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Abstract
Background Depression and anxiety are common comorbid diseases of constipation. Fecal microbiota 
transplantation (FMT) significantly relieves gastrointestinal-related symptoms, but its impact on psychiatric symptoms 
remains uncharted.

Methods We collected fecal and serum samples before and after FMT from 4 functional constipation patients 
with psychiatric symptoms and corresponding donor stool samples. We categorized the samples into two groups: 
before FMT (Fb) and after FMT (Fa). Parameters associated with constipation, depression, and anxiety symptoms 
were evaluated. Metagenomics and targeted neurotransmitter metabolomics were performed to investigate the gut 
microbiota and metabolites. 5-hydroxytryptamine (5-HT) biosynthesis was detected in patients’ fecal supernatants 
exposed to the QGP-1 cell model in vitro.

Results Our study demonstrated that patient’s constipation, depression, and anxiety were improved after FMT 
intervention. At the genus level, relative abundance of g_Bacteroides and g_Klebsiella decreased in the Fa group, while 
g_Lactobacillus, and g_Selenomonas content increased in the same group. These observations suggest a potential 
involvement of these genera in the pathogenesis of constipation with psychiatric symptoms. Metabolomics analysis 
showed that FMT intervention decreased serum 5-HT levels. Additionally, we found that species, including s_Klebsiella 
sp. 1_1_55, s_Odoribacter splanchnicus, and s_Ruminococcus gnavus CAG:126, were positively correlated with 5-HT 
levels. In contrast, s_Acetobacterium bakii, s_Enterococcus hermanniensis, s_Prevotella falsenii, s_Propionispira arboris, 
s_Schwartzia succinivorans, s_Selenomonas artemidis, and s_Selenomonas sp. FC4001 were negatively correlated with 
5-HT levels. Furthermore, we observed that patients’ fecal supernatants increased 5-HT biosynthesis in QGP-1 cells.
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Introduction
Functional constipation (FC) is a prevalent functional 
bowel disorder more commonly observed in women, 
elderly individuals, and those of lower socioeconomic 
status [1–3]. FC severely impacts the quality of life and 
represents a tremendous healthcare burden. Depres-
sion is a mood disorder characterized by persistent 
low mood, lack of motivation, loss of pleasure, and 
body dysfunction. Numerous studies have established 
a link between depression and gastrointestinal dis-
eases. A large-scale meta-analysis has demonstrated 
that anxiety, depression, and constipation often coexist 
as comorbidities across various types of irritable bowel 
syndrome (IBS), including the subtype dominated by 
constipation [4]. In the general population, both IBS 
and inflammatory bowel disease (IBD) are associ-
ated with the incidence rate and severity of depres-
sion [5–7]. Up to 50% of IBS patients and 15–25% of 
IBD patients meet the clinical diagnostic criteria for 
depression [8].

Although the pathogenesis of constipation comor-
bid depression and, anxiety remains elusive, currently 
recognized theories include the microbiome-mediated 
bidirectional communication model or the so-called 
“brain-gut-microbiome axis”. Jennifer et al. con-
firmed that IBS sub-types based on intestinal micro-
biota were associated with brain structural changes 
[9]. In addition, Labus et al. demonstrated that intes-
tinal microbial metabolites may act as intermediar-
ies for disease-related brain structural changes in IBS 
patients [10], suggesting correlations between gut 
microbiota and gastrointestinal diseases and brain 
function. In healthy women, consumption of fer-
mented milk product with probiotics for four weeks 
altered the gut microbiota composition [11]. In addi-
tion, functional magnetic resonance imaging (MRI) 
showed that the central processing brain regions of 
the participants, which control emotion and sensa-
tion, were activated [11]. A randomized, double-blind, 
placebo-controlled trial demonstrated that fermented 
milk containing Lacticaseibacillus paracasei strain 
Shirota could relieve constipation and depression 
symptoms in patients and reduce the level of bacteria 
related to mental diseases, such as Rikenellaceae_RC9_
gut_group, Sutterella, and Oscillibacter [12]. These 
above studies suggested that the gut microbiota and 
brain interaction may be involved in the progression 

and development of constipation in patients with men-
tal disease.

Currently, several potential approaches are avail-
able to rebalance the intestinal microbiota ecosystem, 
such as diet, lifestyle, antibiotics, probiotics, prebiot-
ics, synbiotics, and fecal microbiota transplantation 
(FMT) [13]. However, FMT is an effective treatment 
that drastically alters the gut microbial profile. FMT 
contains thousands of species compared to probiotics, 
which only comprise a few specific bacterial species. 
A myriad of studies have shown that FMT is effec-
tive in the treatment of gastrointestinal dysfunction 
diseases, such as chronic constipation [14], IBS [15], 
and IBD [16]. Moreover, FMT may also be effective in 
relieving some neurological disorders. Langgartner et 
al. showed that multiple FMT from stress-free mice to 
animals exposed to chronic mental stress reduced anx-
iety and depression-like symptoms in recipients [17]. 
In addition, Yang et al. demonstrated that mice receiv-
ing FMT from anhedonic rats improved their depres-
sive-like symptoms [18]. In a population study, Mizuno 
et al. found that the psychiatric state of patients with 
IBS was significantly relieved one month after healthy 
individuals’ gut microbiota transplantation [19]. Simi-
larly, Huang et al. noticed that the HAMD and HAMA 
scores of IBS subjects significantly improved at 1 and 
3 months after FMT from a healthy donor [15]. In 
addition, Kurokawa et al. found a correlation between 
increased microbiome diversity and improved depres-
sion scores after FMT treatment [20] .The above 
studies indicate that FMT can alleviate both gastro-
intestinal and psychiatric symptoms. However, the 
mechanism of FMT in the comorbidity of gastrointes-
tinal and psychiatric diseases remains unclear.

The primary purpose of the present study was to 
explore the effect and potential mechanisms of FMT 
on constipation in patients experiencing the symp-
toms of depression and anxiety. Intestinal and psy-
chiatric symptoms were evaluated before and after 
FMT. Furthermore, gut microbiota and the metabolic 
profile of neurotransmitters were also determined by 
metagenomic sequencing and targeted metabolomics 
analysis, respectively. This study is expected to provide 
evidence for the effectiveness of FMT treatment and 
reveal the relationship between gut microbiota and 
microbiota-derived metabolites in constipated patients 
with psychiatric symptoms.

Conclusion FMT can relieve patients’ constipation, depression, and anxiety symptoms by reshaping gut microbiota. 
The 5-HT level was associated with an altered abundance of specific bacteria or metabolites. This study provides 
specific evidence for FMT intervention in constipation patients with psychiatric symptoms.

Keywords Constipation, Depression and anxiety, Fecal microbiota transplantation, Metagenomics, Metabolomics, 
5-hydroxytryptamine
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Materials and methods
Participants
The investigation was conducted at the Shanxi Bet-
hune Hospital in Taiyuan, Shanxi, China. 4 patients 
diagnosed as FC with depression and anxiety were 
recruited for FMT treatment. The enrolment crite-
ria were as follows: age ≥ 18 years; FC was assessed 
and diagnosed according to the Rome IV Diagnostic 
Criteria [21] persistent constipation symptoms for at 
least one year; depression and anxiety were evaluated 
and diagnosed with the DSM-V criteria; and depres-
sive symptoms lasted more than 12 months. Exclu-
sion criteria were as follows: organic or neurological 
constipation; diagnosed with other mental diseases; 
pregnant or lactating women; diagnosed with IBD, 
malignant tumors, or gastrointestinal surgery; abnor-
mal thyroid function; use of antidepressants, probiot-
ics, prebiotics, and antibiotics within two weeks before 
the study; and subjects in any other studies. Among 
donors with good personal habits (≥ 18 years of age, 
BMI: 18.5–23.9  kg/m2), donors were further screened 
using serology and stool screening for common 
enteric and viral pathogens. Donors were excluded if 
they used proton pump inhibitors and antibiotics six 
months before FMT donation (donors were selected by 
Shanghai WellBody Biotechnology Co., Ltd. Shanghai, 
China). Four FC patients with depression and anxiety 
underwent FMT from March 2021 to June 2021 were 
included. This study was approved by the Ethics Com-
mittee of Shanxi Bethune Hospital (No. XYLL-2019-
124), and the study was in accordance with national 
laws and the Declaration of Helsinki.

Data collection
This study employed a single– centre, open-label, 
nonrandomized approach to investigate the effect of 
FMT on FC patients with depression and anxiety. The 
Bristol stool form scale (BSFS), Bowel Function Index 
(BFI), Knowles Eccersley Scott Symptom (KESS), and 
Patient Assessment of Constipation Quality of Life 
(PAC-QOL) were used to assess constipation param-
eters. The psychological symptoms of patients were 
evaluated by experienced psychiatrists or psycholo-
gists using the Hamilton Depression Rating Scale 
(HAMD). A HAMD score ≥ 8 is considered to indicate 
depression. In addition, the Self-Rating Depression 
Scale (SDS) and Self-Rating Anxiety Scale (SAS) were 
also used to assess depression and anxiety symptoms. 
All scales were evaluated at baseline and four weeks 
after FMT.

FMT procedure and sample collection
Donors were required to collect feces at Shanghai 
WellBody Biotechnology Co., Ltd. (Shanghai, China, 

www.wellbodybio.com). Collected donor fecal samples 
were weighed, homogenized, and mixed with saline 
in a 1:5 ratio. After multi-stage filtration, the samples 
were then dispensed into centrifuge tubes and resus-
pended by low temperature centrifugation to pre-
cipitate the microbiota. Depending on the gradient of 
the filter aperture, food residues, and impurities are 
removed and all microbiota were collected, contain-
ing metabolites of all types of flora. Collected samples 
were aliquoted (50 mL/tube) and stored at -80 °C. The 
feces were thawed at 4 °C on the day of FMT. On days 
1–6, 100 mL of fresh feces was transplanted to patients 
through a nasointestinal tube once daily. A total of 2 
courses of treatment were conducted, each course last-
ing 36 days, with the FMT intervention for the first 6 
days and then no intervention for 30 days. The nasoin-
testinal tube was installed in the proximal jejunum 
through an endoscope. Fecal samples of donors and 
patients at baseline and four weeks after FMT were 
collected for metagenomic analysis. Serum samples of 
patients at baseline and 4 weeks after FMT treatment 
were collected for targeted metabonomic analysis.

Metagenomic sequencing and analysis
Methods of fecal DNA isolation and metagenomic 
sequencing analysis were reported in our previous 
research [22]. The gut microbiome was analyzed via 
metagenomic shotgun sequencing. Genomic DNA 
was extracted from fecal samples and assessed for 
quality. Certified DNA samples were fragmented 
into 350  bp fragments, and the library was prepared 
through a series of steps, including end repair, A-tail 
addition, adapter ligation, purification, and amplifica-
tion. Sequencing was conducted on an Illumina PE150 
platform (Shanghai Biotree biomedical technology). 
The raw sequencing data underwent rigorous qual-
ity control to obtain high-quality data. These refined 
data were assembled via metagenome analysis, with 
gene prediction facilitated by the widely-used soft-
ware, MetaGeneMark. The analyzed data were cross-
referenced with the MicroNR library to obtain species 
annotation information of UniGene. Furthermore, we 
performed Kyoto Encyclopedia of Genes and Genomes 
(KEGG) metabolic pathway function annotation and 
abundance analysis. Nonmetric multidimensional scal-
ing (NMDS), and Hierarchical cluster analysis were 
conducted based on species abundance. The core-pan 
gene rarefaction curve is a tool used to analyze micro-
biomes. This curve is generated by randomly selecting 
varying numbers of samples and calculating the rela-
tionship between core genes and pan genes observed 
at different sample quantities. The core-pan gene rar-
efaction curve is typically plotted with the number of 
samples on the X axis, and the counts of core genes 

http://www.wellbodybio.com
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and all genes on the Y axis. We calculated Chao1, 
observed species and Shannon’s index to find informa-
tion on species richness and evenness. NMDS analysis 
was used to investigate the comparison of microbial β 
diversity among the three groups.

Targeted metabonomic analysis based on UHPLC–MS/MS
Methods of serum targeted metabonomic analy-
sis were reported in our previous research [22]. We 
performed targeted metabolomic analysis on serum 
samples before and after FMT. Each 20 µL sample was 
mixed with 80 µL pre-cooled extract solvent (aceto-
nitrile with 0.1% formic acid). After vortexing, soni-
cation, and overnight settling at − 40℃, the samples 
were centrifuged. The supernatant (80 µL) was com-
bined with 40 µL of 100 mM carbonate solution and 
40 µLof 2% benzoyl chloride acetonitrile solution for a 
30-minute incubation. Following the addition of 10 µL 
of internal standard, the samples were centrifuged, and 
40 µLof supernatant was mixed with 20 µL H2O. These 
samples were subjected to ultra-high-performance liq-
uid chromatography coupled with mass spectrometry 
(UHPLC-MS/MS) analysis, which followed established 
procedures. UHPLC separations used an ExionLC 
system with a Waters ACQUITY UPLC HSS T3 col-
umn. The data were acquired with an AB Sciex QTrap 
6,500 + mass spectrometer and analyzed using Skyline 
software. Orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) analysis is a multivariate 
statistical method commonly used in metabolomics 
data analysis for identifying differential metabolites 
between different groups. In the current study, we 
utilized Simca software (version 15.0.2) for modeling. 
One predictive principal component and one orthogo-
nal principal component were used. Cross-validation 
was performed with a 7-fold approach, and existing 
data were employed as the training set for modeling. 
In addition, the volcano plot was prepared by applying 

Simca software. The bubble plot in the pathway anal-
ysis was taken from the MetaboAnalyst web (https://
www.metaboanalyst.ca/).

Cell culture
Human pancreatic endocrine QGP-1 cell line was pur-
chased from COBIOER Biological Company (Nanjing, 
China). Cells were cultured in RPMI 1640, supplemented 
with 10% FBS (BI, Israel), and incubated at 37℃ with 5% 
CO2.

Western blot (WB) analysis
Total cellular lysates were obtained by collecting cells 
in RIPA buffer (Beyotime Biotechnology, Shanghai, 
China) on ice. An equivalent amount of sample protein 
was loaded onto SDS-PAGE, and then transferred onto 
PVDF membrane (Millipore, USA). The membranes 
were incubated at 4  °C overnight with primary antibod-
ies—anti-TPH-1 (1:1000, Affinity Biosciences, DF6465) 
and anti-GAPDH (1:10,000, ABclonal, AC002). Subse-
quently, the membranes were incubated for an hour with 
secondary antibodies conjugated with horseradish per-
oxidase, and the subsequent visualization was performed 
using an imaging system (Azure C300, USA) along with 
an enhanced Chemiluminescence Kit (Epizyme Biotech, 
China).

Quantitative real-time polymerase chain reaction (qRT-
PCR)
Total RNA was isolated from QGP-1 cells by RNA-easy 
isolation reagent (Vazyme, China) and reversely tran-
scribed into cDNA with HiScript Reverse Transcriptase 
Kit (Vazyme, China) according to the manufacturer’s 
instruction. The 2−ΔΔCt method was used to evaluate the 
relative expression.

Table 1 Sociodemographic information of the study subject
Subject Age (years) Gender (F/M) Body mass index 

(kg/m2)
Years with diagnosed 
constipation (mean ± SD)

Years with 
diagnosed 
depression 
(mean ± SD)

Patient 1 68 female 28.72 17 4
Patient 2 56 female 21.51 20 25
Patient 3 66 female 23.5 10 2
Patient 4 66 female 21.34 3 3
Total
(Mean ± SD)

64.00 ± 5.41 NA 23.77 ± 3.44 12.25 ± 8.02 7.00 ± 8.72

Donor 1 23 female 21.72
Donor 2 31 male 20.06
Donor 3 24 male 22.48
Donor 4 31 female 20.68
Total (Mean ± SD) 27.25 ± 4.35 NA 21.24 ± 1.08

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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Cell counting kit-8 (CCK-8) proliferation assay
QGP-1 cells were seeded in 96-well plate at a den-
sity of 20,000 cells/well. Once the cells adhered, they 
were treated with fecal supernatant (fecal supernatant: 
medium = 1:5). Subsequently, 10 µL CCK-8 solution was 
added to each well, and incubated for 2  h. The optical 
density of the cells was measured using microplates at 
450 nm.

Enzyme-linked immunosorbent assay (ELISA)
For 5-HT analysis, the QGP-1 cell culture medium super-
natant was collected. The measurements were performed 
using 5-HT ELISA Kit (Elabscience, E-EL-0033c) accord-
ing to the manufacturer’s protocols.

Statistical analysis
Statistical analysis was performed using SPSS 22.0 
software. The BFI, KESS, PAC-QOL, HAMA, HAMD, 
SAS, and SDS scores are presented as the mean ± stan-
dard deviation (SD). Differences were determined 
using Student’s t-test if the data conformed to a normal 
distribution, otherwise, Wilcoxon rank-sum test was 
used. We calculated the Spearman’s correlation coef-
ficients for metabolites and significant bacteria in each 
sample to generate a correlation matrix, then selected 
the Euclidean distance for hierarchical clustering 
analysis, and finally generated a heat map. Receiver 

Table 2 The effects of the FMT on constipated and psychiatric symptoms
Item Fb Fa P value
Bristol stool scale (BSS) II (all) IV (all)
Bowel functional index (BFI) 273.75 ± 30.38 116.25 ± 110.71 0.034
Knowles-Eccersley-Scott-Symptom (KESS) 28.25 ± 3.30 12.25 ± 5.74 0.003
Hamilton Rating Scale for Depression (HAMD) 38.50 ± 3.11 7.25 ± 1.26 < 0.001
Hamilton Rating Scale for Anxiety (HAMA) 39.00 ± 9.93 13.75 ± 6.75 0.006
Self-Rating Anxiety Scale (SAS) 54.75 ± 5.91 38.25 ± 8.66 0.020
Self-Rating Depression Scale (SDS) 66.00 ± 4.83 48.75 ± 12.97 0.047
Patient Assessment of Constipation Quality of Life 
(PAC-QOL)

103.50 ± 11.12 64.00 ± 23.39 0.023

Fig. 1 Gene expression, species abundance and diversity of the gut microbiota. Rarefaction curves of (A) core genes and (B) pan genes. (C) Venn diagram 
of the observed genes. Boxplot of chao1 (D) observed species (E) and Shannon index (F)
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operating characteristic (ROC) working character-
istic curve analysis was used to detect serum 5-HT 
application value by judging the before and after FMT 
treatment. Area under the curve (AUC) > 0.75 was 
considered good accuracy [23]. P values below 0.05 
were considered to represent a significant difference.

Results
Patient sociodemographic characteristics
The clinical features of patients and donors are displayed 
in Table  1. The average age was 64.00 ± 5.41 years in 
patients and 27.25 ± 4.35 years in donors. The body mass 
index of the patients and donors were 23.77 ± 3.44 and 
21.24 ± 1.08 kg/m2, respectively. The average duration of 
constipation and depression were 12.25 ± 8.02 years and 
7.00 ± 8.72 years, respectively.

FMT treatment alleviated the patient gastrointestinal 
symptoms
All patients reported no adverse events during the 
FMT process, such as nausea, diarrhea, or infection. 
Four weeks after FMT, the clinical reaction of stool 
morphology changed from type II to type IV in all 
patients. The BFI score in the Fa group (after FMT) 
was significantly lower than in the Fb group (before 
FMT) (273.75 ± 30.38 vs. 116.25 ± 110.71, P = 0.034). In 
addition, a significant difference in the KESS score was 
observed between the Fa and Fb groups (28.25 ± 3.30 
vs. 12.25 ± 5.74, P = 0.003) (Table 2).

FMT treatment alleviated the patient depression and 
anxiety symptoms
In this study, FMT intervention significantly relieved 
the anxiety and depression of patients. As shown in 
Table  2, the HAMD and HAMA scores were signifi-
cantly lower in the Fa group than Fb group (P < 0.001, 

Fig. 2 The shift in gut microbiota before and after FMT based on metagenomic sequencing data. (A) Nonmetric multidimensional scaling (NMDS) of 
the fecal microbiota for donors and before and after FMT. (B) Relative abundance of species (top 10) between the three groups. Relative abundance of 
s_Bifidobacterium longum (C) and s_Enterococcus hermanniensis (E) among the three groups (Kruskal-Wallis test). Relative abundance of s_Bifidobacterium 
longum (D) and s_Enterococcus hermanniensis (F) before FMT compared to after FMT. *P < 0.05, **P < 0.01
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P = 0.006, respectively). Moreover, the SAS and SDS 
scores were also significantly reduced in Fa group 
(P = 0.020, P = 0.047, respectively). In addition, PAC-
QOL was used to evaluate the quality of life, and the 
improvement of the patient’s quality of life could be 
observed after FMT intervention (P = 0.023, Table 2).

FMT treatment altered the gene expression and intestinal 
microbiota composition
The fecal microbiota of 4 donors and 4 patients 
before and after FMT were analyzed by metagenomic 
sequencing. The core-pan gene curve was used to 
evaluate the rationality of sample selection when the 
curve gradually tended to flatten, indicating that the 
collected samples meet the requirements of the bioin-
formatics analysis (Fig. 1A, B). As shown in Fig. 1C, a 
Venn diagram displayed that 236,480 common genes 
were generated from the three groups. 39,786 unique 
genes were identified in the Donor group, 57,813 
unique genes in the Fb group, and 47,695 unique genes 

in the Fa group. To assess the alpha-diversity of the 
gut microbiota in each group, the following metrics 
were calculated: chao1, observed_species, and Shan-
non index. As shown in Fig.  1D, E the chao1 index 
and observed_species in the Fa group were increased 
compared to those in the Fb group, but the difference 
was not statistically significant. Similarly, the Shannon 
index showed no significant change among the three 
groups (Fig. 1F).

Nonmetric multidimensional scaling (NMDS) analysis 
was used to investigate the comparability of microbial 
profiles in the three groups. The analysis demonstrated 
that the bacterial composition of the Fb group was more 
heterogeneous than Fa group, and the Fa group was more 
closely related to the Donor group (Fig. 2A). Further, we 
found that p_Firmicutes, p_Proteobacteria, p_Actinobac-
teria, and p_Bacteroidetes were the main phyla in the 
three groups (Fig. S1A). At the species level, the top 35 
relative abundances were displayed in Fig. 2B and Table 
S1, revealing that the microbial composition differed 

Table 3 The top 15 different species with up-regulated and down-regulated expression in threes groups
Genus Species mean D mean Fb mean Fa log2 fold change (Fa/Fb) P value
g_Bacteroides s_Bacteroides faecichinchillae 0.000003 0.000063 0.000007 -3.147 0.0227

s_Bacteroides pyogenes 0.000003 0.000042 0.000007 -2.514 0.0277
s_Bacteroides stercorirosoris 0.000000 0.000043 0.000006 -2.880 0.0142

g_Odoribacter s_Odoribacter splanchnicus 0.000153 0.000501 0.000090 -2.479 0.0104
g_Prevotella s_Prevotella falsenii 0.000000 0.000000 0.000038 6.851 0.0440
g_Bacillus s_Bacillus sp. UNC41MFS5 0.000001 0.000002 0.000000 -7.134 0.0467

s_Bacillus wiedmannii 0.000005 0.000000 0.000005 5.472 0.0490
g_Listeria s_Listeria monocytogenes 0.000012 0.000001 0.000000 -2.574 0.0292
g_Brevibacillus s_Brevibacillus laterosporus 0.000003 0.000000 0.000001 5.234 0.0276
g_Paenibacillus s_Paenibacillus algorifonticola 0.000001 0.000002 0.000000 -2.548 0.0172
g_Enterococcus s_Enterococcus hermanniensis 0.000006 0.000000 0.000001 4.912 0.0078
g_Lactobacillus s_Lactobacillus acidophilus 0.000000 0.000000 0.000005 5.794 0.0203

s_Lactobacillus coleohominis 0.000000 0.000000 0.000024 7.771 0.0459
s_Lactobacillus gallinarum 0.000000 0.000001 0.000038 4.981 0.0312
s_Lactobacillus plantarum 0.000000 0.000001 0.000040 4.924 0.0413

g_Clostridium s_Clostridium formicaceticum 0.000001 0.000000 0.000008 8.241 0.0095
g_Natronincola s_Natronincola peptidivorans 0.000001 0.000001 0.000000 -3.231 0.0162
g_Acetobacterium s_Acetobacterium bakii 0.000004 0.000000 0.000004 4.673 0.0113
g_Blautia s_[Ruminococcus] gnavus 0.003542 0.002449 0.000387 -2.660 0.0025
g_Pseudobutyrivibrio s_Pseudobutyrivibrio sp. UC1225 0.000000 0.000002 0.000000 -5.699 0.0091
g_Unclassified s_Lachnospiraceae bacterium 2_1_58FAA 0.000085 0.000080 0.000016 -2.301 0.0309
g_Ruminococcus s_Ruminococcus gnavus CAG:126 0.001085 0.000640 0.000036 -4.147 0.0041
g_Unclassified s_Clostridiales bacterium VE202-13 0.000008 0.000000 0.000007 5.853 0.0184
g_Propionispira s_Propionispira arboris 0.000002 0.000000 0.000006 4.696 0.0389
g_Schwartzia s_Schwartzia succinivorans 0.000002 0.000000 0.000012 6.338 0.0295
g_Selenomonas s_Selenomonas artemidis 0.000001 0.000000 0.000013 5.442 0.0063

s_Selenomonas sp. FC4001 0.000006 0.000000 0.000006 6.598 0.0195
g_Klebsiella s_Klebsiella pneumoniae 0.000442 0.000305 0.000014 -4.415 0.0037

s_Klebsiella sp. 1_1_55 0.000026 0.000012 0.000002 -2.543 0.0246
s_Klebsiella sp. HMSC16C06 0.000001 0.000001 0.000000 -4.526 0.0402

P < 0.05 represent the comparison Fb vs. Fa. 
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in the Fa and Fb groups. Moreover, we found that 141 
species demonstrated differential relative abundance 
between Fa and Fb group (Table S2, Wilcoxon rank-sum 
test). All the top 15 species with upregulated and down-
regulated expression are shown in Table 3. Among them, 
s_Bacteroides faecichinchillae, s_Bacteroides pyogenes, 
and s_Bacteroides stercorirosoris belonging to g_Bac-
teroides were decreased in the Fa group; s_Klebsiella 
pneumoniae, s_Klebsiella sp. 1_1_55, and s_Klebsiella sp. 
HMSC16C06 belonging to g_Klebsiella were also reduced 
in the Fa group, whereas s_Lactobacillus acidophilus, s_
Lactobacillus coleohominis, s_Lactobacillus gallinarum, 
and s_Lactobacillus plantarum belonging to g_Lacto-
bacillus were increased in the Fa group; s_Selenomonas 
artemidis and s_Selenomonas sp. FC4001 belonging to 
g_Selenomonas were also increased in the Fa group.

To understand the role of vital species in the pathogen-
esis of constipation in patients with depression and anxi-
ety, we used residents and colonizers to identify critical 
species. Ruiqiao et al. first divided the intestinal bacteria 
among recipients after FMT into residents and coloniz-
ers [24]. Residents are bacteria with high abundance in 
patients before FMT, whereas colonizers are bacteria 
with low abundance or absence in patients before FMT. 

We found three residents (s_Bacteroides faecichinchillae, 
s_Bacteroides pyogenes, and s_Bacteroides stercoriroso-
ris) and three colonizers (s_Brevibacillus laterosporus, 
s_Enterococcus hermanniensis, and s_Clostridiales bacte-
rium VE202-13) (Table  3). Furthermore, paired analysis 
before and after FMT revealed that s_Enterococcus her-
manniensis and s_Bacteroides pyogenes remained con-
stant in the four samples (Fig. 2C-F).

FMT treatment altered the serum metabolite profile
Microbiota-derived metabolites affect the host through 
a variety of signaling pathways. Increasing evidence has 
shown that some metabolites of the gut microbiota can 
enter the bloodstream and exhibit vital influences on the 
mental and behavioural health of the host [25]. Hence, 
UHPLC–MS/MS was used to analyze the host metabolic 
profile of neurotransmitters. The serum samples before 
and after FMT were predominantly separated according 
to orthogonal partial least squares discriminant analy-
sis (OPLS-DA) (Fig. 3A) and volcano plots (Fig. 3B). Of 
the 42 neurotransmitters, 5-HT was decreased signifi-
cantly in the Fa (26.96 nmol/L) group compared to the 
Fb (368.10 nmol/L) group (Fig. 3C, D; Table 4, P = 0.015). 
Serum 5-HT level was used as a variable test, and whether 

Fig. 3 Metabolic patterns before and after FMT in constipation patients with depression. (A) Analysis of orthogonal partial least-squares discriminant 
analysis (OPLS-DA) X-axis representation orthogonal signal correction (OSC) of the score of the main component of the process (t [1]P), Y-axis representa-
tion of the score of the OSC process (t [1]O). (B) Volcano plot of differential metabolites in the two groups. Blue dots represent downregulation, red dots 
represent upregulation, and gray indicates non-significant changes. (C) 5-HT levels in the two groups. (D) Pairwise comparison of 5-HT levels before and 
after FMT. (E) Receiver operating characteristic (ROC) curve of 5-HT in constipation patients with depression. (F) Bubble plot of metabolic pathways of 
differentially abundant metabolites in the two groups
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belonging to Fa or Fb group to draw the ROC curve. The 
results showed that the AUC was 1.00 (Fig. 3E), suggest-
ing that the 5-HT level was related to FMT. Furthermore, 
the levels of Trp, tryptamine (TrpA), 5-hydroxyindolece-
tic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), and 
kynurenine (Kyn), which are related to 5-HT metabo-
lism, were not significantly different in Fa compared to 
Fb (Fig. S2). The 33 KEGG pathways significantly differed 
between the two groups (Fig. 3F). The top 3 enrichment 
pathways included aminoacyl-tRNA biosynthesis, gluta-
thione metabolism, and tyrosine metabolism.

The Spearman correlation method was used to gen-
erate a correlation matrix to explore the potential 
relationships between different metabolites and the 
gut microbiome. The level of 5-HT was positively cor-
related with the level of threonine (R = 0.643, P = 0.47, 
Fig.  4A). The abundance of most species, including 
s_Klebsiella sp. 1_1_55, s_Odoribacter splanchnicus, 
and s_Ruminococcus gnavus CAG:126, were positively 
correlated with the level of 5-HT, s_Acetobacterium 
bakii, s_Enterococcus hermanniensis, s_Prevotella 
falsenii, s_Propionispira arboris, s_Schwartzia succini-
vorans, s_Selenomonas artemidis, and s_Selenomonas 
sp. FC4001 was negatively correlated with the level of 
5-HT (Fig. 4B).

Feces from patients with functional constipation 
and comorbid psychiatric symptoms increased 5-HT 
production
To explore the potential relationship between elevated 
serum 5-HT levels and gut microbiota metabolites, the 
QGP-1 cells, a well-established neuroendocrine entero-
chromaffin cell line for studying 5-HT production, were 
treated with fecal supernatant from patients to estab-
lish an exposed model in vitro. No significant cyto-
toxicity was observed with fecal supernatant exposure 
(Fig.  5A). Tryptophan hydroxylase 1 (TPH-1) is the key 
rate-limiting enzyme for peripheral 5-HT synthesis. The 
relative expression levels of the TPH-1 gene and protein 
were increased in QGP-1 cells exposed to patient fecal 
supernatant (fecal supernatant to medium 1:5) (Fig.  5B, 
C). Similarly, elevated 5-HT was observed in cell cul-
ture supernatants exposed to patient fecal supernatants 
compared to controls (Fig.  5D). These results suggest 
that 5-HT alterations are associated with intestinal 
metabolites.

Discussion
FMT is a widely used approach to remodel the gut 
microbiota. Our findings revealed that symptoms of 
constipation were relieved by FMT, consistent with 
previous studies. The depression-relieving effect of 
FMT was also confirmed, and the HAMD, HAMA, 
SDS, and SAS scores were significantly different before 

Table 4 Differential abundance of metabolites between the Fb 
and Fa groups
Com-
pound 
name

Fb_Mean, 
(nmol/L)

Fa_Mean, 
(nmol/L)

VIP P-Value FOLD 
CHANGE(Fa_
mean/
Fb_mean)

5-HIAA 47.1935 31.8578 1.4691 0.2977 1.4814
5-HT 368.1041 26.9618 2.5908 0.0149 13.6528
5-HTP 1.9781 1.7923 1.1642 0.9112 1.1037
Ach 539.4731 622.3338 1.0378 0.6755 0.8669
Ala 112548.3949 112959.6761 0.0989 0.9766 0.9964
Arg 12241.0651 13051.2310 0.3198 0.7692 0.9379
Asn 13996.2638 13378.8519 0.6424 0.7094 1.0461
Asp 7188.5534 5327.2456 1.4999 0.2622 1.3494
BAla 905.6876 926.7793 0.0267 0.9061 0.9772
Cys 1308.2768 1587.2374 1.0659 0.5063 0.8242
DA 0.8483 0.8989 0.1708 0.9577 0.9437
DOPAC 12.1566 14.5369 0.9479 0.5418 0.8363
E 6.8521 7.4191 0.5899 0.6703 0.9236
GABA 89.3689 57.5046 1.8181 0.1421 1.5541
GSH 11.2101 3.0888 0.9312 0.3138 3.6293
Gln 112169.8325 114443.4843 0.0226 0.8462 0.9801
Glu 25710.4781 19149.0749 1.3104 0.3507 1.3426
Gly 147517.2019 145217.4144 0.1302 0.9482 1.0158
HVA 6.6168 8.4081 1.1448 0.3735 0.7869
His 29495.5926 31862.7373 0.5170 0.6717 0.9257
Hist 8.4298 9.2744 0.5340 0.6973 0.9089
Kyn 1567.6608 1787.1590 1.3495 0.2212 0.8772
LDOPA 4000.6248 3349.2705 0.5745 0.6931 1.1945
Leu 53691.8125 57996.6485 0.5609 0.5565 0.9258
Lys 27014.8680 26095.7985 0.4207 0.7705 1.0352
Met 11079.1633 12182.5056 0.6242 0.5054 0.9094
NE 7.6155 6.6504 1.5056 0.2156 1.1451
OA 275.4676 344.4639 1.8195 0.1238 0.7997
Orn 11886.2324 12547.9328 0.4288 0.7251 0.9473
Phe 29328.8464 31862.5601 0.4569 0.6538 0.9205
Put 54.9230 79.2411 1.3676 0.2611 0.6931
Ser 23610.6845 22082.6486 1.2432 0.3878 1.0692
Spd 51.4018 36.0744 0.0080 0.5506 1.4249
Spm 1.8376 0.3450 0.0203 0.2532 5.3264
Thr 16967.4760 14281.2878 1.1023 0.2888 1.1881
Trp 28470.6713 30762.5075 0.6639 0.6584 0.9255
TrpA 0.2438 0.2278 0.1484 0.9545 1.0703
Tyr 14325.2015 16764.0158 1.2463 0.3065 0.8545
TyrA 1.3762 1.6511 0.3996 0.8319 0.8335
Val 68949.8420 73676.5301 0.4762 0.6963 0.9358
Mela-
tonin

0.1180 0.0191 0.8390 0.4243 6.1902

5-Hydroxyindoleacetic acid: 5-HIAA, Serotonin: 5-HT, 5-Hydroxytryptophan: 
5-HTP, Acetylcholine: Ach, Alanine: Ala, Arginine: Arg, Asparagine: Asn, 
Aspartate: Asp, β-alanine: BALa, Cysteine: Cys, 3-Hydroxytyramine 
hydrochloride : DA, 3,4-Dihydroxyphenylacetic acid: DOPAC, Epinephrine: 
E, 4-Aminobutyric acid: GABA, Glutathione: GSH, Glutamine: Gln, Glutamic 
acid: Glu, Glycine: Gly, Homovanillic acid: HVA, Histidine: His, Histamine: Hist, 
Kynurenine: Kyn, 3,4-Dihydroxyphenylalanine: LDOPA, Leucine: Leu, Lysine: 
Lys, Methionine: Met, Norepinephrine: NE, Octopamine: OA, Ornithine : Orn, 
Phenylalanine: Phe, Putrescine: Put, Serine: Ser, Spermidine: Spd, Spermine: 
Spm, Threonine: Thr, Tryptophan: Trp, Tryptamine: TrpA, Tyrosine: Tyr, Tyramine: 
TyrA, Valine: Val
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and after FMT. Similarly, a case report study indicated 
that depression symptoms improved significantly 4 
weeks after FMT in two patients with major depressive 
disorder [26]. Furthermore, a previous study indicated 
that depression and anxiety symptoms might be allevi-
ated by FMT in patients with IBS, functional diarrhea, 
or functional constipation, and a correlation was noted 
between microbiota diversity and HAMD [20]. None-
theless, our study’s constraint was limited sample size. 
Thus, in the future, large sample size, double-blind, 
randomized, placebo-controlled trials are needed to 
comprehensively investigate the effects and mecha-
nisms of FMT in relieving functional constipation 
combined with psychiatric symptoms.

The intestinal microbiota is vital to host health and has 
recently become the target of living bacterial cell bio-
logical therapy for numerous chronic diseases, such as 
chronic constipation and depression. In this study, many 
taxa exhibited differential relative abundance before 
and after FMT as assessed by metagenomics sequenc-
ing. Compared with before transplantation, the relative 
abundance of g_Bacteroides and g_Klebsiella was sig-
nificantly decreased after FMT intervention for 4 weeks, 

whereas the relative abundance of g_Lactobacillus and 
g_Selenomonas was significantly increased. In our pre-
vious study, g_Bacteroidetes were more abundant in the 
fecal microbiota of constipated women of reproduc-
tive age [27]. Similarly, compared with the control, the 
abundance of g_Bacteroides was 1.5 times higher in the 
mucosal microbiota of constipation patients [28, 29]. Fur-
thermore, the random forest algorithm confirmed that 
the relative abundance of g_Bacteroidetes was inversely 
correlated with colonic transit [28]. These studies sug-
gest that g_Bacteroidetes may be involved in constipa-
tion. Interestingly, Wu et al. found that Bacteroidetes 
were negatively correlated with dietary fiber intake [30]. 
Tian et al. found that the high abundance of Bacteroi-
des and Klebsiella bacteria in feces may cause constipa-
tion, and their relative levels decreased after FMT [31]. 
However, fecal qRT‒PCR results showed that the relative 
abundance of Bifidobacterium and Bacteroides species in 
stool samples from constipated patients was significantly 
lower than that of healthy controls [32]. Thus, we specu-
late that this may be due to different detection methods 
and disease subtypes. In addition, lower g-Lactobacillus 
levels were found in chronic functional constipation [31, 

Fig. 4 Correlations between metabolites and species. The top 15 different species with upregulated and downregulated expression were detected in 
metagenomic data. Forty-two targeted neurotransmitter metabolites. (A) Correlation analysis between metabolites. (B) Correlation analysis between 
metabolites and different strains
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33] and IBS subjects [34]. Consistent with our research 
results, Lulu Xie et al. found that the relative abundance 
of g_Lactobacillus was higher after FMT intervention 
than at baseline [35]. Lactobacillus paracei alleviates 
constipation symptoms by increasing the level of short-
chain fatty acids and promoting intestinal motility [36]. 
Lactobacillus acidophilus promotes intestinal electrolyte 
absorption by increasing Cl−/HCO3− and Na+/H+ trans-
port [37, 38]. In addition, Lactobacillus can relieve stress-
induced anxiety and depression-related behaviour and 
regulate central γ-aminobutyric acid receptor expres-
sion [39]. Zhou Dan et al. implicated that the decreased 
levels of Bacteroides spp. and Prevotella spp. may cause 
abnormal dopamine signaling by regulating amino acid 
metabolism in autism spectrum disorder patients [40]. 
An experimental animal study showed that the improve-
ment of depression-like behavior by FMT may be asso-
ciated with an increase in 5-HT levels and decreases in 
IL-1β and TNF-α levels [41]. Thus, FMT intervention 
increased the bacteria associated with intestinal motility, 
such as g_Lactobacillus, and decreased the bacteria asso-
ciated with psychiatric illness, such as g_Bacteroides, to 
relieve constipation and psychiatric symptoms.

5-HT is a common inhibitory neurotransmitter in 
the central nervous system and enteric nervous system. 

Previously, studies have shown that the altered 5-HT 
signal pattern leads to increased 5-HT content, 5-HT 
release, and enterochromaffin cell numbers but does 
not involve a decrease in serotonin selective reuptake 
transporter (SERT) expression [42, 43]. Similarly, in 
this study, the 5-HT level was significantly increased 
at baseline but subsequently decreased 13-fold after 
FMT intervention for 4 weeks in patients with consti-
pation and psychiatric symptoms (Fig.  3). Moreover, 
serotonin signaling has also been studied in many ani-
mal models, including TNBS colitis [44], DSS colitis 
[45], and Trichinella spiralis enteritis in mice [46]. In 
all these conditions, the level of 5-HT, the release of 
5-HT, and the number of enterochromaffin cells were 
increased. Another consistent feature of these models 
was the reduction in epithelial SERT expression. It has 
been demonstrated that this reduction in SERT lev-
els leads to increased availability of 5-HT under basic 
and stimulus conditions [47]. In addition, Narek et 
al. found reductions in the amount of 5-HT released 
by intestinal neurons, which led to deficiencies in 
enteric nervous system development and gastrointes-
tinal motility in the TPH2-R439H mouse model [48]. 
Furthermore, we found that fecal supernatants from 
patients with constipation combined with depression 

Fig. 5 Feces from patients with functional constipation and comorbid psychiatric symptoms increased 5-HT production. (A) QGP-1 cells treated with 
fecal supernatant (fecal supernatant: medium = 1:5) for various times, and cell viability was assessed by CCK-8. (B, C) Expression of TPH1 gene and protein 
as detected using qRT-PCR and WB assay. (D) The 5-HT of cell culture medium supernatant was detected by ELISA
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and anxiety promoted 5-HT synthesis and secretion in 
QGP-1 cells. More interestingly, we observed the same 
effect in Bacteroides supernatants exposed to QGP-1 
cells. The findings suggest that 5-HT links constipa-
tion with emotional disorders and that specific bacte-
ria may play a key role. Although increasing evidence 
supports the concept that 5-HT signaling is altered in 
functional gastrointestinal diseases and mental disor-
ders, however, its causal and effective relationship still 
needs to be resolved.

Although our study provided some clues for FMT treat-
ment of constipation patients with psychiatric symptoms, 
many limitations still exist. First, this study included a 
small sample with no placebo control. Second, we only 
performed serum metabolomic sequencing, and if both 
serum and fecal samples were metabolomic sequenced, 
it would provide a more comprehensive understanding of 
the disease. Fourth, although we performed a combined 
multiomics analysis, the association between different 
strains and changes in 5-HT content still needs to be 
explored. Third, the molecular regulatory mechanism of 
significantly reduced 5-HT levels after FMT intervention 
remains unclear.

Conclusions
After 4 weeks of FMT intervention, constipation, depres-
sion, and anxiety symptoms were significantly alleviated 
in the participants. FMT intervention altered the gut 
microbiota profile at the phylum, genus, and species lev-
els. The 5-HT content was significantly diminished after 
FMT intervention compared with baseline. Additionally, 
the patient’s fecal supernatant demonstrated an ability 
to enhance 5-HT biosynthesis in vitro. Further studies 
are required to investigate the relationship between gut 
microbiome-mediated metabolites and neural function. 
Taken together, our study provided valuable insights 
into the connection among gut microbiota, metabolites, 
intestinal dysfunction, and neurotransmitter dysregula-
tion in constipated patients with psychiatric symptoms.
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