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Abstract 

Background Extended-spectrum β-lactamase (ESBL), plasmid-mediated AmpC-β-lactamase and carbapenemase-
producing Escherichia coli and Klebsiella pneumoniae have spread into the environment worldwide posing a potential 
public health threat. However, the prevalence data for low- and middle-income countries are still scarce. The aim 
of this study was to evaluate the presence of ESBL, AmpC-β-lactamase and carbapenemase-producing and multid-
rug-resistant E. coli and K. pneumoniae in wastewaters from healthcare centers in Burkina Faso.

Results Eighty-four (84) wastewater samples were collected from five healthcare centers and plated on selec-
tive ESBL ChromAgar. E. coli and Klebsiella pneumoniae isolates were identified using API20E. ESBL-producing bac-
teria were detected in 97.6% of the samples and their average concentration per hospital ranged from 1.10 ×  105 
to 5.23 ×  106 CFU/mL. Out of 170 putative ESBL-producing isolates (64% of them were E. coli) and 51 putative AmpC-β-
lactamase-producing isolates, 95% and 45% were confirmed, respectively. Carbapenemase production was detected 
in 10 isolates, of which 6 were NDM producers, 3 were OXA-48 producers and 1 was NDM and OXA-48 producer. All 
isolates were multidrug resistant and, moreover, all of them were resistant to all tested β-lactams. Resistance to ESBL 
inhibitors was also common, up to 66% in E. coli and 62% in K. pneumoniae. Amikacin, fosfomycin and nitrofurantoin 
were the antibiotics to which the least resistance was detected.

Conclusions This study showed that wastewater from healthcare centers constitutes a reservoir of multidrug-
resistant bacteria in Burkina Faso, including carbapenemase producers. Untreated healthcare wastewater entering 
the environment exposes people and animals to infections caused by these multi-resistant bacteria, which are dif-
ficult to treat, especially in the resource-poor settings.
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Introduction
The emergence and spread of antimicrobial resistance 
(AMR) represent a serious threat to human and animal 
health. In 2019, the number of deaths associated with 
AMR was estimated at 4.95 million including 1.27 mil-
lion directly attributable to multi-drug resistant bacteria 
[1]. Therefore, if no action is taken against AMR, by 2050 
this number could rise to 10 million per year [2, 3]. The 
economic cost of AMR has been estimated to vary from 
1.1 to 3.8% of the global gross domestic product and the 
annual shortfall to reach $3.4 trillion by 2030 [4]. Several 
reasons, such as unreasonable use or overuse of antibi-
otics, have been speculated to favor the emergence and 
spread of resistance genes and multidrug resistant bac-
teria [5–10]. Furthermore, in low- and middle-income 
countries (LMICs), socio-economic and behavioral fac-
tors, such as poverty, use of poor quality antibiotics, 
absence of diagnostic tools, absence of antibiotic stew-
ardship policies and uncontrolled use of antibiotics in 
animals, have been indicated [6]. The persistence of 
antibiotic residues, non-degraded antibiotics and disin-
fectants in wastewaters contribute to selection of resist-
ant bacteria and their wide spread in environment [5–7, 
11–15]. Multidrug resistant bacteria harboring extended-
spectrum β-lactamase genes (blaTEM, blaSHV, blaCTX-M) 
and carbapenemase genes (blaOXA-48, blaKPC, blaNDM, 
blaVIM and blaIMP) have been detected in hospital waste-
waters from several countries [16–20]. Management of 
healthcare center wastewaters in LMICs is highly insuf-
ficient and sometimes the wastewaters are directly dis-
charged into the environment, drainage, rivers, or lakes 
without any treatment [21–23]. Use of this water for 
various human activities exposes the population to new 
infections by multidrug resistant bacteria [24, 25].

In Burkina Faso, information on wastewater con-
tamination is patchy, but recent studies have revealed 
the abundant presence of resistant bacteria in health-
care center effluents [26, 27]. The present study aimed 
to assess healthcare center wastewater contamination 
specifically by ESBL, AmpC-β-lactamase and carbapen-
emase -producing Gram negative bacilli and to perform 
phenotypic characterization of ESBL-producing Escheri-
chia coli (ESBL-Ec) and Klebsiella pneumoniae (ESBL-
Kp) in wastewaters from hospitals at different levels of 
the healthcare system in Burkina Faso.

Results
Bacterial concentration in healthcare center wastewaters
The average concentration of bacteria growing on ESBL-
selective plates from wastewater of each healthcare 
center varied from 1.10 ×  105 to 5.23 ×  106 CFU/mL. The 
highest bacterial counts were obtained from wastewater 

drained from Yalgado Ouédraogo teaching hospital (ter-
tiary level hospital), followed by Koudougou regional 
hospital center and El Fateh Suka clinic (both secondary 
level healthcare facilities) (Table 1).

Prevalence of ESBL
From the 84 healthcare center wastewater samples, 
ESBL E. coli or K. pneumoniae isolates were detected in 
82 samples (97.62%). In total, 170 strains were isolated 
(109 E. coli and 61 K. pneumoniae). ESBL test confirmed 
160 (95%) bacterial isolates (102 E. coli and 58 K. pneu-
moniae) to be ESBL positive. ESBL confirmation test was 
negative for ten isolates but they were resistant to all the 
β-lactam and ESBL inhibitors tested.

Prevalence of AmpC β‑lactamase producers
Bacterial isolates with cefoxitin inhibition zone diam-
eter less than 18 mm (37 ESBL-Ec and 14 ESBL-Kp) were 
tested to detect AmpC-β-lactamase production by the 
phenotypic method. In total, 23 out of 51 isolates tested 
(45%) were AmpC- β-lactamase producers (Table 2).

Prevalence of carbapenemase producers
Twenty-one bacterial isolates resistant to meropenem (15 
ESBL-Ec and 6 ESBL-Kp) were tested to detect carbap-
enemase production (OXA-48, KPC, NDM, VIM, and 
IMP). Ten isolates (47.62%) were carbapenemase produc-
ers: 6 were NDM producers, 3 were OXA-48 producers, 
and 1 was NDM and OXA-48 producer. Carbapene-
mase-producing bacteria were detected among wastewa-
ters collected from the tertiary and the secondary level 
healthcare facilities (Table 3).

Resistance to antibiotics
All the bacterial isolates from the ESBL selective plates 
(109 E. coli and 61  K. pneumoniae isolates) were tested 
against 31 antibiotics representing different antibi-
otic categories (Table  4). All the bacterial isolates were 

Table 1 Average bacterial concentration from wastewaters of 
the five healthcare centers growing on ChromAgar™ ESBL plates

Healthcare centers No. of 
samples 
(n  = 84)

Average 
concentration (CFU/
mL)

Yalgado Ouédraogo teaching 
hospital

28 5.23 ×  106

Koudougou regional hospital 
center

26 3.37 ×  106

El Fateh Suka clinic 14 3.00 ×  106

Source de Vie medical center 6 1.10 ×  105

Saint Camille medical center 
in Nanoro

10 1.85 ×  105
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multidrug resistant. All the isolates (100%) were resistant 
to aminopenicillins (ampicillin, piperacillin) and cepha-
losporins except cefoxitin. In case of the ESBL-inhibiting 
combination antibiotics, 65.42% and 65.74% of E. coli and 
61.67% and 45.76% of K. pneumoniae were resistant to 
amoxicillin + clavulanic acid and to piperacillin + tazo-
bactam, respectively.

High resistance rates were detected against aminogly-
coside, quinolone, and fluoroquinolone antibiotic catego-
ries. Indeed, in the aminoglycoside family, the detected 
resistance rates were up to 71.43% in E. coli and 77.77% in 
K. pneumoniae against kanamycin. Bacterial isolates were 
more susceptible to amikacin since only 6.93% of E. coli 
and 13.11% of K. pneumoniae were resistant (Table  4). 
The resistance rates against quinolones and fluoroqui-
nolones varied from 67.05% to 100% in E. coli and from 
24.44% to 93.44% in K. pneumoniae.

In case of the carbapenems, 17 E. coli (15.74%) and 5 K. 
pneumoniae (8.19%) isolates were resistant to merope-
nem (Table 4).

Other families of antibiotics commonly used in 
hospitals in Burkina Faso include cyclins; 86.02% E. 
coli and 78.26% K. pneumoniae isolates were resist-
ant to tetracycline. In case of the sulfonamides, 
88.14% of K. pneumoniae isolates were resistant to 

sulfamethoxazole + trimethoprim and 100% to sul-
famethoxazole (Table 4).

Azithromycin, an antibiotic widely used in Burkina 
Faso for Covid19 patient treatment [28, 29], was inac-
tive against 68.69% of E. coli isolates and for 35.59% of K. 
pneumoniae isolates (Table 4).

Discussion
Β-lactams are widely used in the treatment of patients 
in healthcare in Burkina Faso, but nowadays bacteria 
are often highly resistant to these antibiotics. Therefore, 
we isolated E. coli and Klebsiella pneumoniae strains 
from ESBL-selective ChromAgar plates inoculated with 
healthcare center wastewaters to determine their sus-
ceptibility to commonly used antibiotics. Over 97% of 
the 84 wastewater samples analyzed contained ESBL-
producing E. coli and/or K. pneumoniae. The concentra-
tions of ESBL-producing Gram-negative bacteria in the 
healthcare center wastewaters were high, but, our results 
are comparable to those published in previous studies 
in different parts of the world [16, 30–32]. For instance, 
concentrations up to  107  CFU/mL of ESBL, CARB and 
OXA-producing Enterobacteriaceae were reported from 
hospital wastewaters in Slovenia and Austria [15]. Also 
in Burkina Faso’s neighboring countries, Ghana and 

Table 2 AmpC-β-lactamase producers among isolates with cefoxitin inhibition zone diameter less than 18 mm from wastewaters of 
the five healthcare centers

a  AmpC-β-lactamase-producing E. coli and K. pneumonia out of the 51 isolates tested

Healthcare centers E. coli K. pneumonia AmpC‑β‑
lactamase 
producers (%) aTested (n) AmpC positive 

(n)
Tested (n) AmpC positive 

(n)

Yalgado Ouédraogo teaching hospital 15 3 4 2 9.80

Koudougou regional hospital center 12 7 5 2 17.65

El Fateh Suka clinic 5 3 1 0 5.88

Source de Vie medical center 1 1 0 0 1.96

Saint Camille medical center in Nanoro 4 1 4 4 9.8

TOTAL 37 15 14 8 45.09

Table 3 Carbapenemase producers among the meropenem resistant isolates from wastewaters of the five healthcare centers

Healthcare centers E. coli K. pneumoniae

Tested (n) Carbapenemase positive 
(n)

Tested (n) Carbapenemase 
positive (n)

Yalgado Ouédraogo teaching Hospital 8 1 OXA-48
1 OXA-48 + NDM

4 2 OXA-48
1 NDM

Koudougou Regional hospital Center 4 1 NDM 1 1 NDM

El Fateh Suka clinic 3 2 OXA-48
1 NDM

0 0

Source de Vie medical center 0 0 0 0

Saint Camille medical center (Nanoro) 0 0 1 0
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Nigeria, ESBL-producers have been commonly isolated 
from hospital wastewater [33, 34] Among our samples, 
the wastewaters collected from the tertiary and second-
ary level healthcare centers were the most contaminated 
with ESBL producers, possibly because these hospitals 
receive more patients, generally referred from a district 
level healthcare. Also, antibiotics are used more in terms 
of both quantity and diversity in tertiary and secondary 
level hospitals.

In addition to being ESBL producers, many of the 
bacterial isolates characterized in this study were also 
AmpC-β-lactamase (23 positive out of 51 isolates tested) 
and carbapenemase (10 positive out of 21 isolates tested) 
producers. Two types of carbapenemases, (OXA-48 and 

NDM) were detected. Previously, using a metagenom-
ics approach, presence of several carbapenemase genes 
(blaVIM, blaIMP, blaNDM and blaOXA-48) was reported in 
the wastewaters of some of the same hospitals in Burkina 
Faso [27]. The resistance rate of our ESBL-producing 
E. coli and K. pneunomia isolates to carbapenems was 
15.74% to meropenem, 20.75% to imipenem and 32.71% 
to ertapenem. Our results differ from those recently 
reported from Burkina Faso, where imipenem was the 
only carbapenem tested and no resistance to it was 
detected [26, 35]. Occurrence and eventual spread of the 
carbapenem resistant bacteria into the environment is of 
a particular concern since carbapenems are currently the 
antimicrobials of last resort in healthcare.

Table 4 Antibiotic resistance of ESBL-producing E. coli and K. pneumoniae strains

Antibiotic group Antibiotics (concentration in µg) Resistance to the antibiotic

E. coli K. pneumoniae

n (%) n (%)

Penicillin, penicillin and inhibitors Ampicillin (10) 97(100) 61(100)

Piperacillin (100) 97(100) 60(100)

Amoxicillin + acid clavulanic (30) 71(65.74) 37(61.67)

Piperacillin + Tazobactam (110) 70(65.42) 27(45.76)

Cephalosporin Cefazolin (30) 97(100) 60(100)

Cefuroxime (30) 95(100) 56(100)

Ceftriaxone (30) 95(100) 60(100)

Ceftazidime (30) 95(100) 60(100)

Cefepime (30) 95(100) 55(98.21)

Cefoxitin (30) 43(40.57) 14(23.73)

Monobactam Aztreonam (30) 92(94.85) 53(94.64)

Carbapenem Meropenem (10) 17(15.74) 5(8.19)

Imipenem (10) 22(20.75) 5(8.19)

Ertapenem (10) 35(32.71) 11(18.33)

Aminoglycosides Gentamycin (10) 46(44.66) 31(5082)

Amikacin (30) 7(6.93) 8(13.11)

Tobramycin (10) 74(71.15) 35(57.37)

Kanamycin (30) 65(71.43) 35(77.77)

Macrolides Azithromycin (15) 68(68.69) 21(35.59)

Quinolones, fluoroquinolones Ciprofloxacin (5) 98(95.15) 56(91.80)

Ofloxacin (5) 59(67.05) 11(24.44)

Levofloxacin (5) 71(71.72) 32(53.33)

Pefloxacin 58(100) 57(93.44)

Nalidixic acid (30) 99(94.29) 40(88.89)

Norfloxacin (30) 68(80.95) 30(50.0)

Cyclins Tetracycline (30) 80(86.02) 36(78.26)

Doxycycline (30) 70(67.31) 37(60.66)

Sulfonamides Sulfamethoxazole (50) 73(93.59) 23(100)

Sulfamethoxazole + trimethoprim (25) 94(89.52) 52(88.14)

Nitrofurans Nitrofurantoin (300) 42(40) 24(40)

Phosphonic acid Fosfomycin (200) 12(11.43) 36(61.02)
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Wastewaters originating from healthcare centers pre-
sent a public health concern in Burkina Faso and the 
other countries, where they are discharged directly into 
the environment or into municipality wastewater chan-
nels without any prior treatment [21, 23]. Furthermore, 
in LMICs, hospital wastewater may be used for irriga-
tion of vegetable crops [5]. Indeed, ESBL-producing 
bacteria have been isolated on lettuce in Burkina Faso 
[35]. The common intestinal carriage of these bacteria 
may increase their prevalence in patients visiting health-
care centers, where the presence of these bacteria leads 
to complications of therapeutic treatment, prolonged 
patient hospitalizations and increased hospitalization 
costs, as well as higher mortality and morbidity [36].

High level of resistance to the commonly used antibi-
otics has been reported also by other research groups in 
West Africa [37, 38]. In Nigeria, full resistance to cefo-
taxime, cefpodoxime, sulfonamide and ertapenem was 
reported among ESBL-producing E. coli isolated from 
a healthcare facility wastewater [38]. Likewise, in Côte 
d’Ivoire, ESBL-producing E. coli and K. pneumoniae iso-
lated from hospital wastewaters were reported to be fully 
resistant to amoxicilline + clavulanic acid, cefotaxime, 
ceftriaxone and ceftazidime. In addition, E. coli were fully 
resistant to ciprofloxacin, nalidixic acid and cefepime 
and K. pneumoniae were highly resistant to ciprofloxacin 
(62.5%), nalidixic acid and cefepime (87%) [37]. The high 
resistance level of bacteria in wastewaters from health-
care centers is a consequence of antimicrobial misuse 
in hospitals, the discharge at high concentrations of not 
metabolized antibiotics and antibiotic residues into hos-
pital wastewater, and the fecal contamination by patients 
[8, 23, 39–42]. Furthermore, the high concentration of 
bacteria in these wastewaters offers an increased chance 
for horizontal transfer of resistance genes between bacte-
ria [30–32, 37].

Amikacin, fosfomycin and nitrofurantoin were the anti-
biotics against which we recorded low resistance rates. 
Also in Mexico, a low resistance rate to amikacin among 
carbapenemase-producing Klebsiella spp. isolated from 
hospital wastewater was reported recently [43]. These 
antibiotics, mostly used for treatment of urinary tract 
infections, represent a major therapeutic option in case 
of infection with ESBL-producing bacteria.

Conclusion
This study shows that wastewaters from healthcare facili-
ties represent a reservoir of multidrug-resistant bac-
teria in Burkina Faso. Wastewaters collected from the 
healthcare centers representing tertiary and secondary 
level of the healthcare system were the most contami-
nated. The ESBL-producing E. coli and K. pneumoniae 
isolates were resistant to all commonly used antibiotics 

in Burkina Faso, such as β-lactams, β-lactams combined 
with ESBL-inhibitors (amoxicillin + clavulanic acid and 
piperacillin + tazobactam), quinolones, fluoroquinolones, 
aminoglycosides, sulfonamides, cyclins, and macrolides. 
Only amikacin and fosfomycin showed good activity 
against these bacteria. Some of the isolates also produced 
AmpC-β-lactamases and carbapenemases, limiting the 
treatment options even further. Untreated healthcare 
wastewaters entering the environment expose people and 
animals to the risk of infection by these multi-resistant 
bacteria. Therefore, it is important to include healthcare 
wastewater monitoring in the future national AMR mon-
itoring program.

Material and methods
Study sites and sampling
A prospective study was carried out in 5 healthcare cent-
ers in Burkina Faso representing the different levels of 
the healthcare systemin Burkina Faso. The samples were 
collected from Yalgado Ouédraogo teaching hospital in 
Ouagadougou (university hospital, tertiary level care), 
Koudougou regional hospital center in Koudougou and 
El Fateh Suka clinic in Ouagadougou (secondary level 
care), Source de Vie medical center in Ouagadougou and 
Saint Camille medical center in Nanoro rural area (pri-
mary level).

Three healthcare centers had a sewer system, Yalgado 
Ouédraogo teaching hospital, Koudougou regional hos-
pital center and Saint Camille medical center. Yalgado 
Ouédraogo teaching hospital sewers are connected to the 
city sewage system leading to the city’s wastewater treat-
ment plant. Wastewater from the hospital is discharged 
into the general sewage without any prior treatment. 
Koudougou regional hospital center has a chemical treat-
ment device. The treated wastewater is discharged into 
the municipality channel, which is connected to a back-
water in the town. Source de Vie medical center and El 
Fateh Suka clinic do not have a sewer system and their 
wastewater is collected in septic tanks. The manage-
ment of wastewater in these two healthcare centers and 
in Saint Camille medical center in Nanoro are not clearly 
documented. As a rule, there is no wastewater treatment 
plants in rural areas in Burkina Faso, instead, the waste-
waters are directly discharged into the environment with-
out any treatment.

We collected wastewater samples from several sites 
along the sewers from the healthcare centers with a sewer 
system and from septic tanks from the healthcare cent-
ers without a sewer system. Two rounds of sampling were 
done, 1) from october to december 2019 and 2) from 
october 2020 to march 2021. A total of 84 wastewater 
samples were collected (Table 1). In each case, one liter 
of wastewater was collected in a sterile glass bottle. The 
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samples were immediately placed in a cooler containing 
ice blocks and transported within 12 h to the microbiol-
ogy laboratory of the Clinical Research Unit of Nanoro 
(CRUN) for analysis.

Bacterial count, isolation, and identification
Two dilutions were prepared for each sample (1/10 and 
1/100) using sterile 0.9% physiological saline water. Fol-
lowing the WHO Tricycle instructions [44], 100 µL of 
each dilution was inoculated on ESBL-selective agar 
plates (ChromAgar™ ESBL, Paris, France), which were 
incubated at 35 ± 2  °C for 24  h. A positive control was 
carried out for all samples by inoculating a non-selective 
Cystine Lactose Electrolyte Deficient (CLED) agar plate 
with 100µL of the sample. After incubation, all visible 
bacterial colonies on the plates were counted, and the 
results were expressed into colony-forming units per mil-
liliter of wastewater (CFU/mL). Only a plate of one dilu-
tion (1/10 or 1/100) from each sample was chosen for the 
bacterial count, depending on the abundance of bacteria 
on the plates.

The agar plates were also inspected for different mor-
photypes of bacteria, according to the manufacturer’s 
instructions (ChromAgar™ ESBL, Paris, France). Red or 
pink colonies were assumed to be E. coli, and blue, green, 
or blue-green the KESC group (Klebsiella, Enterobac-
ter, Serratia and Citrobacter). Five colonies of the same 
morphotype of E. coli or the KESC group were picked 
for purification on eosin methylene blue agar (EMB). The 
purified isolates were identified using the API20E system 
(Biomérieux, Marcy-l’Etoile, France).

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing of 170 presumptive 
ESBL-producing bacterial isolates (109 E. coli and 61 K. 
pneumoniae isolates) was performed using the disk dif-
fusion method on Muller Hinton (MH) agar. Thirty-one 
antibiotic discs (Condalab, Madrid, Spain) were tested 
(Table  4) and the results were interpreted according to 
the American Clinical and Laboratory Standards Insti-
tute (CLSI) 2021 guidelines [45].

Extended spectrum β‑lactamase (ESBL) confirmation
ESBL confirmation was carried out on Mueller Hinton 
(MH) agar using the double disc synergy test (DDST) 
between a  3rd generation cephalosporin (ceftriaxone 
or ceftazidime, C3G), a  4th generation cephalosporin 
(cefepime, C4G) and amoxicillin + clavulanic acid 
(AMC), following the CLSI 2021 guidelines. The result 
was interpreted as positive when there was a visible syn-
ergy inhibition zone between C3G-AMC-C4G (Fig. 1).

Phenotypic AmpC‑β‑lactamase testing
The 51 isolates (37 E. coli and 14  K. pneumoniae) with 
cefoxitin inhibition zone diameter less than 18  mm 
(≥ 18  mm) were tested for the AmpC-β-lactamase pro-
duction. A bacterial suspension prepared with fresh 
colonies (McFarland 0.5) was inoculated onto entire 
surface of the MH agar supplemented with cloxacillin at 
4 µg/l and a disk of cefoxitin was placed on the plate. The 
test was positive if the inhibition zone diameter around 
cefoxitin disc was ≥ 18 mm.

Fig. 1 ESBL confirmation test for a K. pneumoniae strain showing a double disc synergy inhibition zone
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Carbapenemases detection
The isolates that were resistant to meropenem were 
tested for carbapenemase-production using the immu-
nochromatographic test O.K.N.V.I. RESIST-5 (CORIS 
BioConcept, Belgium) according to the manufacturer’s 
instructions. A total of 21 isolates were tested for the 
five main carbapenemases (OXA-48-like, KPC, NDM, 
VIM, IMP) within 15 min.
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