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Abstract 

Yeast infections have gained significant attention in the field of marine biology in recent years. Among the broad 
diversity of marine organisms affected by these infections, elasmobranchs (sharks and rays) have emerged as highly 
susceptible, due to climate change effects, such as increasing water temperatures and pollution, which can alter 
the composition and abundance of fungal communities. Additionally, injuries, or compromised immune systems 
resulting from pollution or disease may increase the likelihood of fungal infections in elasmobranchs. Studies are, 
however, still lacking for this taxonomic group. In this context, this study aimed to screen yeast species in cell cultures 
obtained from the brain of artisanally captured Pseudobatos horkelii, a cartilaginous fish that, although endangered, 
is highly captured and consumed worldwide. Fungi were isolated during an attempt to establish primary cultures 
of elasmobranch neural cells. Culture flasks were swabbed and investigated using morphological, phenotypic, 
and molecular techniques. Two isolates of the emerging opportunistic pathogen Trichosporon japonicum were identi‑
fied, with high scores (1.80 and 1.85, respectively) by the MALDI‑ToF technique. This is the first report of the basidi‑
omycetous yeast T. japonicum in Pseudobatos horkelii in Brazil. This finding highlights the need for further research 
to determine the potential impact on elasmobranch health, ecology, as well as on commercial fisheries.
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Introduction
Significant shifts have increased in the marine environ-
ment due to climate change, leading in turn to salinity, 
light, temperature, sediment, and chemical pollution 
alterations. These changes result in marine fungi com-
munity imbalances, increasing the prevalence and sever-
ity of marine animal diseases due to fungal infections 
[1]. While over 10,000 pathogenic marine fungal species 
have been identified to date [2], and recently highlighted 
for their importance concerning marine health [3], their 
impacts in this regard remain largely understudied.

Certain fungi have been acknowledged as emerging 
opportunistic pathogens, such as Trichosporon spp. [4]. 
These organisms are widespread worldwide, with a pref-
erence for warm and tropical climates and are found 
in several environmental compartments, such as soil, 
decomposing wood and in both freshwater and marine 
environments, as well as in wildlife, such as bats, cattle 
and fish [5]. Members belonging to this genus have the 
potential to induce invasive and life-threatening fungal 
diseases in immunocompromised individuals [6, 7]. They 
also pose a risk to humans through the consumption of 
contaminated foodstuffs [8], including, but not limited, 
to milk and milk-derived products [9], honey [10], truf-
fles [11] and seafood [12–17], as well as through work-
ers exposed to potentially contaminated animals, such as 
zookeepers and fishers [18, 19].

Several aquatic biota, such as crustaceans and fish are 
highly vulnerable to fungal pathogens, both pathogenic 
and zoonotic [20]. Concerning Trichosporon spp. seafood 
contamination, assessments are mostly limited to crus-
taceans and bony fish, with reports on elasmobranchs, 
which encompass sharks and rays, however, still scarce.

Elasmobranchs are currently facing a multitude of 
threats, including overfishing, chemical pollution, habi-
tat destruction, and climate change effects, resulting 
in global conservation concerns [21]. In this sense, the 
above-mentioned shifts in marine microbiota composi-
tion and diversity comprise a significant health effect fac-
tor that may negatively influence elasmobranch health 
and immune responses, potentially increasing their sus-
ceptibility to infections and diseases, increasing conser-
vation concerns. In addition, many elasmobranch species 
are highly consumed as a protein source worldwide [22]. 
This  also results in human health risks concerns, with 
potential human contamination by zoonotic pathogens 
posing as an important challenge, especially concerning 
specific vulnerable population strata, such as children 
and the elderly.

Although rays and skates are more threatened than 
previously estimated, with a higher percentage of species 
now being considered at risk compared to sharks [23], 
elasmobranch microbiome assessments have focused 

mainly on sharks to date. Furthermore, given their mostly 
benthic habits and direct association to substrates, many 
ray and skate species are at extremely high risk for con-
tamination by several pollutants and pathogens, as sedi-
ments comprise the ultimate sink for these negative 
stressors [24–26].

In this context, brain samples from a highly endan-
gered elasmobranch, Pseudobatos horkelii, commonly 
known as the Brazilian guitarfish, were collected as part 
of an ongoing project that aims to establish neural cell 
cultures from elasmobranchs. This species is distributed 
from Brazil to Uruguay, inhabiting coastal waters and 
occupying a meso-predator position, feeding on crus-
taceans, cephalopods, polychaetes and small fishes [27]. 
It is highly caught as bycatch and frequently consumed 
in Brazil and is categorized as Critically Endangered by 
the International Union for Conservation of Nature [28]. 
Although bans and extremely high fines have been imple-
mented regarding this species capture and marketing 
in Brazil, significant numbers of these rays are sold for 
human consumption throughout the country (Hauser-
Davis, Pers. Comm.).

Given that such cell cultures from this species were 
consistently contaminated by fungal species and dying 
at about 7 days post-plating, we decided to further inves-
tigate and describe which fungi may be present in the 
central nervous system of these elasmobranchs. The find-
ings reported herein are highly relevant in describing 
potential emerging microbial pathogens that may directly 
affect elasmobranch health and may be transmitted to 
humans by elasmobranch meat ingestion and handling, 
also affecting primary studies requiring elasmobranch 
cell culturing.

Methods
Elasmobranch tissue isolation
P. horkelii specimens were captured by artisanal fishers in 
the state of Rio de Janeiro, southeastern Brazil. Only sam-
ples of recently deceased animals were sampled under a 
Brazilian Institute of Environment and Renewable Natu-
ral Resources Biodiversity Authorization and Informa-
tion System (SISBIO) authorization, no. 77310–5.

Samples were obtained from two fresh specimens 
recently landed at an artisanal fisher colony in Rio de 
Janeiro, Brazil and displayed for sale on stainless steel 
display tables. Aiming to obtain sterile brain tissue, the 
animals’ heads were cleaned twice with 70% alcohol fol-
lowed by cleaning with 2% benzalkonium chloride. Inci-
sions were made on the animals’ heads with the aid of a 
#15 scalpel and sterile surgical scissors in the presence 
of a portable Bunsen burner and brain samples were 
collected. Tissue fragments of 10 by 10  mm2 were dis-
sected from the telencephalon and placed in a transport 
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medium, consisting of Leibovitz L-15 culture medium, 
5% penicillin–streptomycin antibiotic solution, 0.25 
ug  mL−1 of fungizone, 50 ug  mL−1 of gentamicin, 50 ug 
 mL−1 neomycin sulfate, 373 mmol L-1 urea and 89 mmol 
 L−1 NaCl (adapted from [29, 30]. Fragments were kept in 
glass Erlenmeyer flasks on ice throughout transportation 
to the Laboratory of Structural Biology at the Oswaldo 
Cruz Foundation.

At the laboratory, the samples were washed three times 
in a PBS solution modified for elasmobranchs contain-
ing 299 mmol  L−1 urea and 68 mmol  L−1 NaCl in a sterile 
penicillin–streptomycin antibiotic solution containing 
0.25 ug  mL−1 fungizone [30]. The tissue was then frag-
mented into small pieces of about 1  mm3 each and a 
0.05% trypsin/0,02% Ethylenediaminetetraacetic acid 
(EDTA) solution was added for 10  min at 26  °C. After 
incubation, mechanical dissociation was performed by 
pipetting with a sterile glass Pasteur pipette and centrifu-
gation to remove the trypsin solution. The obtained pel-
let was resuspended in culture medium and cell viability 
was determined by Trypan blue exclusion. All laborato-
rial procedures were performed in Biosafety level 2 cell 
culture hoods.

A total of 500,000 viable cells were then placed in 25 
 cm2 culture flasks and maintained with a culture medium 
adapted for elasmobranch cells according to [31], con-
taining 50% Dulbecco’s Modified Eagle Medium (DMEM, 
ThermoFisher), 35% Leibovitz L-15, 15% Ham’s F-12 
(ThermoFisher), 333  mmol L-1 urea, 188  mmol L-1 
NaCl, 12% fetal bovine serum (Cultilab, São Paulo), 1% 
Glutamax, 2% penicillin–streptomycin antibiotic solu-
tion, 50 ug  mL−1 gentamicin, 50 ug  mL−1 neomycin sul-
fate, 0.25 ug mL-1 fungizone, 2  ng   mL−1 Recombinant 
human epidermal growth factor (ThermoFisher) and 
2 ng  mL−1 Recombinant Human fibroblast growth factor 
(ThermoFisher) in an incubator at 26  °C. Occasionally, 
tissue fragments were also transferred to the cell culture 
flasks along with dissociated cells, and some adhered as 
explants in the flasks.

About one week after plating, cultures were consist-
ently noted as contaminated. To identify which microor-
ganisms were most predominant in elasmobranch neural 
cell cultures, swabs were sampled from the culture flasks 
after three days in vitro (3 div) and placed in 5 mL tubes 
containing a 0.9% saline solution. The samples were then 
taken to the Laboratory of Taxonomy, Biochemistry and 
Bioprospecting of Fungi in less than 30 min after collec-
tion and kept at 4 ºC until the moment of analysis.

Microbiological sampling of elasmobranch cell 
culture‑derived swabs
Samples were streaked onto Sabouraud Dextrose Agar 
(SDA) and incubated at 30 °C for 48 h for morphological 

assessments. All samples presenting growth on the SDA 
medium were then subcultured onto CHROMagar Can-
dida (BD Difco) and colonies were interpreted according 
to the manufacturer’s instructions.

Proteomic genotyping
In addition to morphologic and phenotypic tests, the 
obtained isolates were also identified by MALDI-TOF MS 
following Pinto et al. [32] and Oliveira et al. [33], employ-
ing α-cyano-4-hydroxycinnamic acid (CHCA, Fluka, 
Buchs, Switzerland) used as the matrix. Each sample was 
analyzed in triplicate from the same culture and from 
sub-cultures on alternate days. Samples were air-dried at 
room temperature prior to spectra acquisition. Spectra 
were obtained on a Microflex mass spectrometer (Bruker 
Daltonics, Bremen, Germany) using the Flexcontrol v. 3.0 
software and spectra were imported and analyzed using 
the Maldi Biotyper v. 2.0 software (Bruker Daltonics, 
Bremen, Germany). The Escherichia coli DH5α strain was 
used for in situ protein extraction employed as the stand-
ard for MALDI-TOF MS external calibration, according 
to [34]. Results are expressed as log values ranging from 
0 to 3. Logscore cutoff criteria were applied, where values 
of 1.7 are employed for reliable genus identification, and 
values between 1.8 and 2.0 are considered as confirmed 
species identification [35].

Results And Discussion
The cell culture samples cultivated onto Sabouraud Dex-
trose Agar (SDA) as described above resulted in colonies 
with no bacterial characteristics detected in the SDA cul-
tures. The SDA (Fig. 1A and B) growths were then further 
investigated by streaking onto CHROMagar Candida 
(BD Difco) plates. Small light blue-gray colonies (Fig. 1C 
and D), an atypical color for this substrate according to 
the manufacturer, were observed, indicating the growth 
of species other than Candida spp. Biochemical culture 
characteristics were then examined by conventional 
microscopy methods [32], and the morphological and 
phenotypical characteristics of the growths suggested the 
presence of Trichosporon sp.

Following microscopy identification, the samples 
were then analyzed by MALDI-ToF, which attributed 
high scores of 1.85 and 1.80 to the two isolate growths 
observed in the Sabouraud Dextrose Agar and in 
BDTM CHROMagarTM Candida Medium (BD Difco), 
identifying them at the species level as T. japonicum. 
MALDI-ToF analyses have been applied with high reli-
ability to identify fungal species from several sources, 
including in a recent study by our group concern-
ing another elasmobranch species also captured in 
Rio de Janeiro, Brazil, demonstrating high agreement 
with conventional identification methods and DNA 
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sequencing [33]. Several studies have, in fact, noted that 
DNA sequencing is not required when a reliable spec-
tral database is available [36, 37] and that the MALDI-
ToF technique is, in fact, superior concerning yeast and 
mycobacteria isolate identification compared to gene 
sequencing. This, therefore, makes this technique suit-
able as a first-line test for yeast and mycobacteria iden-
tification [38]. This analytical technique is therefore a 
proven method for this type of fungal assessment in 
wildlife.

About 50 Trichosporon species are currently recog-
nized, many of which are associated with human dis-
eases [39]. Trichosporon asahii is the most commonly 
identified causative agent of trichosporonosis, a disease 
that exhibits both cutaneous and central nervous sys-
tem-related manifestations [5], and other species, such 
as T. cutaneum, T. asteroides, T. mucoides, T. inkin, T. 
jirovecii, T. dermatis, T. domesticum, T. montevideense, T. 
coremiiforme, and T. faecale have also shown to be asso-
ciated with infections [40]. Despite the use of antifungal 
therapy, the incidence of trichosporonosis in humans 
has increased over the past decades due to fungal resist-
ance, leading to significant human morbidity and mortal-
ity rates ranging from 40 to 90% [5]. Some authors have 
postulated that this may be due to the increasing use of 

echinocandins, currently the drugs of choice in many 
clinical contexts at high-risk for invasive fungal infection 
[41].

The prevalence of fungal infections has, in fact, 
increased substantially worldwide, particularly among 
high-risk populations such as individuals with HIV/
AIDS, transplant recipients, and those with weakened 
immune systems [42–44], although certain fungi, includ-
ing Cryptococcus, Coccidioides, and Histoplasma, can 
also infect people with healthy immune systems [45–47]. 
For example, in the USA, Candida spp. caused 72 to 228 
infections per million inhabitants annually, while Crypto-
coccus neoformans was responsible for 30–66 infections 
per million inhabitants, and Aspergillus spp., for around 
12–34 infections per million inhabitants in the late 1990s 
and early 2000s [48]. More recently, the average occur-
rence of new Candida spp. infections was around 9 per 
100,000 individuals between 2013 and 2017 and, accord-
ing to the CDC, an estimated 25,000 cases of candidemia 
are reported annually throughout the United States [49]. 
The extent of central nervous system damage, however, 
varies based on the specific fungal forms present in the 
human body, such as blastopores or hyphae [44, 50, 51]. 
Fungi like Histoplasma, Blastomyces, Coccidioides, 
Candida, Paracoccidioides and Cryptococcus can enter 

Fig. 1 A and B Growths observed in Sabouraud Dextrose Agar incubated at 30o C for 48 h in aerobic conditions, samples LTBBF‑RHO2 
and LTBBF‑RHO2; C and D Growths observed in BDTM CHROMagarTM Candida Medium (BD Difco) incubated at 35 oC for 48 h in aerobic 
conditions, front and back of the petri dishes, samples LTBBF‑RHO2 (1) and LTBBF‑RHO2(2)
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capillaries and subarachnoid spaces, leading to condi-
tions such as meningitis and subpial ischemic lesions. 
Candida, in contrast, has the potential to infiltrate blood 
vessels, causing localized necrotic lesions, while larger 
vessels may be breached by Aspergillus, Cladosporium, 
and Mucoromycetes, which could potentially result in 
strokes [52].

Conversely, the source of Trichosporon spp. infections 
remains uncertain, even though the incidence of infec-
tion by this pathogenic agent has increased globally in 
recent decades [5], especially due to increased immuno-
suppressive conditions and malignant hematological dis-
eases [39, 53, 54]. Trichosporon spp. have been frequently 
detected in hospital environments, with a notable asso-
ciation between trichosporonosis and invasive clinical 
procedures, such as the use of probes and catheters [55]. 
For example, one study involving 17 patients revealed 
that 10 experienced fungemia with approximately 41% 
of these developing trichosporonosis after catheter usage 
[56]. Most suffered from acute leukemia and neutrope-
nia, underwent chemotherapy and were receiving high 
doses of corticoids, which the authors indicate may have 
potentially influenced the development of trichospor-
onosis. Another study assessed the species distribution 
and antifungal susceptibilities of 22 bloodstream Trichos-
poron isolates recovered from patients hospitalized in 
five medical centers between 1995 and 2007 in São Paulo, 
Brazil [57]. The samples were obtained from both pediat-
ric (44%) and adult patients presenting a diverse range of 
underlying conditions, such as premature birth, surgery, 
organ failures, inflammatory gastrointestinal disease, and 
cancer. Most patients (67%) developed systemic bacterial 
infections either before or concurrently with fungemia 
and had a central venous catheter in place when fungemia 
occurred. The authors indicate that these findings sup-
port the idea that invasive Trichosporon infections can 
occur in non-cancer patients with chronic illnesses and 
disruptions to skin and mucous membranes. The pre-
dominant species was T. asahii, followed by T. larkias, 
T. coremiiforme, T. dermatis, T. inkin, T. ovoides, and T. 
mucoides. Another investigation evaluated 24 clinical iso-
lates of Trichosporon species isolated from blood, sam-
ples, pleural fluid and nails from 2005–2016 in a tertiary 
hospital in North India [58]. The isolates were identified 
as T. asahii, followed by T. dermatis (8.33%), T. japoni-
cum (4.17%), T. ovoides (4.17%) and T. mucoides (4.17%). 
The authors indicated isolate resistance to flucona-
zole, voriconazole and itraconazole and susceptibility to 
ketoconazole, which is of concern due to the increasing 
number of cases of disseminated trichosporonosis being 
noted worldwide.

Trichosporon spp. are also, nevertheless, considered 
a normal inhabitant of the digestive tract and may be 

present on healthy patient skin [54, 59, 60]. In newborns, 
natural protective barriers, such as the skin and diges-
tive mucosa, may become more permeable, potentially 
facilitating exposure to various pathogens, such as Tri-
chosporon spp. In fact, Trichosporon spp. have already 
been detected on the skin of premature infants [61]. The 
mechanisms through which fungi can invade the central 
nervous system (CNS), though, have not yet been fully 
elucidated [62]. The blood brain barrier (BBB) is a critical 
component of the mammalian brain, formed primarily 
by the brain capillary endothelium under the influence of 
neighboring astrocytic glia [63]. It establishes a special-
ized microenvironment for optimal neuronal function 
and plays a crucial role in preventing harmful substances 
from entering the brain. Infection by C. albicans causes 
BBB disruption that can lead to transient encephalitis 
and cognitive impairment [64, 65], probably by crossing 
endothelial cells through the paracellular pathway while 
also being internalized by cells before exiting the basal 
surface through the transcellular pathway [66, 67]. Cryp-
tococcus spp., in turn, employs several mechanisms to 
break through the BBB and access the CNS, also through 
facilitated paracellular passage. In vitro experiments, for 
example, have demonstrated that phagocytes containing 
viable C. neoformans can cross a layer of brain endothe-
lial cells, indicating that Cryptococcus spp. can employ a 
“Trojan horse” strategy to infiltrate the brain [68].

Despite the fact that elasmobranch brains possess sev-
eral similarities to mammalian brains [69], they differ 
concerning the BBB. While the endothelium of elasmo-
branchs does not act as a barrier to macromolecule entry, 
a glial BBB is suggested to exist [70]. Studies involving 
skates, dogfish, sharks, and rays have demonstrated that 
dyes are prevented from entering the brain but can pass 
through the endothelial layer [71]. These differences con-
cerning mammalian and elasmobranch BBB probably 
interfere with brain permeability and may comprise an 
important factor in the invasiveness of pathogens like 
fungi, and in the establishment of CNS infections.

Although considered an exceedingly rare representa-
tive within the Trichosporon genus, clinical cases of con-
tamination by T. japonicum have been reported in several 
regions, including Japan, where this species was initially 
discovered in 1971 from the atmosphere of a micro-
biological laboratory, as well as other countries [72–74]. 
The first documented clinical case of T. japonicum con-
tamination occurred in 2008, involving a child diagnosed 
with acute myeloid leukemia (AML) who experienced 
fungemia associated with T. japonicum [75]. In Brazil, 
only two T. japonicum isolates have been isolated from 
humans [76] and one from artisanal cheese [77], making 
this only the third report of this fungal pathogen in the 
country, and the first in wildlife consumed by humans.
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Fungal pathogens cause significant economic losses 
to aquaculture activities, increasingly posing risks to 
both cultured and wild fish populations worldwide [78], 
as farmed fisheries often drain their residues into rivers 
[79], and subsequently, the oceans. This may, therefore, 
potentially lead to local and pan-continental extinctions 
[80], presenting broader implications for global health, 
biodiversity, and conservation [81, 82]. This indicates the 
need for continuous monitoring of both freshwater and 
marine fungal fauna associations. Specifically concerning 
Trichosporon spp. fish contamination, one study reported 
the presence of Trichosporon beigelii, a novel fungal 
pathogen, in the cuticle of the freshwater crayfish Asta-
cus astacus, raising concerns that crayfish may serve as a 
vector for this pathogen, significantly [83], while another 
study isolated T. jirovecii form the exoskeleton as well as 
eyestalks, gills, muscle and haemolymph of red swamp 
crayfish (Procambarus larkia) from the River Nile [16]. 
In another study, T. mucoides was isolated from the gills 
and intestine of Tilapia (Oreochromis sp., 4 positive iso-
lates out of 27, 5.40%), the gills and intestine of African 
catfish (Clarias gariepinus, 3 positive isolates out of 22, 
3.89%) and from the gills of gray mullet (Mugil cephalus, 
2 positive isolates out of 21, 3.12%) [17]. Interestingly, fish 
feed has also been noted as contaminated with Trichos-
poron asahii [84], comprising another concern for aqua-
culture activities in this regard. As, however, bans are 
in place concerning P. horkeili marketing and consump-
tion in Brazil, this report may also comprise an indirect 
conservation tool, as increased awareness of the poten-
tial contamination of these fish with zoonotic fungi may 
lead to reduced consumption of the critically endangered 
Pseudobatos horkeili in Brazil.

People routinely exposed to fungus-contaminated ani-
mals are at heightened risk for contracting fungal infec-
tions. One report, for example, indicated mycobacteriosis 
due to a finger wound caused by the dorsal fin spines of 
a fish (Tilapia sp.) netted during fishing activities by a 
fisher, which the authors postulated as being caused by 
either Mycobacterium marinuum or Sporothrix shenckii 
[85]. Other studies have reported the presence of sev-
eral pathogenic fungi in the traumatogenic structures of 
freshwater fish, such as stings, rayed fins and teeth, and 
high incidence of fungal conditions in artisanal fishers 
[86], indicating occupation exposure concerns. As elas-
mobranchs are manipulated by fishers with no gloves, 
and usually sold decharacterized worldwide, i.e., with 
no caudal fin or head, potential fisher fungal exposure is 
increased, causing further concerns regarding the detec-
tion of the rare Trichosporon japonicum in the P. horkeili 
specimens analyzed herein. Finally, this report may also 
comprise an indirect conservation tool, as increased 
awareness of the potential contamination of these fish 

with zoonotic fungi may lead to reduced consumption of 
the critically endangered Pseudobatos horkeili in Brazil.

Conclusion
The method applied herein comprises an adequate tool to 
identify atypical and emerging fungal species in wildlife 
that may not be recognizable by conventional methods 
which is especially valuable in emerging fungal infec-
tions or cases where traditional methods might fail. The 
detected Pseudobatos horkelii contamination by Trichos-
poron japonicum indicate the possible ubiquitous con-
tamination of Brazilian coastal waters by this rare fungus, 
suggesting that Pseudobatos horkelii may be an interest-
ing sentinel species for emerging fungal pathogens in 
coastal marine waters. Furthermore, potential consumer 
and fisher contaminations may also occur. The limited 
understanding of elasmobranch associations with fungal 
pathogens remains and the significant lack of research 
on fungal biodiversity, prevalence, and their physiologi-
cal impacts is concerning given the crucial role fungi may 
play in addressing climate change effects, the vulnerabil-
ity of elasmobranchs, and the potential zoonotic nature 
of various fungal species. This clearly indicates the need 
for further assessments on the fungal diversity of elasmo-
branchs. This report also served as an indirect conserva-
tion tool by raising awareness about potential zoonotic 
fungi contamination, potentially reducing consump-
tion of the critically endangered Pseudobatos horkeili in 
Brazil.
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