarified.

Arsenic resistance genes and their impact on the spread 
of antibiotic resistance
Arsenic is a natural component of both aquatic and ter-
restrial habitats. In general, arsenic contamination is 
relatively low, but the high toxicity of arsenic derivatives 
is a serious public health concern worldwide [121]. On 
the other hand, various arsenic compounds have been 
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successfully used as antimicrobial agents in the past 
and have been used to treat trichomoniasis, malaria, 
ulcers, and syphilis, as well as a variety of other dis-
eases [122, 123]. This further favored the spread of arse-
nic resistance genes [121]. Recently, there has also been 
renewed interest in arsenic as a cancer drug for the treat-
ment of acute promyelocytic leukemia [123, 124]. How-
ever, agriculture and industry have primarily contributed 
to arsenic spread and contamination [125]. In agriculture, 
animal farming and industrial sectors, arsenic-containing 
compounds have been used extensively as pesticides and 
as feed additives, especially in the poultry and swine 
industries [126,  127]. Roxarsone, for example, was used 
exclusively in animal farming, particularly in poultry, to 
promote growth and prevent gastrointestinal infections 
[125,  128]. Although many arsenic compounds are no 
longer used, their residues from previous activities are 
still present, especially in agricultural soils [129] leading 
to constant selection pressure on bacteria with a toler-
ance to arsenic [130].

W. chitiniclastica was detected in arsenic-contami-
nated soil in Bangladesh [9]. Recently, a comprehen-
sive genomic study of W. chitiniclastica demonstrated 
the presence of arsenic resistance family genes in all 
genomes [8]. However, there were some discrepancies 
with respect to the classical arsRDABC operon, and 
it is possible that W. chitiniclastica has a previously 
unknown or alternative regulatory and/or arsenic tol-
erance mechanism [8]. In addition to the well-known 
arsRDABC operon, there is an alternative chromosomal 
arsenic resistance mechanism that has been dem-
onstrated, for example, in Alcaligenes faecalis [131]. 
Here, arsenic is used as a terminal electron acceptor in 
the absence of oxygen during anaerobic heterotrophic 
growth [123, 132]. This raises the question of whether 
the arsenic resistance families encoded in the genome 
allow growth under anaerobic conditions in the pres-
ence of arsenic. Interestingly, W. chitiniclastica was 
described as strictly aerobic when it was first described 
[1], while both W. populi and W. larvae were described 
as facultatively anaerobic [13, 14]. Recently two case 
studies reported that the respective W. chitiniclastica 
strain also grew under anaerobic conditions [42, 43]. 
This allows initial speculation about further metabolic 
properties of W. chitiniclastica that have not yet been 
described, according to which strains of this species 
can be characterized mainly as facultative anaerobes. 
However, further experimental studies in combination 
with in silico genome analyses, at best including tar-
geted genetic manipulations, are required to confirm 
this hypothesis.

At first glance, bacterial arsenic resistance appears 
to be of little interest to human medicine despite that 

fact that arsenic resistance genes are widely distributed 
in human pathogens [123]. Although improper use of 
antibiotics is known to favor the selection and spread 
of antibiotic resistance [133], metal contamination can 
also promote the spread of antibiotic resistance through 
multifactorial coselection mechanisms [133–135]. It has 
recently been shown, that the use of heavy metals for 
growth promotion in poultry farms resulted in the cose-
lection of mobile genetic elements and antimicrobial 
resistance genes [135]. Often, the corresponding genes 
are encoded in a common resistance gene cassette on 
the same mobile genetic element such as transposons 
or plasmids [123]. For example, the sulfonamide resist-
ance gene sul2 has been detected together with the arse-
nic resistance genes arsA, arsB, arsC, arsD, and arsR 
[136]. In fact, arsenic-polluted environments have been 
described as contributing to the co-selection of antimi-
crobial resistance genes and mobile genetic elements 
[125]. These include β-lactamases (blaCMY/ampC), mac-
rolides (erm35), MLSB (erm(F)), tetracyclines (tet(B)), 
aminoglycosides (aadA/aacC), and transposons (Tn21/
Tn22/Tn24/Tn614) [125, 137–139]. This has been dem-
onstrated in numerous human pathogens [123], such as 
Campylobacter jejuni [140], S. aureus [141], and K. pneu-
moniae [142], to name a few. In all cases, there is a selec-
tion advantage for bacterial survival. Unlike antibiotics, 
metals do not degrade in the environment and their 
presence could therefore represent a long-term selec-
tion pressure [134]. Although the overuse of antibiotics 
is one of the main driving force of antibiotic resistance, 
arsenic-polluted environments have been described to 
contribute to the co-selection of genes for antimicrobial 
resistance [125]. For example, the presence of arsenic 
and other metals in a Chinese poultry production was 
recently shown to have a stronger impact on the compo-
sition of metal tolerance and antibiotic resistance genes 
than some antibiotics [135]. Interestingly, a positive cor-
relation was found between arsenic concentrations and 
the resistance genes for aminoglycosides [aac [60]- Ia], 
macrolides (erm35), bacitracin (bacA) and tetracycline 
(tet genes) [135]. Another study from rural Bangladesh 
showed that co-resistance to arsenic and antibiotics in E. 
coli was more pronounced in areas with high arsenic lev-
els than in areas with low arsenic levels [143].

In the context of the development of antibiotic resist-
ance and its far-reaching consequences, arsenic resist-
ance in W. chitiniclastica is of critical importance and 
should be considered in the development of strategies 
to combat antibiotic resistance. Again, it would be use-
ful to seek interdisciplinary collaboration based on the 
“One Health” concept to rapidly identify environmental 
conditions with increased risk of metal-induced coselec-
tion and to counteract the spread of antibiotic resistance 
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genes [123, 133, 144, 145]. The focus should not only be 
on the restrictive use of antibiotics. The positive asso-
ciation found between arsenic exposure and antimicro-
bial resistance in arsenic-contaminated areas is a major 
public health concern and warrants increased efforts to 
reduce arsenic exposure [143]. There is an urgent need 
to develop guidelines on national as well as international 
level to control the rampant and uncontrolled use of 
numerous chemical substances including arsenic-con-
taining compounds. In addition, it is particularly neces-
sary to launch a far-reaching awareness-raising campaign 
for the general public by providing targeted information 
about the risks of improper and unjustified use of anti-
biotics and metal-containing compounds, and show what 
each individual can do to prevent the development of 
resistant bacteria.

The relevance of genomic studies for understanding 
infectious diseases
In recent years, more and more studies have been pub-
lished showing the benefits of investigating bacterial 
genomes for diagnostic microbiology and how genomic 
comparisons make it possible to significantly reduce 
analysis times and increase the accuracy of the results 
[146]. The most important applications are the investi-
gation of antimicrobial susceptibility, the disclosure of 
virulence factors, surveillance and the clarification of 
outbreaks in hospitals, but also the assignment of a clear 
species affiliation of an isolate [146]. The phenotypic 
expression of resistance in Enterobacterales for example 
may indicate the presence of carbapenemase, although it 
is based on efflux pumps or changes in membrane per-
meability and therefore has no direct impact on hospital 
hygiene measures [147,  148]. The relevance of the cor-
relation between phenotypic expression of antimicrobial 
susceptibility and genomic data can also be illustrated by 
our own studies on W. chitiniclastica. The postulation of 
a jet unknown resistance mechanism for fosfomycin was 
only possible by comparing the (high) MIC values with 
the genetic databases for resistance genes [6]. In addition, 
genomic investigations can reveal previously unknown 
biovars with a potential clinical impact. Antonation et al. 
for instance were able to show that a certain clade of afri-
can Bacillus cereus strains exhibited virulence properties 
of Bacillus anthracis by harbouring the corresponding 
virulence plasmids. The authors thus named the new 
biovar Bacillus cereus biovar anthracis [149]. This is sig-
nificant because B. cereus, in contrast to B. anthracis, 
usually causes only transient and mild intoxications or 
infections. Although this biovar has not yet appeared 
in a human medical context, this cannot be ruled out in 
the future due to worldwide travel, but also due to the 

fact that B. cereus is capable of spore formation. Regard-
less, the investigations of bacterial genomes will allow us 
to gain a deeper understanding of the distribution and 
diversity of rare pathogens and their impact on public 
health and wildlife populations [149].

Conclusion
This review provides an overview of the current knowl-
edge and perspectives of W. chitiniclastica from a 
clinical and genomic perspective. This bacterium has 
recently been described as a rare but potentially emerg-
ing human pathogen whose occurrence is associated 
with, but not limited to, certain flies. However, because 
conventional biochemical identification tools can be 
unreliable and misleading in identifying this organ-
ism, this species may be even more widespread than 
previously thought. Cases of W. chitiniclastica infec-
tion usually have a number of characteristic underlying 
conditions. In particular, these include poor hygienic 
conditions and chronic wounds. In addition, W. chi-
tiniclastica is often found to be part of a polymicrobial 
infection and is considered an opportunistic pathogen 
in immunocompromised patients. The presence of mul-
tiple resistance genes in different species colonizing 
an ecological niche in close proximity to each other 
provides an ideal starting point to promote multidrug 
resistance formation. Although W. chitiniclastica is 
generally sensitive to most classes of antimicrobial 
agents, increasing drug resistance has been observed. 
This trend should be critically monitored and evaluated 
in the context of the “One Health” concept. Decipher-
ing virulence systems and pathogenicity will be the next 
critical step in understanding W. chitiniclastica in order 
to develop strategies to control its spread.
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