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Abstract 

Background  Gut microbiome is critical to our human health and is related to postmenopausal osteoporosis (PMO). 
Strontium ranelate (SrR) is an anti-osteoporosis oral drug that can promote osteoblast formation and inhibit osteoclast 
formation. However, the effect of SrR on gut microbiome has been rarely studied. Therefore, we investigated the effect 
of oral SrR on gut microbiome and metabolic profiles.

Results  In this study, we used ovariectomized (OVX) Sprague–Dawley rats to construct a PMO model and applied 
oral SrR for 6 weeks. The relative abundance of intestinal microbiome was investigated by 16S rRNA metagenomic 
sequencing. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to analyze 
changes in metabolites of intestinal contents. Results demonstrated that 6-week oral SrR alleviated osteoporosis 
and significantly changed the composition of the gut microbiome and metabolic profiles of OVX rats. Ruminococ-
cus, Akkermansia and Oscillospira were significantly enriched in the gut of OVX rats after 6-week oral SrR. Especially, 
the species R. albus showed the greatest importance by a random forest classifier between OVX and OVX_Sr group. 
The enrichment of R. albus in the gut was positively correlated with bone mineral density and the accumulation 
of lycopene and glutaric acid, which also significantly elevated after oral SrR.

Conclusions  We discovered that oral SrR can improve bone health while stimulate the accumulation of gut microbe 
R. albus and metabolites (lycopene and glutaric acid). The results suggested possible connections between oral SrR 
and the gut-bone axis, which may provide new insight into the treatment/prevention of osteoporosis.
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Background
Bone is a dynamic organ that relies on the balance 
between bone formation and bone resorption to maintain 
normal function [1]. Osteoporosis is a bone disease due 
to an imbalance of bone remodeling, which causes bone 
resorption to exceed bone formation and leads to loss 
of bone density and regression of the bone microstruc-
ture [2]. In elder women, the most common risk factor 
of osteoporosis is the lack of estrogen after menopause. 
Common treatments recommended for postmenopausal 
osteoporosis (PMO) include anabolic and antiresorptive 
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therapies, which can either increase osteoblastic bone 
formation or decrease osteoclastic bone resorption [3, 
4]. Although currently approved treatments are safe and 
generally well tolerated, long-term side effects and high 
prices remain as challenges [5]. Therefore, further stud-
ies on osteoporosis treatment options with minor side 
effects are necessary.

Strontium ranelate (SrR) has a dual effect on bone 
turnover, that is, it can stimulate bone formation and 
decrease bone resorption, thereby preventing bone loss 
and micro-architecture degradation [6–8]. In clinical 
trials, oral SrR increased the bone mineral density and 
reduced the risk of vertebral fractures in patients with 
PMO [7]. In 2004, SrR has been authorized for PMO with 
severe osteoporosis in Europe to reduce the risk of ver-
tebral and hip fracture [9]. However, it has a high risk of 
serious cardiovascular conditions and side effects, such 
as skin reaction hypersensitivity, diarrhea, nausea, and 
liver inflammation; as such, SrR has been recommended 
for patients at high fracture risk who do not have cardio-
vascular risk factors [9, 10]. Therefore, a method using 
SrR that can conserve the beneficial effect on osteoporo-
sis and reduce the side effects should be developed.

Gut microbiome is a complex and dynamic microbial 
community that consists of approximately 100 trillion 
microbes, including bacteria, virus, fungi, and protozoa 
[11]. It exists in the human gastrointestinal tract and is 
now regarded as a vital organ to human health [12, 13]. 
Osteoporosis is closely associated with the gut microbi-
ome, which can regulate bone metabolism by influencing 
the immune system, nutrient absorption, and gut perme-
ability [14, 15]. Sjogren et al. [16, 17] found that the bone 
mass of conventional raised mice was lower than that 
of germ-free mice, which can be recovered by probiotic 
supplementation. Lactococcus and Bifidobacterium can 
prevent the bone loss of mice caused by estrogen defi-
ciency [18, 19]. In postmenopausal women, 12 months of 
oral 1 × 1010 L. reuteri ATCC PTA 6475 every day signifi-
cantly inhibited bone density reduction [20]. However, 
the mechanism of the effect of the gut microbiome on 
osteoporosis is complex and needs further exploration.

The fate and activity of drugs are frequently dictated 
not only by the host per se but also by microorganisms in 
the gastrointestinal tract [17]. The interactions between 
drugs and the gut microbiome may have the potential 
to enhance drug efficacy [21]. Non-antibiotic oral drugs 
showed great impact on the gut microbiome, thereby 
indirectly influencing responses to treatments [22, 23]. 
SrR is an oral administered drug for osteoporosis and has 
absolute bio-availability of 27% after a dose of 2 g [24]. 
Therefore, SrR is inevitably exposed to and interacted 
with the gut microbiome [25]. However, the relation-
ships between oral SrR, gut microbiome signatures and 

PMO have not been satisfactorily examined. Therefore, 
the present study aimed to determine the effect of oral 
SrR supplementation on gut microbiome composition 
and metabolism. Ovariectomy (OVX) was conducted 
on Sprague–Dawley (SD) rats to create PMO model. 
Oral SrR supplementation was conducted for 6 weeks. 
We applied an integrated approach of 16S rRNA gene 
metagenomic sequencing combined with colonic ultra-
high-performance liquid chromatography-mass spec-
trometry (UHPLC-MS) to determine whether specific 
bacterial genera and metabolites are associated with oral 
SrR. This study evaluated the interactions between the 
gut microbiome, PMO, and oral SrR. The results provide 
new insights into the therapeutic mechanism of oral SrR 
and the clinical strategy of PMO with less side effects.

Results
SrR alleviate osteoporosis of OVX rats
Treatment with 6-week oral SrR significantly improved 
the trabecular structure (Fig. 1a) and increased the bone 
mineral density (BMD) and bone volume/total volume 
(BV/TV) of OVX rats (Fig. 1c-f ). After 6-week oral SrR, 
the osteoclast cell number of OVX rats significantly 
decreased (Fig.  1b and h). Compared with OVX group, 
the connectivity density (Conn. Dens.), trabecular num-
ber (Tb. N.), and trabecular thickness (Tb. Th.) of OVX_
Sr rats was elevated but the increase was not significant 
(Fig.  1g, i and j). The trabecular separation (Tb. Sp.) of 
OVX_Sr rats decreased, but the effect was not significant 
(Fig. 1k). Hence, 6-week oral SrR alleviated the osteopo-
rosis of OVX rats.

Gut microbiome significantly distinguish the OVX_Sr 
group from the OVX group
After quality control, 840 139 clean reads were obtained 
in the OVX group (n = 11) and OVX_Sr group (n = 10). 
The clean reads generated 5 430 OTUs, including 15 
phyla, 30 classes, 52 orders, 99 families and 200 genera. 
At phylum level, the composition of the gut microbiome 
in OVX and OVX_Sr rats were mainly consisted of Fir-
micutes and Bacteroidetes (Fig.  2a), and the difference 
was not significant as determined by Wilcoxon rank 
sum test (Supplementary Table  1). The alpha diversity 
also exhibited no significant difference between OVX 
and OVX_Sr group (Fig.  2b). Principal coordinate anal-
yses (PCoA) showed that the gut microbiome of OVX 
and OVX_Sr group were slightly separated along PCo2 
based on weighted Unifrac distance (WUF) (Fig. 2c). By 
employing permutational multivariate analysis of vari-
ance (PerMANOVA), the gut microbiome composition 
significantly differed between OVX and OVX_Sr groups 
(WUF: F = 2.252, P = 0.021; unweighted Unifrac distance 
(UUF): F = 1.252, P = 0.042; Supplementary Table  2). 
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Hence, oral SrR has significant effect on the beta diversity 
of the gut microbiome in OVX rats.

To further identify the variation of gut microbiome 
triggered by oral SrR, LDA effect size (LEfSe) analysis 
was employed to determine differences between OVX 
and OVX_Sr groups. The relative abundance of Oscil-
lospira, Clostridium celatum, Ruminococcus albus, and 
Akkermansia muciniphila significantly increased in the 
OVX_Sr group compared with that in the OVX group 
(Fig.  2d). At OTU level, networks were constructed 
in OVX and OVX_Sr groups based on Spearman’s 
relationships separately (│r│ > 0.7, P < 0.05, Fig.  3). 
Among-module connectivity (Pi) and within-module 
connectivity (Zi) of each node were calculated. The 
topological roles of all nodes were categorized into 

four types: peripherals (Zi ≤ 2.5, Pi ≤ 0.62), connectors 
(Zi ≤ 2.5, Pi > 0.62), module hubs (Zi > 2.5, Pi ≤ 0.62) and 
network hubs (Zi > 2.5, Pi > 0.62). In the OVX group, 
the nodes of the network mainly belonged to Rumi-
nococcaceae (26.4%), Lachnospiraceae (16.4%) and 
S24-7 (14.9%). Ruminococcaceae accounted for 30.3% 
of all the connectors. In the OVX_Sr group, the nodes 
of the network mainly belonged to Ruminococcaceae 
(37.2%), S24-7 (22.5%) and Lachnospiraceae (10.3%). 
The proportions of Ruminococcaceae and S24-7 in 
the OVX_Sr group were higher than those in the OVX 
group, and the proportion of Lachnospiraceae declined. 
Ruminococcaceae accounted for 35.6% of all the con-
nectors in the OVX_Sr group, which was higher than 
that in the OVX group. The results suggested that 

Fig. 1  Six-week oral SrR alleviated osteoporosis of OVX rats. a Representative reconstruction of trabecular bone for calculation. Scale bar, 1mm. b 
TRAP stain of tibias with 100 × (up) and 400 × (bottom) magnifications. BMD of the whole body (c), body without head (d), and hindquarters (e). BV/
TV (f), connectivity density (g), trabecular number (i), trabecular thickness (j), and trabecular separation (k) on distal femur were analyzed by μCT. h 
Osteoclast cell number per femur surface. The difference between OVX and OVX_Sr groups was analyzed by Wilcoxon rank sum test
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Ruminococcaceae played a more important role in the 
OVX_Sr gut microbiome than in the OVX group.

Metabolomics analysis of colonic samples
To further explore the potential contributing metab-
olites, UHPLC-MS was employed to analyze the 
gut metabolites of OVX and OVX_Sr rats. The gut 
metabolites mainly included alkaloids, benzenoids, 
lipids, organic acids, organic nitrogen compounds, 

organic oxygen compounds, organoheterocyclic com-
pounds, phenylpropanoids and polyketides. The result 
of the principal component analysis (PCA) exhibited 
great differences in the metabolite profiles between 
OVX and OVX_Sr groups (Supplementary Fig.  1). 
The variable importance for the projection (VIP) of 
orthogonal projections to latent structure discrimi-
nant analysis (OPLS-DA) was calculated to select sig-
nificantly changed metabolites between OVX and 

Fig. 2  Comparison of the gut microbiome between OVX and OVX_Sr groups. a Composition of the gut microbiome at phylum level. b Chao 1 
and observed species indices showed no significant difference between OVX and OVX_Sr groups. c PCoA of the gut microbiome based on WUF 
and UUF. d Significantly changed microbes after 6-week oral SrR determined using LEfSe analyses
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OVX_Sr groups (VIP > 1.0 and P < 0.05; Fig.  4a and b, 
Supplementary Tables 3 and 4). Among the significantly 
changed metabolites, the majority were lipids, organic 
acids and organoheterocyclic compounds. Compounds 
with the highest fragmentation score based on MS2 
library searches mainly included beta-alanine, proline 
betaine, L-glutamic acid, glutaric acid, choline, gamma-
linolenic acid, glycocholic acid, lycopene, piperidine 
and 5’-methyldeoxycytidine.

We applied a random forest classifier to the core 
sequence clusters of OVX and OVX_Sr groups to deter-
mine the key stone species (Fig. 4c). R. albus showed the 
biggest importance and had higher relative abundance 
in the OVX_Sr group than in the OVX group. The rela-
tive abundance of R. albus showed significantly positive 
relationships to significantly enriched metabolites after 
oral SrR (proline betaine, glutaric acid, lycopene and 
piperidine), and negative relationships to erucic acid and 

Fig. 3  Networks and Zi-Pi plots of OVX and OVX_Sr gut microbiome based on SparCC correlation coefficients. Each dot represents each ASV. 
Different colors of dots represent different family (network visualization) or genus (Zi-Pi plots). Different colors of lines represent different correlation 
coefficients. The role of nodes was characterized by within-module connectivity (Zi) and among-module connectivity (Pi). Peripheral nodes (Zi ≤ 2.5, 
Pi ≤ 0.62), connectors (Zi ≤ 2.5, Pi > 0.62), module hubs (Zi > 2.5, Pi ≤ 0.62), and network hubs (Zi > 2.5, Pi > 0.62) are shown in the Zi-Pi plots
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Fig. 4  Gut metabolites enriched in OVX_Sr group (a) and OVX group (b). Different row-side colors represent different super classes into which 
metabolites were classified. Different column-side colors represent different groups. cThe key stone species determined by a random forest 
classifier. d Spearman’s relationships between the key stone species and the metabolites. Each dot represents significant relationship (P < 0.05). 
The accumulation of four metabolites (e) in OVX_Sr increased with increased abundance of R. albus (f). Differences in metabolites between OVX 
and OVX_Sr groups (E) were calculated by using Wilcoxon rank sum tests



Page 7 of 11Xiao et al. BMC Microbiology          (2023) 23:365 	

indole-3-carboxylic acid (Fig.  4d and e). These results 
were also confirmed by linear regression shown in Fig. 4f. 
Hence, the elevation of R. albus was accompanied by the 
accumulation of proline betaine, glutaric acid, lycopene 
and piperidine in the gut after 6-week oral SrR. These 
accumulations may be related to the relief of osteoporosis 
symptoms.

Discussion
In the present study, we verified that oral SrR increased 
the BMD and improved the trabecular microstructure of 
OVX rats [26]. Meanwhile, oral SrR significantly modi-
fied the gut microbiome and its metabolic activity. There-
fore, we suspect possible associations among oral SrR, 
gut microbiome, and bone health.

Ruminococcus species are critical members of the 
rumen microbial community with cellulolytic and short 
chain fatty acids (SCFAs)-producing ability as poten-
tial probiotics [27, 28]. Research on the gut–bone axis 
detected higher abundance of Ruminococcus in healthy 
individuals compared with patients with osteoporosis 
[29, 30]. In this study, the genus Ruminococcus, espe-
cially R. albus, was enriched after 6-week of oral SrR in 
OVX rats (Supplementary Fig. 2a). Moreover, the relative 
abundance of R. albus positively correlated with BMD 
(Supplementary Fig.  2c and Supplementary Table  5). R. 
albus is a promising candidate for probiotics in human 
gut [31]. It has been found that heat-killed R. albus can 
protect neurons from oxidative damage [32]. Hence, we 
speculated that Ruminococcus, especially R. albus, may 
be associated with osteoporosis alleviation.

Furthermore, we found that R. albus was significantly 
correlated with four kinds of metabolites, namely, proline 
betaine, glutaric acid, lycopene, and piperidine (Fig.  4). 
These compounds were also enriched in the gut by oral 
SrR (Fig.  4 and Supplementary Table  3). Lycopene can 
promote osteoblast proliferation and differentiation 
in vitro. On the other hand, it can inhibit mineral resorp-
tion by inhibiting osteoclast formation and ROS pro-
duction in vitro [33–35]. In vivo, several studies verified 
that the supplementation of lycopene can significantly 
decrease oxidative stress parameters and bone resorption 
[36, 37]. Glutaric acid is one of the SCFAs produced by 
bacterial fermentation of non-digestible carbohydrates 
[38]. SCFAs can affect local and systemic immune func-
tions, and act as potent regulators of osteoclasts to pre-
vent postmenopausal and inflammation-induced bone 
loss [39, 40]. Consistent with the trend in this study, 
Cabrera et  al. found that glutaric acid in sheep plasma 
decreased one month after OVX [38]. Therefore, we 
speculated that the enrichment of R. albus, lycopene and 
glutaric acid in the gut by oral SrR may contribute to the 
relief of osteoporosis of OVX rats.

The abundance of Akkermansia and Oscillospira also 
significantly increased in the OVX_Sr group compared 
with that in the OVX group (Fig. 2 and Supplementary 
Fig.  2b). Akkermansia is a potential probiotic that can 
participate in host immune regulation and promote 
intestinal health [41, 42]. A. muciniphila decreased in 
individuals with osteoporosis and osteopenia compared 
with that in healthy ones, which suggested the poten-
tial relationship between A. muciniphila and bone 
health [43, 44]. Oscillospira is commonly detected in 
the human gut by metagenomic sequencing. Although 
Oscillospira is rarely cultivated, it has been regarded 
as a promising probiotic for inflammatory bowel dis-
eases and leanness in humans [45, 46]. Further, the gut 
microbiome is a dynamic and complicated whole, and 
the symbiosis between the gut microbiome and the 
host requires a delicate balance. Therefore, Akkerman-
sia and Oscillospira may cooperate with Ruminococ-
cus in functioning in osteoporosis. Further, this study 
was conducted using 16S rRNA metagenome sequenc-
ing. The resolution and accuracy may be lower than 
metagenomic sequencing and culture-dependent meth-
ods. Therefore, our conclusion still needs confirmation 
by further experiments on isolated R. albus strain.

For recent researches mainly focus on the regulation 
of gut microbiome on bone homeostasis, less atten-
tion has been paid to the influence of bone mass on gut 
microbiome. Although several studies found that post-
menopausal women with different BMDs had different 
gut microbiome compositions, it is hard to define the 
causal relationship between BMD and gut microbiome 
[47, 48]. There seems to be no conclusive evidence on 
whether bone mass can influence gut flora [49]. It has 
been found that proton pump inhibitors can indirectly 
influence gut microbiome by reducing the acidity bar-
rier of the stomach, which allows oral microbes pass 
through the stomach to the gut [23]. The direct influ-
ence of drugs might be the main mechanism for modu-
lating gut microbiome [23]. Non-antibiotic drugs can 
directly influence gut microenvironment and modulate 
the growth of gut bacteria and bacterial native metab-
olism [50]. We speculated that the direct effects of 
SrR on the gut microbiome might play a leading role, 
because bones can neither directly contact with outer 
environment nor be inhabited by diverse microbes 
normally. However, we cannot rule out the possibil-
ity of indirectly influence of SrR through other organ 
systems. Further validation analysis is to investigate 
the influence of SrR on the gut microbiome of sham 
operation rats, and verify the direct effect of SrR on the 
growth and metabolism of gut bacteria in vitro, which 
may contribute to validate the causal relationship and 
mechanism on PMO and gut microbiome.
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Conclusion
In conclusion, we have shown that oral SrR alleviated 
osteoporosis and significantly changed the composition 
of the gut microbiome and metabolic profiles of OVX 
rats. Several gut microbes and metabolites significantly 
enriched after oral SrR. Furthermore, positive rela-
tionship between specific gut microbe and BMD was 
detected, which indicating the potential function of gut 
microbiome during the treatment of osteoporosis. Our 
findings may provide new insights in the treatment/
prevention of osteoporosis through gut–bone axis.

Methods
Animals and sample collection
We purchased 30 24-week-old SD female rats from the 
Laboratory Animal Center (Hubei University of Medi-
cine). They were raised without specific pathogens. 
The rats were fed sterile food and given autoclaved 
water ad  libitum. During the experimental period, the 
mice were housed in an animal room under controlled 
environmental conditions at a temperature of 22 ± 2 
°C, relative humidity of 45 ± 5%, and a 12 h light/dark 
cycle. After feeding for one week under this condition, 
the rats were randomly divided into two groups includ-
ing a OVX group (n = 22) and a Sham group (n = 8). The 
OVX group was subjected to ovariectomy to construct 
PMO models. The Sham group was subjected to sham 
operation to remove equal volume of fat near the ova-
ries. After 6 weeks, BMD of 7 individuals from Sham 
group and 8 individuals which were randomly selected 
from OVX group was examined to validate the model 
(Supplementary Fig. 3).

After establishing the model, we randomly divided 
the OVX group into OVX_Sr group (n = 10) and OVX 
group (n = 11). SrR (Sigma–Aldrich Trading Co. Ltd., 
Shanghai, China) was added to the chow for OVX_Sr 
group at a concentration of 650 mg/kg body weight/day 
for 6 weeks. The OVX were treated with normal chow 
for 6 weeks.

After the experimental period, all rats were sacrificed 
by over-anesthesia with pentobarbital sodium (intra-
peritoneal injection at a dose of 150 mg/kg). Bone min-
eral content, microstructure, and histomorphology of 
randomly selected rats from each group were assessed. 
Colonic contents were collected and stored at –80 °C for 
further analysis. All animal experiments were performed 
in accordance with relevant guidelines and regulations, 
and were approved by the Animal Care and Use Commit-
tee at Hubei University of Medicine (No. 2019–089). The 
experimental procedure was provided as Supplementary 
Fig. 4. The weight of animal at different time points was 
provided as Supplementary Fig. 5.

Micro CT
Micro-CT (μCT50 in vitro scanner; Scanco Medical, AG, 
Switzerland) was used to assess femur microstructure 
in  vitro. The femoral trabecular structure was initially 
scanned at the level of the growth plate and extended 50 
slices. From this region, 100 slices were chosen for the 
evaluation. The femoral cortical structure was assessed 
through 100 continuous CT slides from the bone mid-
shaft. Quantitative parameters evaluated were bone vol-
ume/total volume (BV/TV), connectivity density (Conn. 
Dens., 1/mm), trabecular number (Tb. N., 1/mm), tra-
becular thickness (Tb. Th., mm), and trabecular separa-
tion (Tb. Sp., mm).

Bone mineral content measurement
The BMD of the rats were measured by dual-energy 
X-ray absorptiometry (DXA) (Hologic Discovery A, San 
Diego, USA). The rats were positioned on a DXA table in 
the prone position to scan proper area (whole body, body 
without head, and hindquarters). Analyses were per-
formed using Apex 4.5.3 software for small animals car-
ried by Hologic Discovery A (San Diego, USA).

Bone histomorphometry
Tibias were fixed in 4% paraformaldehyde for 72 h and 
decalcified in EDTA decalcification fluid (Servicebio, 
Wuhan, China). The decalcified tibias were dehydrated 
and defatted with graded ethanol (50%–100%) and xylene 
and then embedded in paraffin [51]. Sections of 4-μm 
thickness were used for tartrate-resistant acid phos-
phatase (TRAP) staining following the manufacturer’s 
instructions of the TRAP dye solution kit (Servicebio, 
Wuhan, China). All images were taken on an Olympus 
BX53 microscope with an Olympus DP73 camera (Olym-
pus, Tokyo, Japan) by using Olympus cellSens standard 
software. Osteoclast number per bone surface was meas-
ured. Osteoclasts were identified as TRAP-positive cells 
with more than three nuclei.

Amplicon Sequence Variant (ASV)‑based analysis of 16S 
rDNA sequencing data
Total genomic DNA samples were extracted from colonic 
samples using the Mag-bind soil DNA kit (M5635-02) 
(Omega Bio-Tek, Norcross, GA, USA) following the 
manufacturer’s instructions. DNA quantity and quality 
were measured using a NanoDrop NC2000 spectropho-
tometer (Thermo Fisher Scientific, MA, USA) and aga-
rose gel electrophoresis, respectively. The V3–V4 region 
of the bacterial 16S rRNA gene was amplified through 
PCR using the forward primer 338F (5’-ACT​CCT​ACG​
GGA​GGC​AGC​A-3’) and the reverse primer 806R (5’-
GGA​CTA​CHVGGG​TWT​CTAAT-3’). The PCR mixture 
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contained 5 μl of buffer (5 ×), 0.25 μl of Fast pfu DNA 
Polymerase (5 U/μl), 2 μl (2.5 mM) of dNTPs, 1 μl (10 
μM) of each forward and reverse primer, 1 μl of DNA 
template, and 14.75 μl of ddH2O. Thermal cycling con-
sisted of initial denaturation at 98 °C for 5 min, followed 
by 25 cycles consisting of denaturation at 98 °C for 30 s, 
annealing at 53 °C for 30 s, and extension at 72 °C for 45 
s, with a final extension of 5 min at 72 °C. The PCR ampli-
cons were purified with Vazyme VAHTSTM DNA Clean 
Beads (Vazyme, Nanjing, China) and quantified using 
the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, 
CA, USA). The amplicons were pooled in equal amounts. 
Pair-end 2 × 250 bp sequencing was performed using the 
Illumina NovaSeq 6000 platform at Shanghai Personalbio 
Biotechnology Co., Ltd. (Shanghai, China).

Microbiome bioinformatics were performed with 
QIIME2 2019.4 [52]. Raw sequence data were demulti-
plexed using the demux plugin followed by primer cut-
ting with cutadapt plugin [53]. The sequences were then 
quality filtered, denoised, merged and chimera removed 
using the DADA2 plugin [54]. Non-singleton amplicon 
sequence variants (ASVs) were aligned with mafft [55] 
and used to construct a phylogeny with fasttree2 [56]. 
Alpha diversity and beta diversity (WUF and UUF) were 
estimated using the diversity plugin with reads rarefied 
to 26 847 sequences per sample. Taxonomy was assigned 
to ASVs by using the classify-sklearn naïve Bayes taxon-
omy classifier in feature–classifier plugin [57] against the 
Greengenes Database [58].

Non‑target metabolomic analysis
The method we used for detecting gut metabolites was 
non-target metabolomic analysis. We thawed the colonic 
content samples (randomly selected 6 samples from each 
group) on ice. All samples were analyzed individually not 
pooled. We added 100 mg of the sample to precooled 
50% methanol and mixed thoroughly by vortexing. The 
samples were then incubated on ice for 5 min and centri-
fuged (15 000 g) at 4 °C for 15 min. The supernatant was 
stored at -80 °C until subsequent analysis.

We used a Vanquish UHPLC system (Thermo Fisher, 
100 mm × 2.1 mm, 1.9 mm) for the chromatographic 
separation of the samples at a constant temperature 
of 40 °C and an Orbitrap Q Exactive series mass spec-
trometer (Thermo Fisher) to detect eluted metabolites. 
C18 column was used in the UHPLC/MS analysis. The 
sample injection volume was 5 ml, and the column flow 
rate was maintained at 0.2 ml/min. The mobile phase 
contained two solvent eluents. In positive mode, elu-
ent A was 0.1% (v/v) formic acid in water, and eluent 
B was methanol; in negative mode, eluent A was 5 mM 
ammonium acetate with a pH of 9.0, and eluent B was 

methanol. The gradient elution was 2% B for 1.5 min, 
2–100% B for 12.0 min, 100% B for 14.0 min, 100–2% B 
for 14.1 min, and 2% B for 17 min. To analyze the sam-
ples, we set the mass spectrometer spray voltage to 3.2 
kV, the capillary temperature to 320 °C, the sheath gas 
flow rate to 35 arb, and the auxiliary gas flow rate to 10 
arb.

Statistical analysis
The gut microbiome was analyzed on the normal-
ized data set. Alpha diversity index and PerMANOVA 
were calculated or performed with 999 permutations 
using the ‘Vegan 2.5–7’ package on the R platform 
(4.0.4) [59]. PCoA based on WUF and UUF distances 
were implemented by using the R package “ape 5.5” 
[60]. PCA among groups were performed by using the 
R package “ade4 1.7–18”. Wilcoxon rank sum tests and 
linear fitting were conducted with the R package “stats 
4.0.4”. A correlation plot was calculated and visualized 
by using the R package “Hmisc 4.5–0”. Heatmaps were 
visualized by using R package “pheatmap 1.0.12”. Other 
figures were generated with the R package “ggplot2 
3.3.5”. The ASVs (total reads < 10 or sample number < 5) 
were filtered before network analyses. Network analy-
ses were performed on the basis of SparCC correlation 
coefficients (P < 0.05) [61]. Topology indices were calcu-
lated by using R package “igraph 1.2.6” [62]. The results 
were visualized by Cytoscape 3.7.1 software [63]. LEfSe 
analyses and visualizations were performed according 
to previous study [64].
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